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Structured Support Vector Machines

ming E(X,y)A(ya f(X))



Supervised Learning Problem
» Training examples (x%,y1),...,(xV,yN) e & x Y
» Loss function A: Y x Y — R.
» How to make predictions f : X — ) 7
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Supervised Learning Problem
» Training examples (x%,y1),...,(xV,yN) e & x Y
» Loss function A: )Y x Y — R.
» How to make predictions f : X — ) 7

Approach 1) Probabilistic Learning

1) Use training data to learn a probability distribution p(y|x)

2) Use f(x) := argmin,cy, Ey 50, A(Y, y) to make predictions.
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Supervised Learning Problem
» Training examples (x%,y1),...,(xV,yN) e & x Y
» Loss function A: )Y x Y — R.
» How to make predictions f : X — ) 7

Approach 1) Probabilistic Learning

1) Use training data to learn a probability distribution p(y|x)

2) Use f(x) := argmin,cy, Ey 50, A(Y, y) to make predictions.
For example, if A(y,y) = [y # y] or intractable otherwise:
f(x) = argmaxp(y|x) = argminE(x,y)
yey yey

for p(y|x) e Ey) and E(x,y) = (0, 9(x,y)).
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Supervised Learning Problem

» Training examples (x%,y1),...,(xV,yN) e & x Y
» Loss function A: Y x )Y — R.
» How to make predictions f : X — ) 7

Approach 2) Loss-minimizing Parameter Estimation

1) Use training data to learn an energy function E(x, y)

2) Use f(x) := argmin, .y E(x, y) to make predictions.




Risk Minimization

Supervised Learning Problem
» Training examples (x%,y1),...,(xV,yN) e & x Y
» Loss function A: Y x )Y — R.
» How to make predictions f : X — ) 7

Approach 2) Loss-minimizing Parameter Estimation

1) Use training data to learn an energy function E(x, y)
2) Use f(x) := argmin, .y E(x, y) to make predictions.
Slight variation (for historic reasons):
1) Learn a compatibility function g(x,y) (think: "g = —E")
2) Use f(x) := argmax, ¢y g(x, y) to make predictions.
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D ={(x*y'),...,(xN,yM)} i.id. training set
¢ : X xY — RP be a feature function.
A :)Y xY — R be a loss function.

v

v

\4

v

Find a weight vector w* that minimizes the expected loss

E(X,y)A(y’ f(X))

for f(x) = argmax,cy (w, d(x,y)).

6 /35
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D ={(x*y'),...,(xN,yM)} i.id. training set
¢ : X xY — RP be a feature function.
A :)Y xY — R be a loss function.

v

v

\4

v

Find a weight vector w* that minimizes the expected loss

E(X,y)A(y’ f(X))

for f(x) = argmax,cy (w, d(x,y)).

Advantage:
» We directly optimize for the quantity of interest: expected loss.
» No expensive-to-compute partition function Z will show up.
Disadvantage:
» We need to know the loss function already at training time.
» We can't use probabilistic reasoning to find w*. 6/35
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Reminder: Regularized Risk Minimization

Task: for f(x) = argmax,cy (w,d(x,y))

min E(X,y)A(y, f(x))

weRP

Two major problems:

» data distribution is unknown — we can't compute E

» f: X — ) has output in a discrete space
— f is piecewise constant w.r.t. w
— A( y,f(x)) is discontinuous, piecewise constant w.r.t w

we can't apply gradient-based optimization
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Reminder: Regularized Risk Minimization

Task: for f(x) = argmax,cy (w,d(x,y))

min E(X,y)A(y, f(x))

weRP

Problem 1:

» data distribution is unknown

Solution:
> Replace E(y ,)d(x)( - ) with empirical estimate 2 (xmy) (+)
» To avoid overfitting: add a regularizer, e.g. 3||w|%.

N
A 1
New task: in - Swl®+ 5D A(y"f(x")).
ew tas Wnel]ll& 2HW||+N”§_:1 (y", f(x"))
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Reminder: Regularized Risk Minimization

Task: for f(x) = argmax,cy (w,d(x,y))

A 1 U
. 2 n n
min, w7+ 3 A0 )

Problem:
> A(y" f(x") ) = A( y,argmax, (w, ¢(x, y)) ) discontinuous w.r.t. w.

