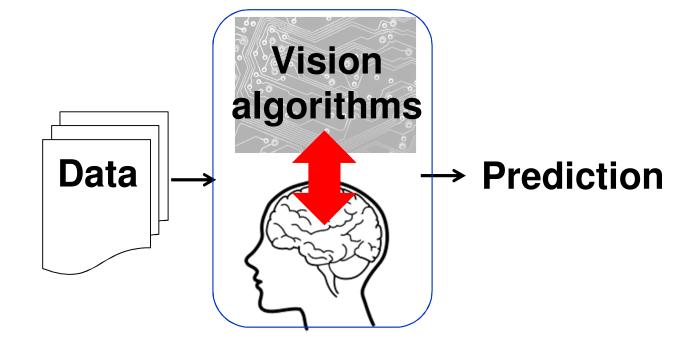


Relative Attributes: Teaching a System through Visual Comparisons

Kristen Grauman Department of Computer Science University of Texas at Austin

Work with Adriana Kovashka, Devi Parikh, Jeff Donahue

Interacting with computer vision systems



Semantic gap

Problem: How to teach a vision system...?

Status quo approach: teach via class labels.

...what we know about object categories?

...what kind of images we want to retrieve?

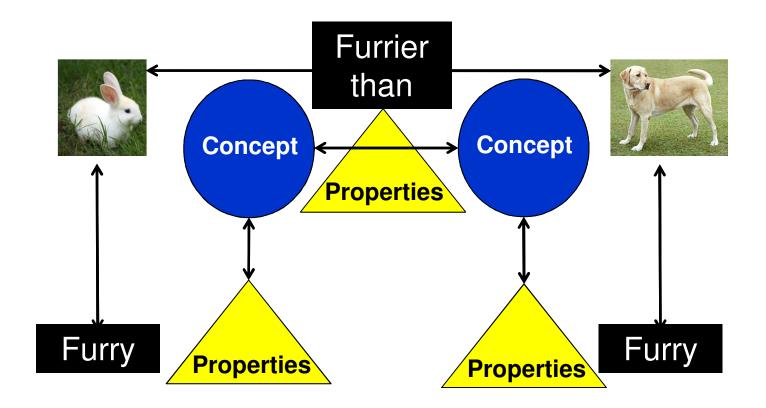
Problem: How to teach a vision system...?

Attributes offer semantic mode of communication, yet typically restricted to another layer of labels.

[Lampert et al. 2009, Farhadi et al. 2009, Kumar et al. 2009, Wang et al. 2010, Wang & Mori 2010, Berg et al. 2010, Branson et al. 2010, Endres et al. 2010...]

Our idea: Teach with visual comparisons

We propose **relative attributes** to represent *relationships* between classes, images, and their properties.



[Parikh & Grauman, ICCV 2011]

Our idea: Teach with visual comparisons

We propose **relative attributes** to represent *relationships* between classes, images, and their properties.

 \rightarrow Enable new modes of human-system communication

• Training through descriptions:

"Rabbits are furrier than dogs."

• Rationales to explain image labels:

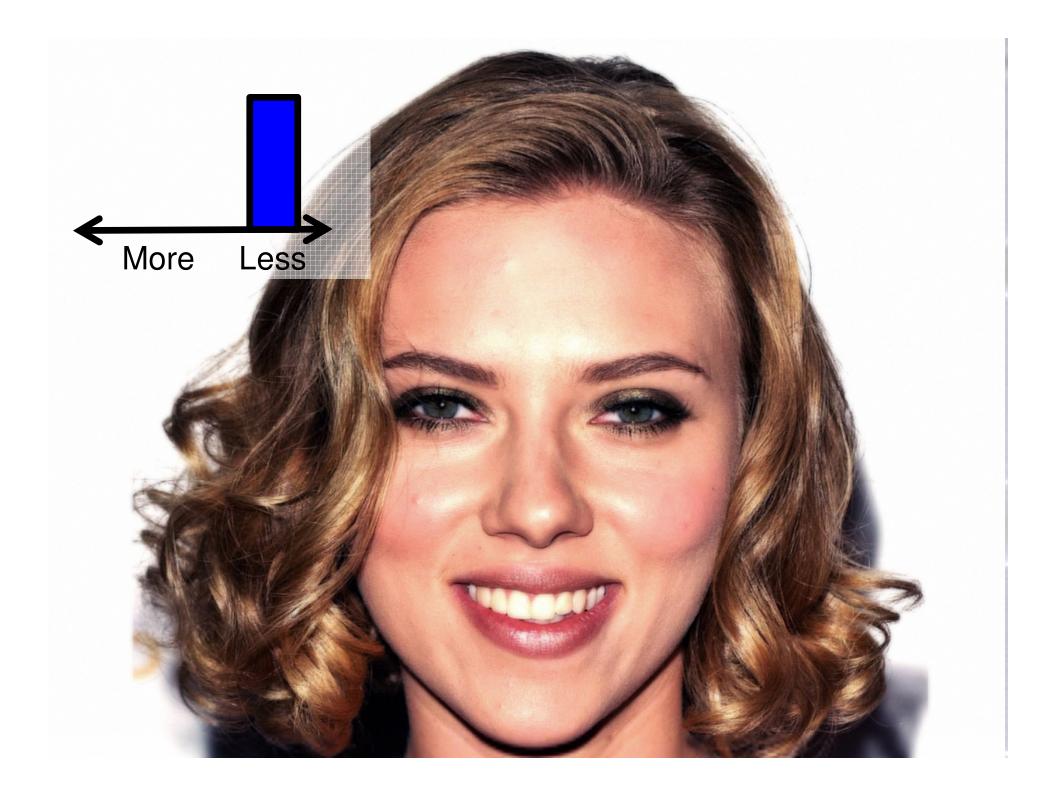
"It's not a coastal scene because it's too cluttered."

• Semantic relative feedback for image search:

"I want shoes like these, but shinier."

How should relative attributes be learned?

What do we need to capture from human annotators?



Learning relative attributes

For each attribute a_m , e.g., "openness"

Supervision consists of:

$$O_{m}:\left\{\left(\bigcup_{i} \vdash \bigcup_{i} \vdash \bigcup_{i} \downarrow_{i} \downarrow_{i}\right), \cdots\right\}, \text{ Ordered pairs}$$
$$S_{m}:\left\{\left(\bigcup_{i} \vdash \bigcup_{i} \vdash \bigcup_{i} \downarrow_{i}\right), \cdots\right\}, \text{ Similar pairs}$$

Learning relative attributes

Learn a ranking function

$$r_m(\boldsymbol{x_i}) = \boldsymbol{w_m^T x_i}^{\text{Image features}}$$

that best satisfies the constraints:

$$orall (i,j) \in O_m : \boldsymbol{w}_m^T \boldsymbol{x}_i > \boldsymbol{w}_m^T \boldsymbol{x}_j$$

 $orall (i,j) \in S_m : \boldsymbol{w}_m^T \boldsymbol{x}_i = \boldsymbol{w}_m^T \boldsymbol{x}_j$

Learning relative attributes

Max-margin learning to rank formulation

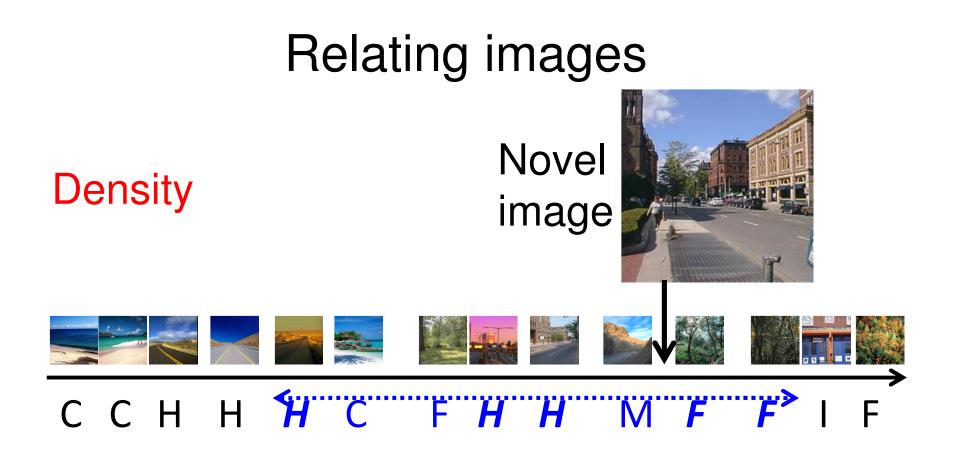
 $w_{m}^{T}x_{i} \neq w_{m}^{T}x_{j} \qquad \forall (i,j) \in O_{m}$ $w_{m}^{T}x_{i} = w_{m}^{T}x_{j} \qquad \forall (i,j) \in S_{m}$ $W_{m}^{T}x_{i} = w_{m}^{T}x_{j} \qquad \forall (i,j) \in S_{m}$

