
1 Bounding Part Scores for Rapid Detection with Deformable Part Models

Iasonas Kokkinos

17th October 2012
Parts and Attributes Workshop, ECCV 2012

Galen Group
INRIA-Saclay

Center for Visual Computing
Ecole Centrale de Paris

Bounding Part Scores for Rapid Detection with
Deformable Part Models

= h � , i✏

2 Bounding Part Scores for Rapid Detection with Deformable Part Models

Problem

Efficient detection with Deformable Part Models

Previous work: Dual-Tree Branch-and-Bound (DTBB)

Current work: Incorporate part score computation in DTBB

Acceleration over Generalized Distance Transforms (GDT)

Problem: real bottleneck is part score computation (pre-GDT)

 Combine with Cascaded-DPM detection

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, ‘Object Detection with Discriminatively
Trained Part Based Models’, PAMI 2010

I. Kokkinos, Rapid DPM Detection using Dual-Tree Branch-and-Bound, NIPS 2011

P. Felzenszwalb R. Girshick and D. McAllester Cascade object detection with DPMs CVPR 2010

3 Bounding Part Scores for Rapid Detection with Deformable Part Models

p = 1
...

p = P

Object detection with Deformable Part Models (DPMs)

x 3x 4

Up(x0) = hwp,H(x0)i
max

x

0
[U

p

(x

0
) +B

p

(x, x

0
)]

DTBB, NIPS 11

This work

4 Bounding Part Scores for Rapid Detection with Deformable Part Models

Accelerating detection with DPMs

x 3x 4

H. Pirsiavash and D. Ramanan, Steerable Part Models, CVPR 2012

P F Felzenszwalb R B Girshick and D A McAllester Cascade object detection with DPMs CVPR 2010

A. Vedaldi and A. Zisserman, Sparse Kernel Maps and Faster Product Quantization Learning,
CVPR 2012

M. Pedersoli, A.Vedaldi, and J.Gonzalez. A coarse-to-fine approach for object detection, CVPR 2011

B. Sapp, A. Toshev, and B. Taskar. Cascaded models for articulated pose estimation, ECCV, 2010

Efficient detection with DPMs

H.O. Song, S. Zickler, T. Althoff, R. Girschick, M. Fritz, C. Geyer, P. Felzenszwalb, T. Darrell,
Sparselet Models for Efficient Multiclass Object Detection, ECCV 2012

I. Kokkinos, Rapid DPM Detection using Dual-Tree Branch-and-Bound, NIPS 2011

Efficient part score computation

C. Dubout and F. Fleuret. Exact Acceleration of Linear Object Detectors, ECCV 2012

5 Bounding Part Scores for Rapid Detection with Deformable Part Models

Part score computation

w[y]

h[x+ y]

s[x] =
X

y

hh[x+ y],w[y]i

6 Bounding Part Scores for Rapid Detection with Deformable Part Models

Part scores s[x] =
X

y

hh[x+ y],w[y]i

7 Bounding Part Scores for Rapid Detection with Deformable Part Models

HOG cell quantization: visual ‘letters’
C = {C1, . . . , C256}

8 Bounding Part Scores for Rapid Detection with Deformable Part Models

HOG feature quantization
HOG detail Quantized HOG

h[x] ĥ[x] = C

i[x]

Codebook indices

i[x] = argmin
k

d(h[x], Ck)

9 Bounding Part Scores for Rapid Detection with Deformable Part Models

Efficient inner product approximation

h , i ' h , i
X

y

hh[x+ y],w[y]i '
X

y

hĥ[x+ y],w[y]i

s[x] ' ŝ[x]

10 Bounding Part Scores for Rapid Detection with Deformable Part Models

Efficient inner product approximation

Bounding Part Scores for Rapid Detection. 3

filter and then focus on a subset of part locations while also dynamically pruning the
set of candidate object locations.

3 Part Score Bounding

3.1 Score Approximation

We compute part scores as inner products of Histogram-of-Gradient (HOG) [16] fea-
tures with a part-specific weight vector, trained as in [7]. Denoting by h[x, f] the f -th
dimension of the HOG cell located at x, and by w[y, f] the value of the ‘part template’
(weight vector) for location y and dimension f , the score of a part at x is:

s[x] =
∑

y∈Y

F∑

f=1

w[y, f]h[x+ y, f], (1)

where Y is a set of displacements and F = 32 is the dimensionality of the HOG cell at
any point; we skip part indexes for simplicity. For ‘part filters’ Y = [0, 5] × [0, 5], so
computing the score at any point x requires 36 · 32 multiplications and summations.