Solution:
» Replace A(y, y’) with well behaved /(x,y, w)
» Typically: £ upper bound to A, continuous and convex w.r.t. w.

N
A
New task: in 2w+
ew tas min, Slwl™+ E x",y" w)
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Reminder: Regularized Risk Minimization

A 1
min D ICIAY)

Regularization 4+ Loss on training data

10/35
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Reminder: Regularized Risk Minimization

A 1
min D ICIAY)

Regularization 4+ Loss on training data

Hinge loss: maximum margin training

Ux",y", w) = max [ AW, y)+ (w, o(x",y)) = (w, ¢(x",y")) |
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Reminder: Regularized Risk Minimization

A 1
min D ICIAY)

Regularization 4+ Loss on training data

Hinge loss: maximum margin training

Ux",y", w) = max [ AW, y)+ (w, o(x",y)) = (w, ¢(x",y")) |

» ¢ is maximum over linear functions — continuous, convex.

» {is an upper bound to A:  "small £ = small A"

10/35
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Reminder: Regularized Risk Minimization

A
i A 0(x
min, SlIw Z X", y", w)

Regularization + Loss on training data

Hinge loss: maximum margin training

Ux",y", w) := max [ AW, y) + (w, o(x",y)) = (w, ¢(x",y")) |

Alternative:

Logistic loss

E(Xnayna W) = log Z exp (<W¢ ¢(Xn>y)> - (Wa ¢(Xn’yn)>)

yey

Differentiable, convex, not an upper bound to A(y,y’).

10/35
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[e]e]e]e]e]e]e] Jele]e]e]

Hinge loss

N
i 11+ gy Domax [A0) + (w6 — (w00

Log-loss

N
" %HWH2 +) log ) exp((w, ¢(x",y)) — (w,6(x",y")))
n=1

yey

11/35
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Structured Output Support Vector Machine

N
min 2wl + ;Z max [A(Y".) + (W, 6(x".y)) = (w. 6(x",y")]

Conditional Random Field
N
M )\ n n n
min 2w+ log 3 exp((w, 6(x", y)) — {w, 6(x", y")))
n=1

yey

= —(w,p(x",y"))+log >, exp({w,p(x",y))) = cond.log.likelihood

CRFs and SSVMs have more in common than usually assumed.
> log >, exp(-) can be interpreted as a soft-max (differentiable)

» SSVM training takes loss function into account
» CRF is trained without specific loss, but loss enters at prediction time
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Example: Multiclass Support Vector Machine

1 f !
» Y =1{1,2,....K}, Aly,y')= °ry7é_y.
0 otherwise

> 006, y) = (Iy = o), Iy = 206(x), .., [y = KIo(x))

Solve:

i\ N
i zuwu”/lv;ry"éﬁ AU+ (w6 ) — (w6 ")

Classification:  f(x) = argmax,cy (w, ¢(x,y)).

Crammer-Singer Multiclass SVM

[K. Crammer, Y. Singer: "On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines”, JMLR, 2001]
12/35
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Example: Multiclass Support Vector Machine

1 f !
> Y ={1,2,....K}, Aly,y)= °ry7é_y.
0 otherwise

> 006, y) = (Iy = o), Iy = 206(x), .., [y = KIo(x))

Solve:

i\ N
i zuwu”/lv;ry"éﬁ AU+ (w6 )~ (w6 ")

_jJo fory = y"
T w, o(x", ) = (w, (X", y")) fory F# Y

Classification:  f(x) = argmax,cy (w, ¢(x,y)).

Crammer-Singer Multiclass SVM

[K. Crammer, Y. Singer: "On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines”, JMLR, 2001]
12/35
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Example: Hierarchical Multiclass SVM

Hierarchical Multiclass Loss:

1
Ay,y') = E(distance in tree) |

A(cat,cat) =0, A(cat,dog)=1,
A(cat,bus) =2, etc.

|cat||dog| |[car]|bus]

A N
min 17+ 3y 22 ma [A07.5) % (w606 — (w6757

[L. Cai, T. Hofmann: "Hierarchical Document Categorization with Support Vector Machines”, ACM CIKM, 2004] 13/35
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Example: Hierarchical Multiclass SVM

Hierarchical Multiclass Loss:

1
Ay,y') = E(distance in tree) |

A(cat,cat) =0, A(cat,dog)=1,
A(cat,bus) =2, etc.

