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Problem 

Efficient detection with Deformable Part Models 

Previous work: Dual-Tree Branch-and-Bound (DTBB) 

Current work: Incorporate part score computation in DTBB 

Acceleration over Generalized Distance Transforms (GDT) 

Problem: real bottleneck is part score computation (pre-GDT)  

                      Combine with Cascaded-DPM detection 

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, ‘Object Detection with Discriminatively 
Trained Part Based Models’, PAMI 2010 

I. Kokkinos, Rapid DPM Detection using Dual-Tree Branch-and-Bound, NIPS 2011 

P. Felzenszwalb R. Girshick and D. McAllester Cascade object detection with DPMs CVPR 2010 



3 Bounding Part Scores for Rapid Detection with Deformable Part Models 

p = 1
...

p = P

Object detection with Deformable Part Models (DPMs) 

x 3x 4

Up(x0) = hwp,H(x0)i
max

x

0
[U

p

(x

0
) +B

p

(x, x

0
)]

DTBB, NIPS 11 

This work 



4 Bounding Part Scores for Rapid Detection with Deformable Part Models 

Accelerating detection with DPMs 

x 3x 4
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P F Felzenszwalb R B Girshick and D A McAllester Cascade object detection with DPMs CVPR 2010 

A. Vedaldi and A. Zisserman, Sparse Kernel Maps and Faster Product Quantization Learning, 
CVPR 2012  

M. Pedersoli, A.Vedaldi, and J.Gonzalez. A coarse-to-fine approach for object detection, CVPR 2011 

B. Sapp, A. Toshev, and B. Taskar. Cascaded models for articulated pose estimation, ECCV, 2010 

Efficient detection with DPMs 

H.O. Song, S. Zickler, T. Althoff, R. Girschick, M. Fritz, C. Geyer, P. Felzenszwalb, T. Darrell, 
Sparselet Models for Efficient Multiclass Object Detection, ECCV 2012  

I. Kokkinos, Rapid DPM Detection using Dual-Tree Branch-and-Bound, NIPS 2011 

Efficient part score computation  

C. Dubout and F. Fleuret. Exact Acceleration of Linear Object Detectors, ECCV 2012  
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Part score computation 
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HOG cell quantization: visual ‘letters’ 
C = {C1, . . . , C256}
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HOG feature quantization 
HOG detail Quantized HOG 
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Efficient inner product approximation 
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10 Bounding Part Scores for Rapid Detection with Deformable Part Models 

Efficient inner product approximation 

Bounding Part Scores for Rapid Detection. 3

filter and then focus on a subset of part locations while also dynamically pruning the
set of candidate object locations.

3 Part Score Bounding

3.1 Score Approximation

We compute part scores as inner products of Histogram-of-Gradient (HOG) [16] fea-
tures with a part-specific weight vector, trained as in [7]. Denoting by h[x, f ] the f -th
dimension of the HOG cell located at x, and by w[y, f ] the value of the ‘part template’
(weight vector) for location y and dimension f , the score of a part at x is:

s[x] =
∑

y∈Y

F∑

f=1

w[y, f ]h[x+ y, f ], (1)

where Y is a set of displacements and F = 32 is the dimensionality of the HOG cell at
any point; we skip part indexes for simplicity. For ‘part filters’ Y = [0, 5] × [0, 5], so
computing the score at any point x requires 36 · 32 multiplications and summations.