Our goal is to replace these |Y | · F operations with a rapidly computable approxi-
mation. By introducing the F -dimensional vectors wy = [w[y, 1], . . . , w[y, F]]T , and
hx = [h[x, 1], . . . ,h[x, F]]T , we can write the right hand side of Eq. 1 as:

s[x] =
∑

y

〈wy,hx+y〉. (2)

As in [1], we use vector quantization to replace the F multiplications involved in every
inner product with a single lookup operation that approximates the final outcome. For
this we construct a codebook C = {C1, . . . , CK} for h with K-means clustering (we
use K =256) and create a K × |Y | array of precomputed values:

Π[k, y] = 〈Ck,wy〉, (3)

which gives the score of part-cell y in the presence of an image-cell Ck.
When provided with a new image we quantize its HOG cells with our dictionary, i.e.

we associate an index I[x] = argminkd(Ck,hx) with every image-cell hx; in particular
we use KD-trees for fast approximate nearest neighbor search [17]. Given x we consider
hi,j $ CI[x] and use use this approximation in Eq. 2 to obtain:

〈hx+y,wy〉 $ 〈CI[x+y],wy〉 = Π[I[x+ y], y] (4)

s[x] $ ŝ[x] =
∑

y

Π[I[x+ y], y], (5)

which exchanges the |Y | · F multiplications and summations of Eq. 2 with |Y | lookup
and summation operations. For F = 32 this can result in approximately a 30-fold
speedup. In practice due to the numerous memory access operations the speedup can
be smaller; our implementation is optimized to reduce the number of cache misses, but
since the method is rather technical we will report it in a larger version of the paper; we
refer to our publicly available code for details.

Bounding Part Scores for Rapid Detection. 3

filter and then focus on a subset of part locations while also dynamically pruning the
set of candidate object locations.

3 Part Score Bounding

3.1 Score Approximation

We compute part scores as inner products of Histogram-of-Gradient (HOG) [16] fea-
tures with a part-specific weight vector, trained as in [7]. Denoting by h[x, f] the f -th
dimension of the HOG cell located at x, and by w[y, f] the value of the ‘part template’
(weight vector) for location y and dimension f , the score of a part at x is:

s[x] =
∑

y∈Y

F∑

f=1

w[y, f]h[x+ y, f], (1)

where Y is a set of displacements and F = 32 is the dimensionality of the HOG cell at
any point; we skip part indexes for simplicity. For ‘part filters’ Y = [0, 5] × [0, 5], so
computing the score at any point x requires 36 · 32 multiplications and summations.

Our goal is to replace these |Y | · F operations with a rapidly computable approxi-
mation. By introducing the F -dimensional vectors wy = [w[y, 1], . . . , w[y, F]]T , and
hx = [h[x, 1], . . . ,h[x, F]]T , we can write the right hand side of Eq. 1 as:

s[x] =
∑

y

〈wy,hx+y〉. (2)

As in [1], we use vector quantization to replace the F multiplications involved in every
inner product with a single lookup operation that approximates the final outcome. For
this we construct a codebook C = {C1, . . . , CK} for h with K-means clustering (we
use K =256) and create a K × |Y | array of precomputed values:

Π[k, y] = 〈Ck,wy〉, (3)

which gives the score of part-cell y in the presence of an image-cell Ck.
When provided with a new image we quantize its HOG cells with our dictionary, i.e.

we associate an index I[x] = argminkd(Ck,hx) with every image-cell hx; in particular
we use KD-trees for fast approximate nearest neighbor search [17]. Given x we consider
hi,j $ CI[x] and use use this approximation in Eq. 2 to obtain:

〈hx+y,wy〉 $ 〈CI[x+y],wy〉 = Π[I[x+ y], y] (4)

s[x] $ ŝ[x] =
∑

y

Π[I[x+ y], y], (5)

which exchanges the |Y | · F multiplications and summations of Eq. 2 with |Y | lookup
and summation operations. For F = 32 this can result in approximately a 30-fold
speedup. In practice due to the numerous memory access operations the speedup can
be smaller; our implementation is optimized to reduce the number of cache misses, but
since the method is rather technical we will report it in a larger version of the paper; we
refer to our publicly available code for details.