|cat||dog| |[car]|bus]

A N
min I+ 3y D ma [07:) + (w606 — w67 7)

(w, $(x", cat)) — (w, $(x", dog)) > 1
eg if y" = cat, § (w, p(x", cat)) — (w, p(x", car)) > 2
(w, $(x", cat)) — (w, $(x", bus)) > 2

» labels that cause more loss are pushed further away
— lower chance of high-loss mistake at test time

[L. Cai, T. Hofmann: "Hierarchical Document Categorization with Support Vector Machines”, ACM CIKM, 2004] 13/35
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Example: RNA Secondary Structure Prediction pe gona et at, 2007]

AAAAACCCCCCCCAGAGGAGAUUG
GAGAUCAAAGGUGGUUCGGAUGUC —
GAAGUGUACCGAACCCGGGGG

» X =X* for ¥ = {A,C,G,U} (nucleotide sequence)

v

Y=A{(,j):i,jeN,i<j} (i,j) mean"x; binds with x;"

v

¢(x,y) stacked domain-specific features, e.g. binding energy of x; ++ x;, prefered patterns
(motifs), loop properties, ...

v

A(y,y): number of wrong/missing bindings (Hamming loss)
A 1 &
: 2 n n n .n
min Gl + gy 2o ma (A", y) + (w, 63, y)) = (w, 6", y")|

14 /35
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Example: Sentence Parsing (raskr et a1, 200

]

.—'-‘—'-)_F'-H_\—h-_
NP VP
T — T
DT NN VBD NP
The screen was a sea of red. — [ [ [ —
The screen was NP PP
P PN
DT NN IN NP
| | | |
a sea of NN
|
red
» X = {English sentences}
» )V = {parse tree}
» ¢(x,y) domain-specific features:
» word properties, e.g. " starts with capital letter”, "- ends in ing"

» grammatical rules: NP — DT+ NN

v

A(y,y): number of wrong assignments
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Solving S-SVM Training Numerically

We can solve SSVM training like CRF training:

16 /35
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Solving S-SVM Training Numerically

We can solve SSVM training like CRF training:

A 1Y
min §||WH2 + 5 ; [l;‘nea;}( A(y",y) +{(w,d(x", y)) — (w, p(x", y"))

16 /35
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Solving S-SVM Training Numerically

We can solve SSVM training like CRF training:

N

min 2wl + Z[max AW, y)+ W, (", y) = (w,6(x".y")

» continuous
» unconstrained
> convex

» non-differentiable ®
— we can't use gradient descent directly.
— we'll have to use subgradients

16 /35
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Solving S-SVM Training Numerically — Subgradient Method

Definition

Let f : RP — R be a convex, not necessarily differentiable, function.
A vector v € RP is called a subgradient of f at wy, if

f(w) > f(wo) + (v,w —wy) for all w.

f(w) f(wo)+{Vv,W-wWo)

f(wo)

17 /35
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Solving S-SVM Training Numerically — Subgradient Method

Definition

Let f : RP — R be a convex, not necessarily differentiable, function.
A vector v € RP is called a subgradient of f at wy, if

f(w) > f(wo) + (v,w —wy) for all w.
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Solving S-SVM Training Numerically — Subgradient Method

Definition

Let f : RP — R be a convex, not necessarily differentiable, function.
A vector v € RP is called a subgradient of f at wy, if

f(w) > f(wo) + (v,w —wy) for all w.

f(w) f(Wo)+ (v, W-Wo)

F(Wo) [

Wo >

17 /35
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Solving S-SVM Training Numerically — Subgradient Method

Definition

Let f: RP — R be a convex, not necessarily differentiable, function.
A vector v € RP is called a subgradient of f at wy, if

f(w) > f(wo) + (v,w —wp) for all w.

f(w) f(wo)+(Vv,W-wo)

For differentiable f, the gradient v = Vf(wyp) is the only subgradient.

18/35
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Subgradient Method Minimization — minimize F(w) (shor, 1085

> require: tolerance ¢ > 0, stepsizes 7;

v

Ocur < 0

repeat
> v eV F(0,)
> Ocur < Ocur — nev

v

v

until F changed less than ¢

> return 0.,

Subgradient method looks very similar to gradient descent:

> iterative update in opposite direction of (sub)gradients
» converges to global minimum for convex F,

Caveats for non-differentiable F:
» only possible for convex functions (unlike gradient descent)

» not a descent method: the objective can sometimes go up, but overall it will decrease
19/35
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Subgradient method

20/35
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Subgradient method
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Subgradient method

1,
0 A
Q7
i
_1,
-3 -2 -1 0 1 2 3 4 5

20/35
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Subgradient method

/4
N

All points along subgradient have larger objective than starting point!