Our goal is to replace these |Y | · F operations with a rapidly computable approxi-
mation. By introducing the F -dimensional vectors wy = [w[y, 1], . . . , w[y, F ]]T , and
hx = [h[x, 1], . . . ,h[x, F ]]T , we can write the right hand side of Eq. 1 as:

s[x] =
∑

y

〈wy,hx+y〉. (2)

As in [1], we use vector quantization to replace the F multiplications involved in every
inner product with a single lookup operation that approximates the final outcome. For
this we construct a codebook C = {C1, . . . , CK} for h with K-means clustering (we
use K =256) and create a K × |Y | array of precomputed values:

Π[k, y] = 〈Ck,wy〉, (3)

which gives the score of part-cell y in the presence of an image-cell Ck.
When provided with a new image we quantize its HOG cells with our dictionary, i.e.

we associate an index I[x] = argminkd(Ck,hx) with every image-cell hx; in particular
we use KD-trees for fast approximate nearest neighbor search [17]. Given x we consider
hi,j $ CI[x] and use use this approximation in Eq. 2 to obtain:

〈hx+y,wy〉 $ 〈CI[x+y],wy〉 = Π[I[x+ y], y] (4)

s[x] $ ŝ[x] =
∑

y

Π[I[x+ y], y], (5)

which exchanges the |Y | · F multiplications and summations of Eq. 2 with |Y | lookup
and summation operations. For F = 32 this can result in approximately a 30-fold
speedup. In practice due to the numerous memory access operations the speedup can
be smaller; our implementation is optimized to reduce the number of cache misses, but
since the method is rather technical we will report it in a larger version of the paper; we
refer to our publicly available code for details.
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Lookup-based estimate demonstration: s[x]
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Lookup-based estimate demonstration: ŝ[x]
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Part-level approximation error 
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Cell-level approximation error 

e[y] = hh[y]� ĥ[y],w[y]i= h � , i

= he[y],w[y]i

=
32X

f=1

ey[f ]wy[f ]
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Chebyshev inequality  
For any zero-mean random variable, and any value of α: 

6 Iasonas Kokkinos

being correct and vice versa. To obtain our bound we model the F elements of ex+y

and wy involved in the inner product giving the HOG cell-level error:

εx+y = 〈ex+y,wy〉 (10)

as samples from two distributions, Px+y(e), Py(w) respectively; since e is quantization
error, Px+y(e) is considered to be zero-mean and symmetric around zero; we do not
make assumptions about Py(w). We denote by me

x+y and mw
y the respective variances

(second moments) of the two distributions. Moreover, we assume that the quantization
error at neighboring image locations is independent ex+y; one can consider cases where
the quantization noise at neighboring locations has dependencies, e.g. when neighbor-
ing HOG cells are similar, and far outside the ‘span’ of the available codebook; a more
thorough evaluation of whether this holds is needed, even though empirically we have
observed that our subsequent bounds are valid.

Based on these assumptions, the products ex+y[f ]wy[f ], f = 1, . . . , F formed
from the f -th elements of the vectors involved in Eq. 10 can be modeled as indepen-
dent samples of a zero-mean, symmetric distribution with variance mx+y

.
= me

x+ym
w
y .

Consequently, the cell-level approximation error εx+y appearing in Eq. 10 can be seen
as the sum of F independent variables having zero mean and variance mx+y , so εx+y

will in turn be a random variable with zero mean and variance Fmx+y; similarly the
part-level approximation error εx will have zero mean and variance mx =

∑
y Fmx+y .

As per Chebyshev’s inequality [18], any zero-mean random variable X satisfies:

P (|X| > α) ≤ E{X2}
α2

, (11)

where E{·} denotes expectation - hence the numerator is the second moment of X . This
means that with probability larger than E{X2}/α2, X will be contained in [−α,α]; or,
X will be contained in [−

√
E{X2}/pe,

√
E{X2}/pe] with probability of error pe.