Bounding Part Scores for Rapid Detection. 3

filter and then focus on a subset of part locations while also dynamically pruning the
set of candidate object locations.

3 Part Score Bounding

3.1 Score Approximation

We compute part scores as inner products of Histogram-of-Gradient (HOG) [16] fea-
tures with a part-specific weight vector, trained as in [7]. Denoting by h[x, f] the f -th
dimension of the HOG cell located at x, and by w[y, f] the value of the ‘part template’
(weight vector) for location y and dimension f , the score of a part at x is:

s[x] =
∑

y∈Y

F∑

f=1

w[y, f]h[x+ y, f], (1)

where Y is a set of displacements and F = 32 is the dimensionality of the HOG cell at
any point; we skip part indexes for simplicity. For ‘part filters’ Y = [0, 5] × [0, 5], so
computing the score at any point x requires 36 · 32 multiplications and summations.

Our goal is to replace these |Y | · F operations with a rapidly computable approxi-
mation. By introducing the F -dimensional vectors wy = [w[y, 1], . . . , w[y, F]]T , and
hx = [h[x, 1], . . . ,h[x, F]]T , we can write the right hand side of Eq. 1 as:

s[x] =
∑

y

〈wy,hx+y〉. (2)

As in [1], we use vector quantization to replace the F multiplications involved in every
inner product with a single lookup operation that approximates the final outcome. For
this we construct a codebook C = {C1, . . . , CK} for h with K-means clustering (we
use K =256) and create a K × |Y | array of precomputed values:

Π[k, y] = 〈Ck,wy〉, (3)

which gives the score of part-cell y in the presence of an image-cell Ck.
When provided with a new image we quantize its HOG cells with our dictionary, i.e.

we associate an index I[x] = argminkd(Ck,hx) with every image-cell hx; in particular
we use KD-trees for fast approximate nearest neighbor search [17]. Given x we consider
hi,j $ CI[x] and use use this approximation in Eq. 2 to obtain:

〈hx+y,wy〉 $ 〈CI[x+y],wy〉 = Π[I[x+ y], y] (4)

s[x] $ ŝ[x] =
∑

y

Π[I[x+ y], y], (5)

which exchanges the |Y | · F multiplications and summations of Eq. 2 with |Y | lookup
and summation operations. For F = 32 this can result in approximately a 30-fold
speedup. In practice due to the numerous memory access operations the speedup can
be smaller; our implementation is optimized to reduce the number of cache misses, but
since the method is rather technical we will report it in a larger version of the paper; we
refer to our publicly available code for details.

h , i ' h , i
hh[x+ y],w[y]i ' hĥ[x+ y],w[y]i

= hC
I[x+y],w[y]i

11 Bounding Part Scores for Rapid Detection with Deformable Part Models

Lookup-based estimate demonstration: s[x]

12 Bounding Part Scores for Rapid Detection with Deformable Part Models

Lookup-based estimate demonstration: ŝ[x]

13 Bounding Part Scores for Rapid Detection with Deformable Part Models

Part-level approximation error

= h � , i✏
.
= s� ŝ

=
X

y

hh[y]� ĥ[y],w[y]i| {z }
e[y]

14 Bounding Part Scores for Rapid Detection with Deformable Part Models

Cell-level approximation error

e[y] = hh[y]� ĥ[y],w[y]i= h � , i

= he[y],w[y]i

=
32X

f=1

ey[f]wy[f]

15 Bounding Part Scores for Rapid Detection with Deformable Part Models

Chebyshev inequality
For any zero-mean random variable, and any value of α:

6 Iasonas Kokkinos

being correct and vice versa. To obtain our bound we model the F elements of ex+y

and wy involved in the inner product giving the HOG cell-level error:

εx+y = 〈ex+y,wy〉 (10)

as samples from two distributions, Px+y(e), Py(w) respectively; since e is quantization
error, Px+y(e) is considered to be zero-mean and symmetric around zero; we do not
make assumptions about Py(w). We denote by me

x+y and mw
y the respective variances

(second moments) of the two distributions. Moreover, we assume that the quantization
error at neighboring image locations is independent ex+y; one can consider cases where
the quantization noise at neighboring locations has dependencies, e.g. when neighbor-
ing HOG cells are similar, and far outside the ‘span’ of the available codebook; a more
thorough evaluation of whether this holds is needed, even though empirically we have
observed that our subsequent bounds are valid.