Image → Relative attribute score

Relating images

Conventional binary description: not dense

Relating images Novel Density image less dense than more dense than



more dense than Highways, less dense than Forests

Relating images

Binary (existing):

Not Young

BushyEyebrows

RoundFace

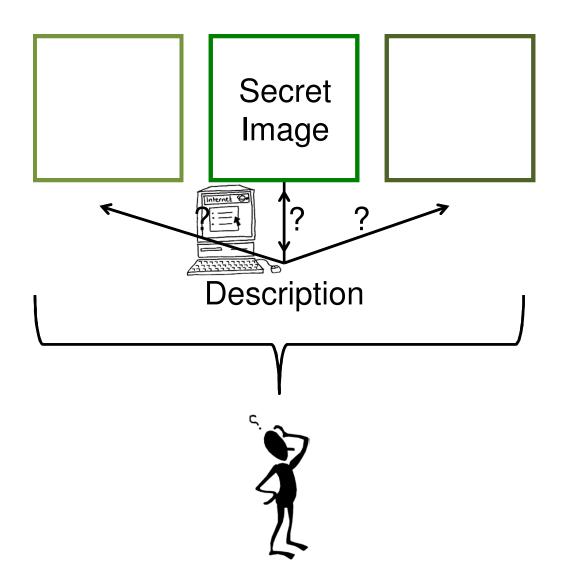
Relative (ours):

More Young than CliveOwen Less Young than ScarlettJohansson

More BushyEyebrows than ZacEfron Less BushyEyebrows than AlexRodriguez

More RoundFace than CliveOwen Less RoundFace than ZacEfron

Human study: Which image is being described?



Human study: Which image is being described?

Binary: Smiling, Young Smiling Young

Not Smiling

Not Young

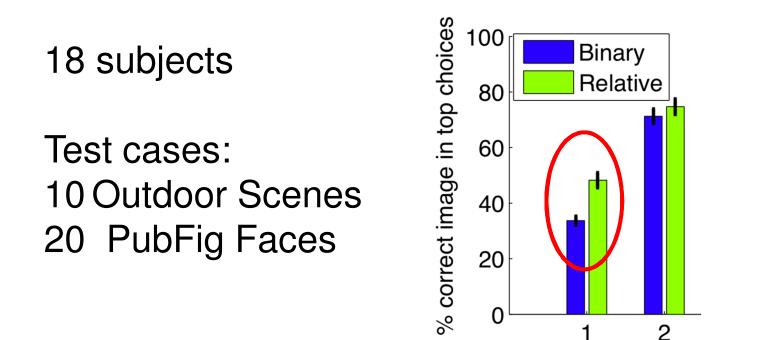
Relative More Smiling than

Younger than

Less Smiling than

Older than

Human study: Which image is being described?



top choices

Our idea: Teach with visual comparisons

We propose **relative attributes** to represent *relationships* between classes, images, and their properties.

- \rightarrow Enable new modes of human-system communication
 - Training through descriptions:

"Rabbits are furrier than dogs."

• Rationales to explain image labels:

"It's not a coastal scene because it's too cluttered."

• Semantic relative feedback for image search:

"I want shoes like these, but shinier."

