Bounding Part Scores for Rapid Detection with Deformable Part Models

Iasonas Kokkinos

Center for Visual Computing Ecole Centrale de Paris

Galen Group
INRIA-Saclay

17 ${ }^{\text {th }}$ October 2012
Parts and Attributes Workshop, ECCV 2012

Problem

Efficient detection with Deformable Part Models
Previous work: Dual-Tree Branch-and-Bound (DTBB)
Acceleration over Generalized Distance Transforms (GDT)
Problem: real bottleneck is part score computation (pre-GDT)
Current work: Incorporate part score computation in DTBB
Combine with Cascaded-DPM detection

```
P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, `Object Detection with Discriminatively
Trained Part Based Models', PAMI }201
I. Kokkinos, Rapid DPM Detection using Dual-Tree Branch-and-Bound, NIPS }201
P. Felzenszwalb R. Girshick and D. McAllester Cascade object detection with DPMs CVPR }201
```


Object detection with Deformable Part Models (DPMs)

Accelerating detection with DPMs

Efficient detection with DPMs

P F Felzenszwalb R B Girshick and D A McAllester Cascade object detection with DPMs CVPR 2010
B. Sapp, A. Toshev, and B. Taskar. Cascaded models for articulated pose estimation, ECCV, 2010
M. Pedersoli, A. Vedaldi, and J.Gonzalez. A coarse-to-fine approach for object detection, CVPR 2011
I. Kokkinos, Rapid DPM Detection using Dual-Tree Branch-and-Bound, NIPS 2011

Efficient part score computation
H. Pirsiavash and D. Ramanan, Steerable Part Models, CVPR 2012
A. Vedaldi and A. Zisserman, Sparse Kernel Maps and Faster Product Quantization Learning, CVPR 2012
H.O. Song, S. Zickler, T. Althoff, R. Girschick, M. Fritz, C. Geyer, P. Felzenszwalb, T. Darrell, Sparselet Models for Efficient Multiclass Object Detection, ECCV 2012
C. Dubout and F. Fleuret. Exact Acceleration of Linear Object Detectors, ECCV 2012

Part score computation

$\mathbf{W}[y]$

$\mathbf{h}[x+y]$

$$
s[x]=\sum_{y}\langle\mathbf{h}[x+y], \mathbf{w}[y]\rangle
$$

Part scores $s[x]=\sum_{y}\langle\mathbf{h}[x+y], \mathbf{w}[y]\rangle$

HOG cell quantization: visual 'letters’

$$
\mathcal{C}=\left\{C_{1}, \ldots, C_{256}\right\}
$$

HOG feature quantization

HOG detail

Codebook indices

$\mathbf{h}[x]$
$i[x]=\arg \min _{k} d\left(\mathbf{h}[x], C_{k}\right)$
$\hat{\mathbf{h}}[x]=C_{i[x]}$

Efficient inner product approximation

$$
\begin{aligned}
& s[x] \simeq \hat{s}[x] \\
& \sum_{y}\langle\mathbf{h}[x+y], \mathbf{w}[y]\rangle \simeq \sum_{y}\langle\hat{\mathbf{h}}[x+y], \mathbf{w}[y]\rangle
\end{aligned}
$$

Efficient inner product approximation

$$
\begin{aligned}
&\left\langle\boldsymbol{V}, \mathbf{F}^{\prime} \mathbf{z}\right\rangle \sim \\
& \begin{aligned}
\langle\mathbf{h}[x+y], \mathbf{w}[y]\rangle \simeq & \langle\hat{\mathbf{h}}[x+y], \mathbf{w}[y]\rangle \\
= & \left\langle C_{I[x+y]}, \mathbf{w}[y]\right\rangle \\
= & \Pi[I[x+y], y] \\
& \Pi[k, y]=\left\langle C_{k}, \mathbf{w}_{y}\right\rangle \\
s[x] \simeq \hat{s}[x]= & \sum_{y} \Pi[I[x+y], y]
\end{aligned}
\end{aligned}
$$