Based on these assumptions, the products ex+y[f]wy[f], f = 1, . . . , F formed
from the f -th elements of the vectors involved in Eq. 10 can be modeled as indepen-
dent samples of a zero-mean, symmetric distribution with variance mx+y

.
= me

x+ym
w
y .

Consequently, the cell-level approximation error εx+y appearing in Eq. 10 can be seen
as the sum of F independent variables having zero mean and variance mx+y , so εx+y

will in turn be a random variable with zero mean and variance Fmx+y; similarly the
part-level approximation error εx will have zero mean and variance mx =

∑
y Fmx+y .

As per Chebyshev’s inequality [18], any zero-mean random variable X satisfies:

P (|X| > α) ≤ E{X2}
α2

, (11)

where E{·} denotes expectation - hence the numerator is the second moment of X . This
means that with probability larger than E{X2}/α2, X will be contained in [−α,α]; or,
X will be contained in [−

√
E{X2}/pe,

√
E{X2}/pe] with probability of error pe.

We can use this fact to bound εx probabilistically: with a probability of error pe we
will have εx ∈ [−

√
mx/pe,

√
mx/pe]. Since εx = s[x] − ŝ[x], this means that with

probability 1− pe we will have:

s[x] ∈
[
ŝ[x]−

√
mx/pe, ŝ[x] +

√
mx/pe

]
(12)

where mx =
∑

y

Fme
x+ym

w
y , ŝ[x] =

∑

y

Π[I[x+ y], y]. (13)

This bound is the main result of our paper. Comparing it to the Holder-based bound
of Eq. 9, we first note that the empirical estimators of me

x+y,m
w
y are related to the

2-norms of ex+y , wy , respectively as:

me
x+y =

1

F

F∑

f=1

e2x+y[f] =
1

F
‖ex+y‖22 (14)

and similarly mw
x+y = 1

F ‖wx+y‖22. So apart from the root operation computing mx in
Eq. 13 has the same complexity as computing B in Eq. 9. Moreover the length of the
interval in Eq. 12 scales proportionally to

√
|Y |F while in Eq. 9 it scales proportionally

to |Y |F , which shows that the Chebyshev bound is tighter than the Holder bound.

Equivalently, with probability of error smaller than :

X 2
"
�

s
E{X2}

pe
,

s
E{X2}

pe

#
pe

16 Bounding Part Scores for Rapid Detection with Deformable Part Models

Chebyshev inequality-II
For a weighted sum of i.i.d. zero-mean random variables:

with probability of error smaller than : pe

X 0 =
KX

k=1

wkXk

X 0 2

2

4�

s
(
P

k w
2
k)E{X2}
pe

,

s
(
P

k w
2
k)E{X2}
pe

3

5

17 Bounding Part Scores for Rapid Detection with Deformable Part Models

Chebyshev inequality for cell-level error

with probability of error smaller than : pe

e[y] =
FX

f=1

ey[f]wy[f]

ey 2
"
�

s
kw[y]k2ke[y]k2

peF
,

s
kw[y]k2ke[y]k2

peF

#

18 Bounding Part Scores for Rapid Detection with Deformable Part Models

Chebyshev inequality for part-level error

with probability of error smaller than : pe

with probability of error smaller than : pe

=
X

y

e[y]✏ = ŝ� s

✏ 2

2

4�

sP
y kw[y]k2ke[y]k2

peF
,

sP
y kw[y]k2ke[y]k2

peF

3

5

s 2

2

4ŝ�

sP
y kw[y]k2ke[y]k2

peF
, ŝ+

sP
y kw[y]k2ke[y]k2

peF

3

5

19 Bounding Part Scores for Rapid Detection with Deformable Part Models

With probability of error at most :

Recap

pe

s[x] ' ŝ[x] =
X

y

⇧[I[x+ y], y]

Lookup-based approximation:

s[x] s[x] s[x]

s[x] = ŝ[x]�

sP
y kw[y]k2ke[x+ y]k2

peF

s[x] = ŝ[x] +

sP
y kw[y]k2ke[x+ y]k2

peF

20 Bounding Part Scores for Rapid Detection with Deformable Part Models

Bound demonstration: s[x]