Relative zero-shot learning

Training: Images from **S** seen categories and Descriptions of **U** unseen categories

Age: Hugh>Clive>Scarlett

Jared > Miley

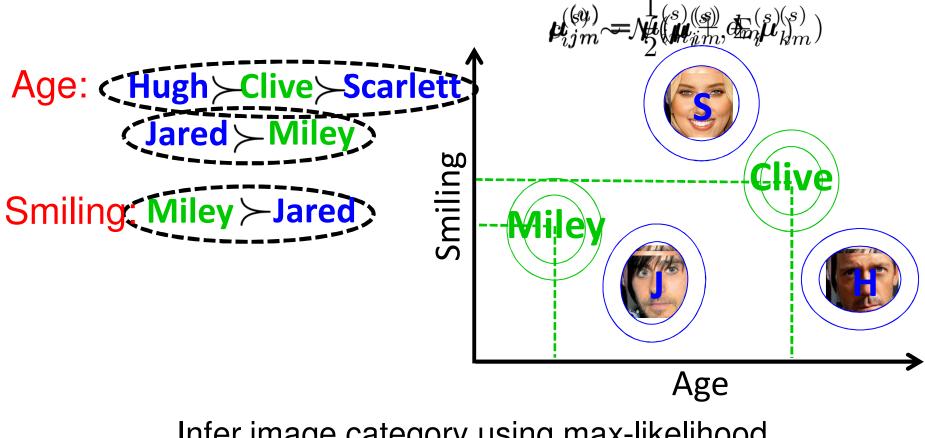
Smiling:

Miley > Jared

Need not use all attributes, nor all seen categories **Testing**: Categorize image into one of S+U classes

Relative zero-shot learning

We can predict new classes based on their **relationships** to existing classes - even without training images.



Infer image category using max-likelihood

Datasets

Outdoor Scene Recognition (OSR) [Oliva 2001]

8 classes, ~2700 images, Gist 6 attributes: open, natural, etc.

Public Figures Faces (PubFig) [Kumar 2009]

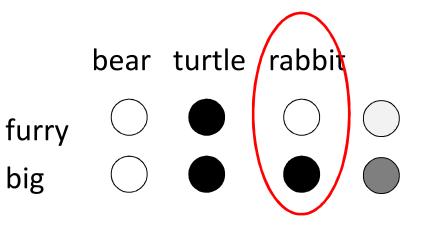
8 classes, ~800 images, Gist+color

11 attributes: white, chubby, etc.

Attributes labeled at category level

Baselines

 Binary attributes: Direct Attribute Prediction [Lampert et al. 2009]



 Relative attributes via classifier scores

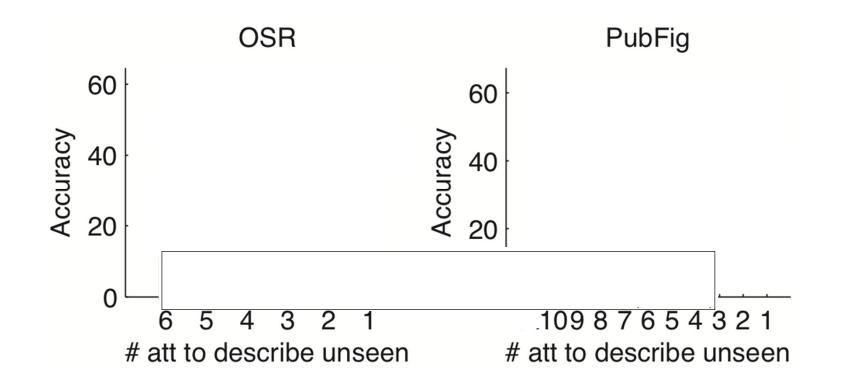
Relative zero-shot learning

- Robustness:
 - Fewer comparisons to train relative attributes
 - More unseen (fewer seen) categories
- Flexibility in supervision:

- 'Looseness' in description of unseen

Fewer attributes used to describe unseen

Relative zero-shot learning



An attribute is more discriminative when used relatively

Our idea: Teach with visual comparisons

We propose **relative attributes** to represent *relationships* between classes, images, and their properties.