Lookup-based estimate demonstration: $s[x]$

Lookup-based estimate demonstration: $\hat{s}[x]$

Part-level approximation error

$$
\begin{aligned}
& =\sum_{y} \underbrace{\langle\mathbf{h}[y]-\hat{\mathbf{h}}[y], \mathbf{w}[y]\rangle}_{e[y]}
\end{aligned}
$$

Cell-level approximation error

$$
\begin{aligned}
e[y] & =\langle\mathbf{h}[y]-\hat{\mathbf{h}}[y], \mathbf{w}[y]\rangle=\langle\mathbf{z}-\mathbf{v}, \mathbf{r}] \\
& =\langle\mathbf{e}[y], \mathbf{w}[y]\rangle \\
& =\sum^{32} \mathbf{e}_{y}[f] \mathbf{w}_{y}[f]
\end{aligned}
$$

Chebyshev inequality

For any zero-mean random variable, and any value of α :

$$
P(|X|>\alpha) \leq \frac{E\left\{X^{2}\right\}}{\alpha^{2}}
$$

Equivalently, with probability of error smaller than p_{e} :

$$
X \in\left[-\sqrt{\frac{E\left\{X^{2}\right\}}{p_{e}}}, \sqrt{\frac{E\left\{X^{2}\right\}}{p_{e}}}\right]
$$

Chebyshev inequality-II

For a weighted sum of i.i.d. zero-mean random variables:

$$
X^{\prime}=\sum_{k=1}^{K} w_{k} X_{k}
$$

with probability of error smaller than p_{e} :

$$
X^{\prime} \in\left[-\sqrt{\frac{\left(\sum_{k} w_{k}^{2}\right) E\left\{X^{2}\right\}}{p_{e}}}, \sqrt{\frac{\left(\sum_{k} w_{k}^{2}\right) E\left\{X^{2}\right\}}{p_{e}}}\right]
$$

Chebyshev inequality for cell-level error

$$
e[y]=\sum_{f=1}^{F} \mathbf{e}_{y}[f] \mathbf{w}_{y}[f]
$$

with probability of error smaller than p_{e} :

$$
e_{y} \in\left[-\sqrt{\frac{\|\mathbf{w}[y]\|^{2}\|\mathbf{e}[y]\|^{2}}{p_{e} F}}, \sqrt{\frac{\|\mathbf{w}[y]\|^{2}\|\mathbf{e}[y]\|^{2}}{p_{e} F}}\right]
$$

Chebyshev inequality for part-level error

$$
\epsilon=\hat{s}-s=\sum_{y} e[y]
$$

with probability of error smaller than p_{e} :
$\epsilon \in\left[-\sqrt{\frac{\sum_{y}\|\mathbf{w}[y]\|^{2}\|\mathbf{e}[y]\|^{2}}{p_{e} F}}, \sqrt{\frac{\sum_{y}\|\mathbf{w}[y]\|^{2}\|\mathbf{e}[y]\|^{2}}{p_{e} F}}\right]$
\Rightarrow with probability of error smaller than $p_{e}:$
$s \in\left[\hat{s}-\sqrt{\frac{\sum_{y}\|\mathbf{w}[y]\|^{2}\|\mathbf{e}[y]\|^{2}}{p_{e} F}}, \hat{s}+\sqrt{\frac{\sum_{y}\|\mathbf{w}[y]\|^{2}\|\mathbf{e}[y]\|^{2}}{p_{e} F}}\right]$

Recap

Lookup-based approximation:

$$
s[x] \simeq \hat{s}[x]=\sum_{y} \Pi[I[x+y], y]
$$

With probability of error at most p_{e} :

$$
\begin{array}{r}
\underline{s}[x] \leq s[x] \leq \bar{s}[x] \\
\underline{s}[x]=\hat{s}[x]-\sqrt{\frac{\sum_{y}\|\mathbf{w}[y]\|^{2}\|\mathbf{e}[x+y]\|^{2}}{p_{e} F}} \\
\bar{s}[x]=\hat{s}[x]+\sqrt{\frac{\sum_{y}\|\mathbf{w}[y]\|^{2}\|\mathbf{e}[x+y]\|^{2}}{p_{e} F}}
\end{array}
$$