21 Bounding Part Scores for Rapid Detection with Deformable Part Models

Bound demonstration: ̂s[x]

22 Bounding Part Scores for Rapid Detection with Deformable Part Models

Bound demonstration: s[x], pe = .05

23 Bounding Part Scores for Rapid Detection with Deformable Part Models

Bound demonstration: s[x], pe = .05

24 Bounding Part Scores for Rapid Detection with Deformable Part Models

Bound demonstration for varying confidence

20 40 60 80 100

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Pa
rt

sc
or

e

Horizontal location

Exact score
Approximate score
Upper bound, pe = 0.02
Lower bound, pe = 0.02

20 40 60 80 100

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Pa
rt

sc
or

e

Horizontal location

Exact score
Approximate score
Upper bound, pe = 0.10
Lower bound, pe = 0.10

25 Bounding Part Scores for Rapid Detection with Deformable Part Models

Bound tightness

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

P(error) − bound

P(
er

ro
r)
−

em
pi

ric
al

26 Bounding Part Scores for Rapid Detection with Deformable Part Models

Integration with detection

Dual-Tree Branch-and-Bound

Cascaded DPMs (Felzenszwalb, Girschick et al, CVPR 2010)

27 Bounding Part Scores for Rapid Detection with Deformable Part Models

Accelerating detection with DPMs

...

...

...

DTBB, NIPS 2011 GDT

This work

28 Bounding Part Scores for Rapid Detection with Deformable Part Models

Dual-Tree Brand-and-Bound

x 3x 4

I. Kokkinos. Rapid Deformable Object Detection using DTBB, NIPS 2011

29 Bounding Part Scores for Rapid Detection with Deformable Part Models

DTBB demonstration

30 Bounding Part Scores for Rapid Detection with Deformable Part Models

DTBB demonstration

31 Bounding Part Scores for Rapid Detection with Deformable Part Models

DTBB demonstration

32 Bounding Part Scores for Rapid Detection with Deformable Part Models

DTBB demonstration

33 Bounding Part Scores for Rapid Detection with Deformable Part Models

DTBB demonstration

34 Bounding Part Scores for Rapid Detection with Deformable Part Models

DTBB demonstration

35 Bounding Part Scores for Rapid Detection with Deformable Part Models

DTBB demonstration

36 Bounding Part Scores for Rapid Detection with Deformable Part Models

DTBB results: exact part scores

37 Bounding Part Scores for Rapid Detection with Deformable Part Models

DTBB results, part score bounds @ pe = 0.2

38 Bounding Part Scores for Rapid Detection with Deformable Part Models

DTBB results, part score bounds @ pe = 0.1

39 Bounding Part Scores for Rapid Detection with Deformable Part Models

DTBB results, part score bounds @ pe = 0.05

40 Bounding Part Scores for Rapid Detection with Deformable Part Models

Impact on performance

Bounding Part Scores for Rapid Detection. 9

estimate of the part scores, without the related upper and lower bounds, performance
drops significantly. However when using bounding intervals to accommodate the ‘slack’
due to the approximation error the performance directly becomes identical to the PCA-
based cascade. However our method does not require additional threshold estimation,
and as shown later is faster.

On the right plot we compare the performance of our lookup-based variant of DTBB
for different values of pe; we observe that for small values of pe the performance is
identical with GDTs, but with larger values of pe performance decreases. Again, this
validates the need for incorporating uncertainty in lookup-based approximations. This
is consistent with the observations in [1] where performance was observed to drop,
even when using a model directly trained with the lookup-based approximation to the
features; it is all the more natural that performance drops when using a model trained
with the full, clean features and testing with quantized features.

0 0.1 0.2 0.3 0.4 0.5 0.60

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

Cascade−based bicycle detection for threshod t = −1.1

AP 0.535, exact
AP 0.537, PCA−6
AP 0.534, lookup pe = .01
AP 0.532, lookup, pe = .05
AP 0.491, lookup, raw

0 0.1 0.2 0.3 0.4 0.5 0.60

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n
DTBB−based bicycle detection for threshod t = −1.1

AP 0.535, exact
AP 0.535, lookup, pe = .01
AP 0.533, lookup, pe = .05
AP 0.529, lookup, pe = .10
AP 0.491, lookup, raw

Fig. 2. Precision-Recall curves for bicycle detection using cascade-based (left) and
branch-and-bound detection (right). Please see text for details.