20/35
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Subgradient method

i+l

All points along subgradient have larger objective than starting point!

20/35
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Subgradient method

Why does it work anyway? Distance to optimum decreases in every step!

20/35
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Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:
N

D VPO R
i Gl + 3y 35 7(w)

with £"(w) = max, £7(w), and

f;(w) = A(ynvy) + <W7¢(Xn7y)> - <W’ ¢(Xn’yn)>

21/35



Optimization
0000080000000 0000

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:
N

D VPO R
i Gl + 3y 35 7(w)

with £"(w) = max, £7(w), and

f;(w) = A(ynvy) + <W7¢(Xn7y)> - <W’ ¢(Xn’yn)>

£2(w)

For each y € Y, ¢)(w) is a linear function of w.
21/35
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Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:
N

D VPO R
i Gl + 3y 35 7(w)

with £"(w) = max, £7(w), and

f;(w) = A(ynvy) + <W7¢(Xn7y)> - <W’ ¢(Xn’yn)>

2(w) y'

w

! /
For each y € Y, ¢)(w) is a linear function of w.

21/35
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Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:
N

D VPO R
i Gl + 3y 35 7(w)

with £"(w) = max, £7(w), and

f;(w) = A(ynvy) + <W7¢(Xn7y)> - <W’ ¢(Xn’yn)>

£2(w)

w

' / / /
For each y € Y, ¢)(w) is a linear function of w.

21/35
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Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:
N

D VPO R
i Gl + 3y 35 7(w)

with £"(w) = max, £7(w), and

f;(w) = A(ynvy) + <W7¢(Xn7y)> - <W’ ¢(Xn’yn)>

/

max over finite ): piece-wise linear

21/35
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Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:
N

D VPO R
i Gl + 3y 35 7(w)

with £"(w) = max, £7(w), and

f;(w) = A(ynvy) + <W7¢(Xn7y)> - <W’ ¢(Xn’yn)>

21/35
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Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:
N

D VPO R
i Gl + 3y 35 7(w)

with £"(w) = max, £7(w), and

f;(w) = A(ynvy) + <W7¢(Xn7y)> - <W’ ¢(Xn’yn)>

Subgradient of ¢” at wp: find maximal (active) y.
21/35
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Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:
N

D VPO R
i Gl + 3y 35 7(w)

with £"(w) = max, £7(w), and

f;(w) = A(ynvy) + <W7¢(Xn7y)> - <W’ ¢(Xn’yn)>

- Wo /

Subgradient of ¢" at wp: find maximal (active) y, use v = V{J(wo).

21/35
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Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:
N

D VPO R
i Gl + 3y 35 7(w)

with £"(w) = max, £7(w), and

f;(w) = A(ynvy) + <W7¢(Xn7y)> - <W’ ¢(Xn’yn)>

21/35
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Subgradient Method S-SVM Training

input training pairs {(x*,y!),...,(x",y")} C X x ),
input feature map ¢(x, y), loss function A(y,y’), regularizer A,
input number of iterations T, stepsizes ny for t =1,..., T

1. w < 6

2: for t=1,...,T do
3: fori=1,...,ndo
- g« argmax,cy A(y",y) +(w,d(x",y)) — (w. o(x", y"))
5 Vn<_¢(xn7)f;)_¢(xn7yn)

6: end for

.o wew—n(Aw— &3, v")

8: end for

output prediction function f(x) = argmax,cy{(w, ¢(x, y)).

Summary

Obs: each update of w needs N argmax-prediction (one per example).
Obs: computing the argmax is (loss augmented) energy minimization
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Example: Image Segmenatation

» X images, ) = { binary segmentation masks }.

» Training example(s): (x",y") =

> Aly,y) =>_,1yp # ¥l (Hammig loss)

23/35
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Example: Image Segmenatation

» X images, Y = { binary segmentation masks }.

» Training example(s): (x",y") =

> Ay, 7) =X, lp £ 75| (Hamming loss)

= 1: w = 0,
5 — argmax | (w.9(x", )} + AG"y) |
y
"= argmax A(y",y) = "the opposite of y"”
y

23/35
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» X images, ) = { binary segmentation masks }.