Bound demonstration: $s[x]$

Bound demonstration: $\hat{S}[x]$

Bound demonstration: $\underline{s}[x], p_{e}=.05$

Bound demonstration: $\bar{s}[x], p_{e}=.05$

Bound demonstration for varying confidence

Bound tightness

Integration with detection

Dual-Tree Branch-and-Bound
Cascaded DPMs (Felzenszwalb, Girschick et al, CVPR 2010)

Accelerating detection with DPMs
 This work

$w_{2} \ldots w_{P}$

$B_{2} \ldots B_{P}$
$U_{p}(x)=\left\langle w_{p}, H(x)\right\rangle$

DTBB, NIPS 2011

$$
S(x)=\sum_{p=1}^{P} \mu_{p}(x)
$$

Dual-Tree Brand-and-Bound

Input \& Detection result

Detector score $S(x)$

BB for $\arg \max _{x} S(x)$

BB for $S(x) \geq-1$

I. Kokkinos. Rapid Deformable Object Detection using DTBB, NIPS 2011

DTBB demonstration

DTBB results: exact part scores

DTBB results, part score bounds @ $p_{e}=0.2$

DTBB results, part score bounds @ $p_{e}=0.1$

DTBB results, part score bounds @ $p_{e}=0.05$

Impact on performance

DTBB-based bicycle detection for threshod $t=\mathbf{- 1 . 1}$

Speedup results

	GDTs	DTBB	$p_{e}=0.05$	$p_{e}=0.01$
Part terms	8.35 ± 0.77	1.69 ± 0.18	0.69 ± 0.03	0.69 ± 0.06
$\theta=-0.5$	0.60 ± 0.05	0.21 ± 0.06	0.47 ± 0.11	1.04 ± 0.25
Sum	8.95 ± 0.82	1.90 ± 0.23	1.17 ± 0.12	1.74 ± 0.32
$\theta=-0.7$	0.60 ± 0.05	0.42 ± 0.10	1.00 ± 0.23	2.33 ± 0.65
Sum	8.95 ± 0.82	2.10 ± 0.24	1.70 ± 0.27	3.00 ± 0.71
$\theta=-1.0$	0.60 ± 0.05	1.31 ± 0.31	3.80 ± 0.90	9.40 ± 2.70
Sum	8.95 ± 0.82	3.00 ± 0.42	4.50 ± 1.02	10.01 ± 2.82

Detection with Cascade DPMs (C-DPMs)

$$
\begin{aligned}
& S_{0}(x)=0, \mathcal{I}_{0}=[1, N] \times[1, M] \\
& S_{k}(x)=S_{k-1}(x)+\max _{x^{\prime}}\left(U_{p}\left(x^{\prime}\right)+B_{p}\left(x^{\prime}, x\right)\right) \\
& \mathcal{I}_{k}=\left\{x \in \mathcal{I}_{k-1}: S_{k-1}(x) \geq \theta_{k}\right\}
\end{aligned}
$$

Felzenszwalb, Girschick, et al: use PCA-projection of \mathbf{h}, \mathbf{w} Our work: use quick upper bounds, thresholds for full HOG

$$
\begin{array}{|c|c|c|c|c|}
\hline & \text { GDTs } & \text { C-DPM } & p_{e}=0.05 & p_{e}=0.01 \\
\hline \theta=-0.5 & 8.95 \pm 0.82 & 0.56 \pm 0.07 & 0.19 \pm 0.03 & 0.23 \pm 0.04 \\
\hline \theta=-0.7 & 8.95 \pm 0.82 & 0.72 \pm 0.09 & 0.29 \pm 0.04 & 0.36 \pm 0.06 \\
\hline \theta=-1.0 & 8.95 \pm 0.82 & 1.04 \pm 0.16 & 0.51 \pm 0.10 & 1.07 \pm 0.29 \\
\hline
\end{array}
$$

Conclusions

Rapid upper and lower bounds
Blend of optimization and low-level processing
On-going work

Part sharing

Tighter bounds, cascades
http://vision.mas.ecp.fr/Personnel/iasonas/code.html