Coming to timing results, we provide in Table I timings gathered from 1000 images
of the PASCAL VOC dataset, and averaged over all 20 categories. The first row indi-
cates the time spent to compute part scores by the different methods, and the following
rows indicate detection times. We observe that our lookup-based approximations are
faster both for DTBB and Cascade Detection for moderate values of the threshold θ;
in particular for θ = −.7, or θ = −.5 the lookup-based variant of cascades requires
approximately half the time of the PCA-based cascade, and 1/30 of the time of GDT-
based detection. For more conservative threshold values the part score is fully evaluated
at more points and the merits of the first fast pass get eliminated.

6 Conclusion

In this work we introduce Chebyshev’s inequality to bound part scores in a simple
and computationally efficient manner. We demonstrate the merit of our approach by
combining the part score bounds with Branch-and-Bound and Cascade detection for
deformable part models, which results in substantial speedups without loss in accuracy.

41 Bounding Part Scores for Rapid Detection with Deformable Part Models

10 Iasonas Kokkinos

GDTs [6] BB [2] BB-LU-5 BB-LU-1 CSC-PCA [4] CSC-LU-5 CSC-LU-1
Part terms 8.35 ± 0.77 1.69 ± 0.18 0.69 ± 0.03 0.69 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
✓ = �0.5 0.60 ± 0.05 0.21 ± 0.06 0.47 ± 0.11 1.04 ± 0.25 0.56 ± 0.07 0.19 ± 0.03 0.23 ± 0.04
✓ = �0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65 0.72 ± 0.09 0.29 ± 0.04 0.36 ± 0.06
✓ = �1.0 0.60 ± 0.05 1.31 ± 0.31 3.80 ± 0.90 9.40 ± 2.70 1.04 ± 0.16 0.51 ± 0.10 1.07 ± 0.29

Table 1. Means and standard deviation timings, in seconds, of the considered approaches. GDT
stands for distance transforms, BB for Dual Tree Branch-and-Bound, CSC for cascade, and
LU-{1,5} for lookup-based bounds with p

e

= .01 and p

e

= .05 respectively.

GDTs Exact p

e

= 0.05 p

e

= 0.01

Part terms 8.35 ± 0.77 1.69 ± 0.18 0.69 ± 0.03 0.69 ± 0.06
✓ = �0.5 0.60 ± 0.05 0.21 ± 0.06 0.47 ± 0.11 1.04 ± 0.25
Sum 8.95 ± 0.82 1.90 ± 0.23 1.17 ± 0.12 1.74 ± 0.32
✓ = �0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65
Sum 8.95 ± 0.82 2.10 ± 0.24 1.70 ± 0.27 3.00 ± 0.71
✓ = �1.0 0.60 ± 0.05 1.31 ± 0.31 3.80 ± 0.90 9.40 ± 2.70
Sum 8.95 ± 0.82 3.00 ± 0.42 4.50 ± 1.02 10.01 ± 2.82

GDTs C-DPM p

e

= 0.05 p

e

= 0.01
✓ = �0.5 8.95 ± 0.82 0.56 ± 0.07 0.19 ± 0.03 0.23 ± 0.04
✓ = �0.7 8.95 ± 0.82 0.72 ± 0.09 0.29 ± 0.04 0.36 ± 0.06
✓ = �1.0 8.95 ± 0.82 1.04 ± 0.16 0.51 ± 0.10 1.07 ± 0.29

GDTs DTBB p

e

= 0.05 p

e

= 0.01

Part terms 8.35 ± 0.77 1.69 ± 0.18 0.69 ± 0.03 0.69 ± 0.06
✓ = �0.5 0.60 ± 0.05 0.21 ± 0.06 0.47 ± 0.11 1.04 ± 0.25
Sum 8.95 ± 0.82 1.90 ± 0.23 1.17 ± 0.12 1.74 ± 0.32
✓ = �0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65
Sum 8.95 ± 0.82 2.10 ± 0.24 1.70 ± 0.27 3.00 ± 0.71
✓ = �1.0 0.60 ± 0.05 1.31 ± 0.31 3.80 ± 0.90 9.40 ± 2.70
Sum 8.95 ± 0.82 3.00 ± 0.42 4.50 ± 1.02 10.01 ± 2.82