» Training example(s): (x",y") =
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Example: Image Segmenatation

» X images, ) = { binary segmentation masks }.

» Training example(s): (x",y") =

> Aly,y) =>_,1yp # ¥l (Hammig loss)

t=1: }7 = o(y") — #(9): black +, white +, green —, blue —, gray —
t=2:.y= o(y™) — #(9): black +, white +, green =, blue =, gray —
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Example: Image Segmenatation

» X images, ) = { binary segmentation masks }.

» Training example(s): (x",y") =

> Aly,y) =>_,1yp # ¥l (Hammig loss)

t=1: }7 = o(y") — #(9): black +, white +, green —, blue —, gray —
t=2:.y= o(y™) — #(9): black +, white +, green =, blue =, gray —
t=3: }7 = d(y") — #(¥): black =, white =, green —, blue —, gray —
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Example: Image Segmenatation

» X images, ) = { binary segmentation masks }.

» Training example(s): (x",y") =

> Aly,y) =>_,1yp # ¥l (Hammig loss)

t=1y= #(y™) — ¢(9): black +, white +, green —, blue —, gray —
t=2:.y= d(y") — ¢(9): black +, white +, green =, blue =, gray —
t=3.y= d(y") — ¢(9): black =, white =, green —, blue —, gray —
t=4.y= #(y") — #(9): black =, white =, green —, blue =, gray =

23/35
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Example: Image Segmenatation

» X images, ) = { binary segmentation masks }.

» Training example(s): (x",y") =

> Aly,y) =>_,1yp # ¥l (Hammig loss)

o(y") — #(9): black +, white +, green —, blue —, gray —

~
Il
=

<>

~
Il
N

<>

d(y") — #(¥): black +, white 4, green =, blue =, gray —

t=3: }7 = d(y") — #(¥): black =, white =, green —, blue —, gray —
t=4.y= o(y™) — #(9): black =, white =, green —, blue =, gray =

o(y") — ¢(9): black =, white =, green =, blue =, gray =

23/35
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SVM Training Numerically — Subgradient Method

Stochastic Subgradient Method S-SVM Training

input training pairs {(x*,y!),...,(x",y")} C X x ),
input feature map ¢(x, y), loss function A(y,y’), regularizer A,
input number of iterations T, stepsizes ny for t =1,..., T

1w < 6

2: for t=1,...,T do

3 (x",y") < randomly chosen training example pair

4. § <« argmax,cy A(y",y) + (w, ¢(x", y)) — (w, o(x",y"))
5 W < W—Ut()\W— %[(b(xn,y) _(b(xn,yn)])

6: end for

output prediction function f(x) = argmax,cy(w, #(x,y)).

Observation: each update of w needs only 1 argmax-prediction

(but we'll need many iterations until convergence)
24 /35
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Solving S-SVM Training Numerically

Structured Support Vector Machine:

N
min gHWH2 + % nz_; r}peaJ))( [A(ynv)/) +(w, d(x",y)) — (w, ¢(Xnayn)>)}

Subgradient method converges slowly. Can we do better?

25 /35
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Solving S-SVM Training Numerically

Structured Support Vector Machine:

N
G+ gy D e [0+ w7 — (w00

Subgradient method converges slowly. Can we do better?

We can use inequalities and slack variables to reformulate the optimization.

25 /35
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Solving S-SVM Training Numerically

Structured SVM (equivalent formulation):

Idea: slack variables
N

A, 1
min  Sllw] +Nn§::1£"
subject to, for n=1,..., N,
max [A(y".y) + (w.0(x".y)) — {w.6(x".y"))| <&

Note: " > 0 automatic, because left hand side is non-negative.

’ Differentiable objective, convex, N non-linear contraints,
26 /35
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Solving S-SVM Training Numerically

Structured SVM (also equivalent formulation):
Idea: expand max term into individual constraints

A 1 &
: - 2 - n
min  Sllw] +an::1£

subject to, for n=1,..., N,

A(yn’y) + <W) (Z)(Xn’y» - <W7¢(Xn7yn)> < §n7 for all S y

Differentiable objective, convex, N|)| linear constraints

27 /35
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Solving S-SVM Training Numerically

Solve an S-SVM like a linear Support Vector Machine:

. A 2 n
min —|lw
e Ll Z&
subject to, for i =1,...n

<W’ ¢(Xn,yn)>_<w’¢(xn,y)> > A(ynay) - gn, for all y € y

Introduce feature vectors do(x", y",y) := &(x", y") — d(x",y).