We can use this fact to bound εx probabilistically: with a probability of error pe we
will have εx ∈ [−

√
mx/pe,

√
mx/pe]. Since εx = s[x] − ŝ[x], this means that with

probability 1− pe we will have:

s[x] ∈
[
ŝ[x]−

√
mx/pe, ŝ[x] +

√
mx/pe

]
(12)

where mx =
∑

y

Fme
x+ym

w
y , ŝ[x] =

∑

y

Π[I[x+ y], y]. (13)

This bound is the main result of our paper. Comparing it to the Holder-based bound
of Eq. 9, we first note that the empirical estimators of me

x+y,m
w
y are related to the

2-norms of ex+y , wy , respectively as:

me
x+y =

1

F

F∑

f=1

e2x+y[f ] =
1

F
‖ex+y‖22 (14)

and similarly mw
x+y = 1

F ‖wx+y‖22. So apart from the root operation computing mx in
Eq. 13 has the same complexity as computing B in Eq. 9. Moreover the length of the
interval in Eq. 12 scales proportionally to

√
|Y |F while in Eq. 9 it scales proportionally

to |Y |F , which shows that the Chebyshev bound is tighter than the Holder bound.

Equivalently, with probability of error smaller than      : 

X 2
"
�

s
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Chebyshev inequality-II  
For a weighted sum of i.i.d. zero-mean random variables: 
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Chebyshev inequality for cell-level error 
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Chebyshev inequality for part-level error 
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With probability of error at most      : 

Recap 

pe

s[x] ' ŝ[x] =
X

y

⇧[I[x+ y], y]

Lookup-based approximation: 

s[x]  s[x]  s[x]
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Bound demonstration: s[x]
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Bound demonstration: ̂s[x]
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Bound demonstration: s[x], pe = .05
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Bound demonstration: s[x], pe = .05
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Bound demonstration for varying confidence 
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Bound tightness 
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Integration with detection 

Dual-Tree Branch-and-Bound 

Cascaded DPMs (Felzenszwalb, Girschick et al, CVPR 2010) 
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Accelerating detection with DPMs 
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DTBB, NIPS 2011 GDT 
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Dual-Tree Brand-and-Bound 

x 3x 4

I. Kokkinos. Rapid Deformable Object Detection using DTBB, NIPS 2011 
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DTBB demonstration 



30 Bounding Part Scores for Rapid Detection with Deformable Part Models 

DTBB demonstration 
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DTBB demonstration 
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DTBB demonstration 



33 Bounding Part Scores for Rapid Detection with Deformable Part Models 

DTBB demonstration 
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DTBB demonstration 
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DTBB demonstration 
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DTBB results: exact part scores 
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DTBB results, part score bounds @  pe = 0.2
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DTBB results, part score bounds @  pe = 0.1
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DTBB results, part score bounds @  pe = 0.05
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Impact on performance 

Bounding Part Scores for Rapid Detection. 9

estimate of the part scores, without the related upper and lower bounds, performance
drops significantly. However when using bounding intervals to accommodate the ‘slack’
due to the approximation error the performance directly becomes identical to the PCA-
based cascade. However our method does not require additional threshold estimation,
and as shown later is faster.

On the right plot we compare the performance of our lookup-based variant of DTBB
for different values of pe; we observe that for small values of pe the performance is
identical with GDTs, but with larger values of pe performance decreases. Again, this
validates the need for incorporating uncertainty in lookup-based approximations. This
is consistent with the observations in [1] where performance was observed to drop,
even when using a model directly trained with the lookup-based approximation to the
features; it is all the more natural that performance drops when using a model trained
with the full, clean features and testing with quantized features.
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Fig. 2. Precision-Recall curves for bicycle detection using cascade-based (left) and
branch-and-bound detection (right). Please see text for details.

Coming to timing results, we provide in Table I timings gathered from 1000 images
of the PASCAL VOC dataset, and averaged over all 20 categories. The first row indi-
cates the time spent to compute part scores by the different methods, and the following
rows indicate detection times. We observe that our lookup-based approximations are
faster both for DTBB and Cascade Detection for moderate values of the threshold θ;
in particular for θ = −.7, or θ = −.5 the lookup-based variant of cascades requires
approximately half the time of the PCA-based cascade, and 1/30 of the time of GDT-
based detection. For more conservative threshold values the part score is fully evaluated
at more points and the merits of the first fast pass get eliminated.