 \rightarrow Enable new modes of human-system communication

• Training through descriptions:

"Rabbits are furrier than dogs."

• Rationales to explain image labels:

"It's not a coastal scene because it's too cluttered."

• Semantic relative feedback for image search:

"I want shoes like these, but shinier."

Complex visual recognition tasks

Is the team winning? How can you tell?

Is it a safe route? How can you tell?

Is her form good? How can you tell?

Our idea:

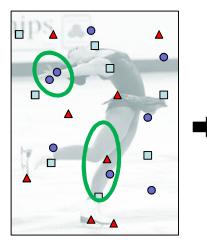
- Solicit a visual rationale for the label.
- Ask the annotator not just *what*, but also *why*.

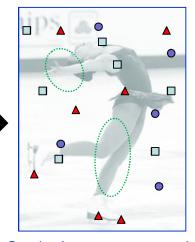
Soliciting visual rationales

Annotation task: Is her form good? How can you tell?

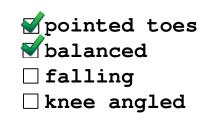


Spatial rationale

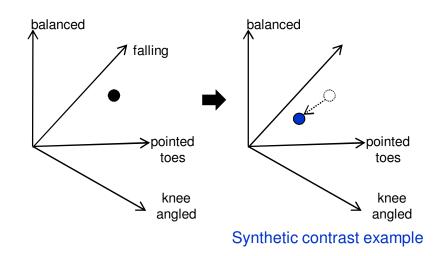




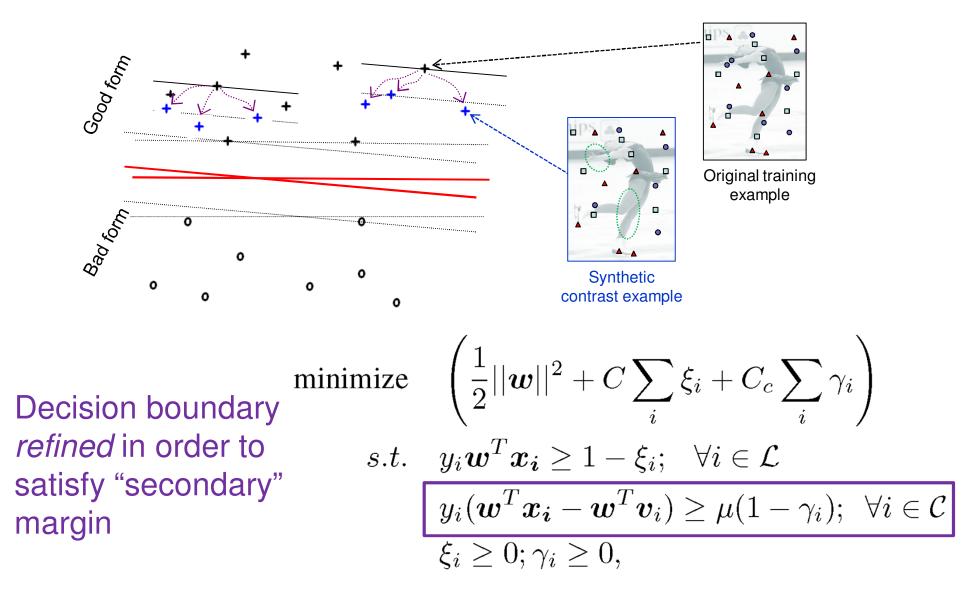
Synthetic contrast example



Attribute rationale



Rationales' influence on the classifier



[Zaidan et al. Using Annotator Rationales to Improve Machine Learning for Text Categorization, NAACL HLT 2007]

• Scene Categories: How can you tell the scene category?

• Hot or Not: What makes them hot (or not)?

• Public Figures: What attributes make them (un)attractive?

Collect rationales from hundreds of MTurk workers.