Speedup results

42 Bounding Part Scores for Rapid Detection with Deformable Part Models

Detection with Cascade DPMs (C-DPMs)

S0(x) = 0, I0 = [1, N]⇥ [1,M]

S

k

(x) = S

k�1(x) + max

x

0
(U

p

(x

0
) +B

p

(x

0
, x))

Ik = {x 2 Ik�1 : Sk�1(x) � ✓k}

Felzenszwalb, Girschick, et al: use PCA-projection of

h,w
Our work: use quick upper bounds, thresholds for full HOG

10 Iasonas Kokkinos

GDTs [6] BB [2] BB-LU-5 BB-LU-1 CSC-PCA [4] CSC-LU-5 CSC-LU-1
Part terms 8.35 ± 0.77 1.69 ± 0.18 0.69 ± 0.03 0.69 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
✓ = �0.5 0.60 ± 0.05 0.21 ± 0.06 0.47 ± 0.11 1.04 ± 0.25 0.56 ± 0.07 0.19 ± 0.03 0.23 ± 0.04
✓ = �0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65 0.72 ± 0.09 0.29 ± 0.04 0.36 ± 0.06
✓ = �1.0 0.60 ± 0.05 1.31 ± 0.31 3.80 ± 0.90 9.40 ± 2.70 1.04 ± 0.16 0.51 ± 0.10 1.07 ± 0.29

Table 1. Means and standard deviation timings, in seconds, of the considered approaches. GDT
stands for distance transforms, BB for Dual Tree Branch-and-Bound, CSC for cascade, and
LU-{1,5} for lookup-based bounds with p

e

= .01 and p

e

= .05 respectively.

GDTs Exact p

e

= 0.05 p

e

= 0.01

Part terms 8.35 ± 0.77 1.69 ± 0.18 0.69 ± 0.03 0.69 ± 0.06
✓ = �0.5 0.60 ± 0.05 0.21 ± 0.06 0.47 ± 0.11 1.04 ± 0.25
Sum 8.95 ± 0.82 1.90 ± 0.23 1.17 ± 0.12 1.74 ± 0.32
✓ = �0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65
Sum 8.95 ± 0.82 2.10 ± 0.24 1.70 ± 0.27 3.00 ± 0.71
✓ = �0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65
Sum 8.95 ± 0.82 2.10 ± 0.24 1.70 ± 0.27 3.00 ± 0.71
✓ = �1.0 0.60 ± 0.05 1.31 ± 0.31 3.80 ± 0.90 9.40 ± 2.70
Sum 8.95 ± 0.82 3.00 ± 0.42 4.50 ± 1.02 10.01 ± 2.82

GDTs C-DPM p

e

= 0.05 p

e

= 0.01
✓ = �0.5 8.95 ± 0.82 0.56 ± 0.07 0.19 ± 0.03 0.23 ± 0.04
✓ = �0.7 8.95 ± 0.82 0.72 ± 0.09 0.29 ± 0.04 0.36 ± 0.06
✓ = �1.0 8.95 ± 0.82 1.04 ± 0.16 0.51 ± 0.10 1.07 ± 0.29

GDTs C-DPM p

e

= 0.05 p

e

= 0.01

Part terms 8.35 ± 0.77 1.69 ± 0.18 0.69 ± 0.03 0.69 ± 0.06
✓ = �0.5 0.60 ± 0.05 0.21 ± 0.06 0.47 ± 0.11 1.04 ± 0.25
Sum 8.95 ± 0.82 1.90 ± 0.23 1.17 ± 0.12 1.74 ± 0.32
✓ = �0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65
Sum 8.95 ± 0.82 2.10 ± 0.24 1.70 ± 0.27 3.00 ± 0.71
✓ = �0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65
Sum 8.95 ± 0.82 2.10 ± 0.24 1.70 ± 0.27 3.00 ± 0.71
✓ = �1.0 0.60 ± 0.05 1.31 ± 0.31 3.80 ± 0.90 9.40 ± 2.70
Sum 8.95 ± 0.82 3.00 ± 0.42 4.50 ± 1.02 10.01 ± 2.82

43 Bounding Part Scores for Rapid Detection with Deformable Part Models

Conclusions

Rapid upper and lower bounds

Blend of optimization and low-level processing
 On-going work

Part sharing

Tighter bounds, cascades

http://vision.mas.ecp.fr/Personnel/iasonas/code.html