6 Conclusion

In this work we introduce Chebyshev’s inequality to bound part scores in a simple
and computationally efficient manner. We demonstrate the merit of our approach by
combining the part score bounds with Branch-and-Bound and Cascade detection for
deformable part models, which results in substantial speedups without loss in accuracy.
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GDTs [6] BB [2] BB-LU-5 BB-LU-1 CSC-PCA [4] CSC-LU-5 CSC-LU-1
Part terms 8.35 ± 0.77 1.69 ± 0.18 0.69 ± 0.03 0.69 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
✓ = �0.5 0.60 ± 0.05 0.21 ± 0.06 0.47 ± 0.11 1.04 ± 0.25 0.56 ± 0.07 0.19 ± 0.03 0.23 ± 0.04
✓ = �0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65 0.72 ± 0.09 0.29 ± 0.04 0.36 ± 0.06
✓ = �1.0 0.60 ± 0.05 1.31 ± 0.31 3.80 ± 0.90 9.40 ± 2.70 1.04 ± 0.16 0.51 ± 0.10 1.07 ± 0.29

Table 1. Means and standard deviation timings, in seconds, of the considered approaches. GDT
stands for distance transforms, BB for Dual Tree Branch-and-Bound, CSC for cascade, and
LU-{1,5} for lookup-based bounds with p

e

= .01 and p

e

= .05 respectively.

GDTs Exact p

e

= 0.05 p

e

= 0.01

Part terms 8.35 ± 0.77 1.69 ± 0.18 0.69 ± 0.03 0.69 ± 0.06
✓ = �0.5 0.60 ± 0.05 0.21 ± 0.06 0.47 ± 0.11 1.04 ± 0.25
Sum 8.95 ± 0.82 1.90 ± 0.23 1.17 ± 0.12 1.74 ± 0.32
✓ = �0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65
Sum 8.95 ± 0.82 2.10 ± 0.24 1.70 ± 0.27 3.00 ± 0.71
✓ = �1.0 0.60 ± 0.05 1.31 ± 0.31 3.80 ± 0.90 9.40 ± 2.70
Sum 8.95 ± 0.82 3.00 ± 0.42 4.50 ± 1.02 10.01 ± 2.82

GDTs C-DPM p

e

= 0.05 p

e

= 0.01
✓ = �0.5 8.95 ± 0.82 0.56 ± 0.07 0.19 ± 0.03 0.23 ± 0.04
✓ = �0.7 8.95 ± 0.82 0.72 ± 0.09 0.29 ± 0.04 0.36 ± 0.06
✓ = �1.0 8.95 ± 0.82 1.04 ± 0.16 0.51 ± 0.10 1.07 ± 0.29

GDTs DTBB p

e

= 0.05 p

e

= 0.01

Part terms 8.35 ± 0.77 1.69 ± 0.18 0.69 ± 0.03 0.69 ± 0.06
✓ = �0.5 0.60 ± 0.05 0.21 ± 0.06 0.47 ± 0.11 1.04 ± 0.25
Sum 8.95 ± 0.82 1.90 ± 0.23 1.17 ± 0.12 1.74 ± 0.32
✓ = �0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65
Sum 8.95 ± 0.82 2.10 ± 0.24 1.70 ± 0.27 3.00 ± 0.71
✓ = �1.0 0.60 ± 0.05 1.31 ± 0.31 3.80 ± 0.90 9.40 ± 2.70
Sum 8.95 ± 0.82 3.00 ± 0.42 4.50 ± 1.02 10.01 ± 2.82

Speedup results 
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Detection with Cascade DPMs (C-DPMs) 

S0(x) = 0, I0 = [1, N ]⇥ [1,M ]

S

k

(x) = S

k�1(x) + max

x

0
(U

p

(x

0
) +B

p

(x

0
, x))