Example rationales from MTurk

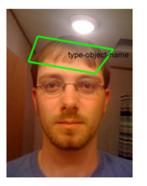
Scene categories

Typical

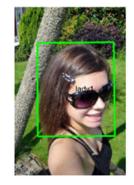
"Artistic"

Hot or Not

Hot, Male



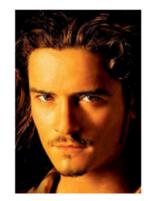
Not, Male



face

Hot, Female Not, Female

Youth Smiling Straight Hair Narrow Eyes



Youth Black Hair Goatee Square Face Shiny Skin High Cheekbones

Mean AP				
Scenes	Originals	+Rationales		
Kitchen	0.1196	0.1395		
Living Rm	0.1142	0.1238		
Inside City	0.1299	0.1487		
Coast	0.4243	0.4513		
Highway	0.2240	0.2379		
Bedroom	0.3011	0.3167		
Street	0.0778	0.0790		
Country	0.0926	0.0950		
Mountain	0.1154	0.1158		
Office	0.1051	0.1052		
Tall Building	0.0688	0.0689		
Store	0.0866	0.0867		
Forest	0.3956	0.4006		

Hot or Not	Originals	+Rationales
Male	54.86%	60.01%
Female	55.99%	57.07%

PubFig	Originals	+Rationales		
Male	64.60%	68.14%		
Female	51.74%	55.65%		

How do spatial rationales differ from foreground segmentation?

Scenes	Originals	+Rationales	Rationales only
Kitchen	0.1196	0.1395	0.1277
Living Rm	0.1142	0.1238	0.1131
Inside City	0.1299	0.1487	0.1394
Coast	0.4243	0.4513	0.4205
Highway	0.2240	0.2379	0.2221
Bedroom	0.3011	0.3167	0.2611
Street	0.0778	0.0790	0.0766
Country	0.0926	0.0950	0.0946
Mountain	0.1154	0.1158	0.1151
Office	0.1051	0.1052	0.1051
Tall Building	0.0688	0.0689	0.0689
Store	0.0866	0.0867	0.0857
Forest	0.3956	0.4006	0.4004

Mean AP

How do spatial rationales differ from foreground segmentation?

Why not just use discriminative feature selection?

Scenes	Originals	+Rationales	Rationales only	Mutual information
Kitchen	0.1196	0.1395	0.1277	0.1202
Living Rm	0.1142	0.1238	0.1131	0.1159
Inside City	0.1299	0.1487	0.1394	0.1245
Coast	0.4243	0.4513	0.4205	0.4129
Highway	0.2240	0.2379	0.2221	0.2112
Bedroom	0.3011	0.3167	0.2611	0.2927
Street	0.0778	0.0790	0.0766	0.0775
Country	0.0926	0.0950	0.0946	0.0941
Mountain	0.1154	0.1158	0.1151	0.1154
Office	0.1051	0.1052	0.1051	0.1048
Tall Building	0.0688	0.0689	0.0689	0.0686
Store	0.0866	0.0867	0.0857	0.0866
Forest	0.3956	0.4006	0.4004	0.3897

Our idea: Teach with visual comparisons

We propose **relative attributes** to represent *relationships* between classes, images, and their properties.

 \rightarrow Enable new modes of human-system communication

• Training through descriptions:

"Rabbits are furrier than dogs."

• Rationales to explain image labels:

"It's not a coastal scene because it's too cluttered."

• Semantic relative feedback for image search:

"I want shoes like these, but shinier."

Content-based image search

- Semantic gap between low-level visual features and highlevel user concepts → impedes search
- Interactive search can help, but traditional binary relevance feedback offers only coarse communication between user and system

Our idea: Image search refinement via relative attribute feedback

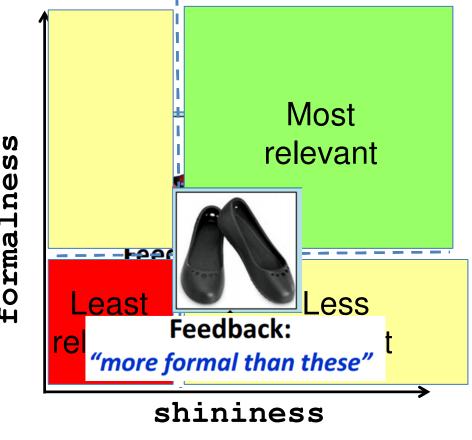
Initial top search results

User communicates target visual concept precisely in semantic terms---*feedback beyond labels*.