Ik = {x 2 Ik�1 : Sk�1(x) � ✓k}

Felzenszwalb, Girschick, et al: use PCA-projection of 
      

h,w
Our work: use quick upper bounds, thresholds for full HOG 

10 Iasonas Kokkinos

GDTs [6] BB [2] BB-LU-5 BB-LU-1 CSC-PCA [4] CSC-LU-5 CSC-LU-1
Part terms 8.35 ± 0.77 1.69 ± 0.18 0.69 ± 0.03 0.69 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
✓ = �0.5 0.60 ± 0.05 0.21 ± 0.06 0.47 ± 0.11 1.04 ± 0.25 0.56 ± 0.07 0.19 ± 0.03 0.23 ± 0.04
✓ = �0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65 0.72 ± 0.09 0.29 ± 0.04 0.36 ± 0.06
✓ = �1.0 0.60 ± 0.05 1.31 ± 0.31 3.80 ± 0.90 9.40 ± 2.70 1.04 ± 0.16 0.51 ± 0.10 1.07 ± 0.29

Table 1. Means and standard deviation timings, in seconds, of the considered approaches. GDT
stands for distance transforms, BB for Dual Tree Branch-and-Bound, CSC for cascade, and
LU-{1,5} for lookup-based bounds with p

e

= .01 and p

e

= .05 respectively.

GDTs Exact p

e

= 0.05 p

e

= 0.01

Part terms 8.35 ± 0.77 1.69 ± 0.18 0.69 ± 0.03 0.69 ± 0.06
✓ = �0.5 0.60 ± 0.05 0.21 ± 0.06 0.47 ± 0.11 1.04 ± 0.25
Sum 8.95 ± 0.82 1.90 ± 0.23 1.17 ± 0.12 1.74 ± 0.32
✓ = �0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65
Sum 8.95 ± 0.82 2.10 ± 0.24 1.70 ± 0.27 3.00 ± 0.71
✓ = �0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65
Sum 8.95 ± 0.82 2.10 ± 0.24 1.70 ± 0.27 3.00 ± 0.71
✓ = �1.0 0.60 ± 0.05 1.31 ± 0.31 3.80 ± 0.90 9.40 ± 2.70
Sum 8.95 ± 0.82 3.00 ± 0.42 4.50 ± 1.02 10.01 ± 2.82

GDTs C-DPM p

e

= 0.05 p

e

= 0.01
✓ = �0.5 8.95 ± 0.82 0.56 ± 0.07 0.19 ± 0.03 0.23 ± 0.04
✓ = �0.7 8.95 ± 0.82 0.72 ± 0.09 0.29 ± 0.04 0.36 ± 0.06
✓ = �1.0 8.95 ± 0.82 1.04 ± 0.16 0.51 ± 0.10 1.07 ± 0.29

GDTs C-DPM p

e

= 0.05 p

e

= 0.01

Part terms 8.35 ± 0.77 1.69 ± 0.18 0.69 ± 0.03 0.69 ± 0.06
✓ = �0.5 0.60 ± 0.05 0.21 ± 0.06 0.47 ± 0.11 1.04 ± 0.25
Sum 8.95 ± 0.82 1.90 ± 0.23 1.17 ± 0.12 1.74 ± 0.32
✓ = �0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65
Sum 8.95 ± 0.82 2.10 ± 0.24 1.70 ± 0.27 3.00 ± 0.71
✓ = �0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65
Sum 8.95 ± 0.82 2.10 ± 0.24 1.70 ± 0.27 3.00 ± 0.71
✓ = �1.0 0.60 ± 0.05 1.31 ± 0.31 3.80 ± 0.90 9.40 ± 2.70
Sum 8.95 ± 0.82 3.00 ± 0.42 4.50 ± 1.02 10.01 ± 2.82
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Conclusions 

Rapid upper and lower bounds 
    

Blend of optimization and low-level processing 
    On-going work     

Part sharing  

Tighter bounds, cascades  

http://vision.mas.ecp.fr/Personnel/iasonas/code.html 