Approach: Whittle Search

- Rank images by their number of satisfied constraints
- Iterate, displaying topranked images as new reference examples

(To integrate *both* binary and relative feedback, learn relevance ranker.) formalnes



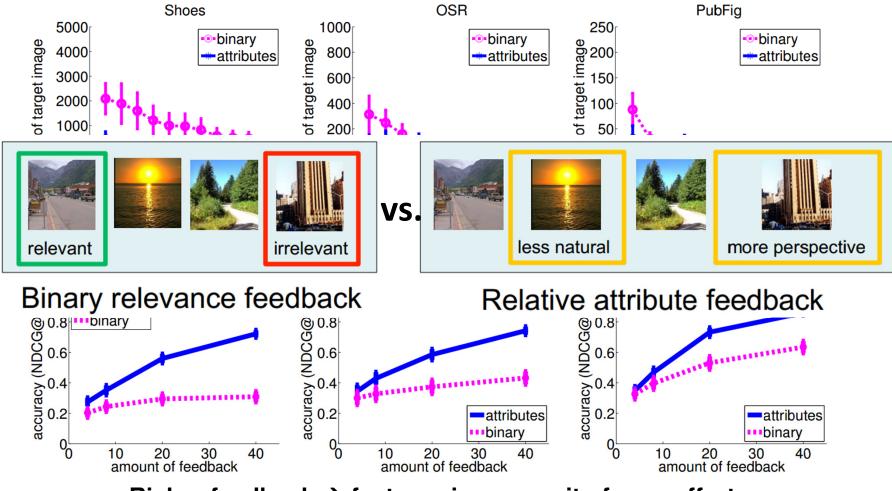
Datasets

Shoes – 14,658 images from Attribute Discovery dataset [Berg et al.] 10 attributes (we added)

Scenes – 2,688 images from Outdoor Scene Recognition [Oliva et al.] 6 attributes

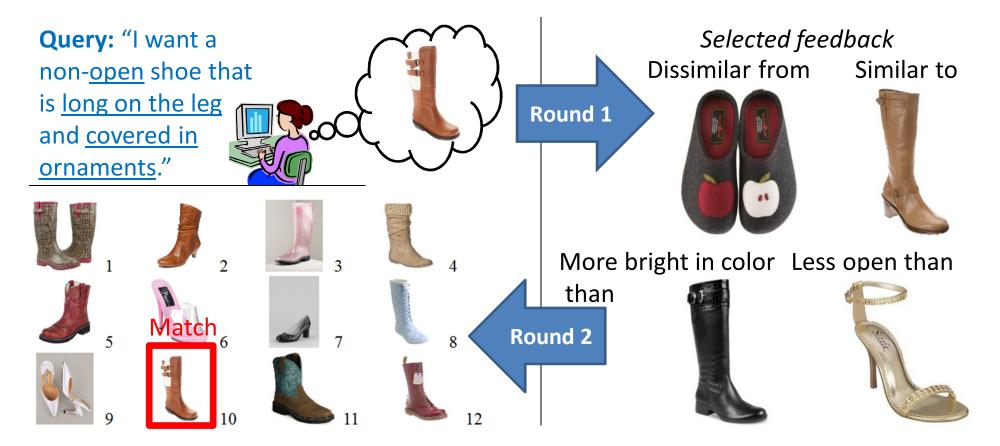
Faces– 772 images from Public Figures [Kumar et al.] 11 attributes;

Features: GIST+color



Richer feedback \rightarrow faster gains per unit of user effort.

Hybrid feedback example





More male

More male

More male

More male

Less young

Less young

Summary

- Humans are not simply "label machines"
- Widen access to visual knowledge by modeling visual comparisons
- Relative attributes enable new applications for recognition and visual search