28 /35
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Solving S-SVM Training Numerically

Solve

A 1 N
H 2 n
min —|lw + —
e 2P+ 2

subject to, fori=1,...n,forally e ),

(w,60(x", y",y)) =2 Aly",y) — &".
" Quadratic program”:
» quadratic objective ©
» linear constraints ©
» (same structure as an ordinary support vector machine)

29 /35
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Solving S-SVM Training Numerically

Solve

A 1 N
H 2 2 : n
min — || W + —
weRD geRn 2 Iwl N nzlg

subject to, (for i=1,...n, forall y € ),

(w,00(x", y",y)) = Aly",y) — &"
" Quadratic program”:
» quadratic objective ©
» linear constraints ©
» (same structure as an ordinary support vector machine)

Question: Can we use an ordinary QP or SVM solver?
Answer: Almost! We could, if there weren't [N|)| constraints.
» E.g. 100 binary 16 x 16 images: 107° constraints 29/35
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Solving S-SVM Training Numerically — Working Set

Solution: working set training
> It's enough if we enforce the active constraints. The others will be fulfilled automatically.
» We don't know which ones are active for the optimal solution.
» But it's likely to be only a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

30/35



Optimization
0000000000000 0e00

Solving S-SVM Training Numerically — Working Set

Solution: working set training
> It's enough if we enforce the active constraints. The others will be fulfilled automatically.
» We don't know which ones are active for the optimal solution.
» But it's likely to be only a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Solving S-SVM Training Numerically — Working Set

» Start with working set S=10 (no contraints)
» Repeat until convergence:

» Solve S-SVM training problem with constraints from S
» Check, if solution violates any of the full constraint set
» if no: we found the optimal solution, terminate.

> if yes: add most violated constraints to S, iterate.
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Solving S-SVM Training Numerically — Working Set

Solution: working set training
> It's enough if we enforce the active constraints. The others will be fulfilled automatically.
» We don't know which ones are active for the optimal solution.
» But it's likely to be only a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Solving S-SVM Training Numerically — Working Set

» Start with working set S=10 (no contraints)
» Repeat until convergence:

» Solve S-SVM training problem with constraints from S
» Check, if solution violates any of the full constraint set
» if no: we found the optimal solution, terminate.

> if yes: add most violated constraints to S, iterate.

Good practical performance and theoretic guarantees:

» polynomial time convergence e-close to the global optimum
30/35
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Working Set S-SVM Training

input training pairs {(x*,y!),...,(x",y")} C X x ),
input feature map ¢(x, y), loss function A(y,y’), regularizer
1: w0 S« 0
2: repeat
3:  (w,&) < solution to QP only with constraints from S
for i=1,...,n do
¥ < argmax,cy A(y",y) + (w, d(x",y))
if y £ y" then
5« Su{(x",9)}
end if
9: end for
10: until S doesn’t change anymore.
output prediction function f(x) = argmax,cy(w, #(x, y)).

@ N & &

Obs: each update of w needs N argmax-predictions (one per example),
but we solve globally for next w. not by local steps. 31



Optimization
0000000000000 000e

Dual S-SVM

We can also dualize the S-SVM optimization:

1 _
max =S Y anang(6(x",y), 6 7)) + D anyA(y",y)
acRNIYI 2 = e
y.yey n=1,....N
n,n=1,...N yey

subject to, for n=1,..., N,

2
apy > 0, and Z apy < W
yey

Quadratic (convex) objective, linear constraints, N|)| unknowns
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Dual S-SVM

We can also dualize the S-SVM optimization:

max -3 E anyany<¢ a (Xﬁa)_/)> + § Oz,,yA(yn,y)
a€RNIYI -
y n=1,...,N
n, ﬁ: yey
subject to, for n=1,..., N,

2
apy > 0, and Z apy < W
yey

Quadratic (convex) objective, linear constraints, N|)| unknowns

Recover weight vector from dual coefficients: w = E anyd(x",y)
n,o
Some current state-of-the-art methods work solve the dual: [Lacoste-ulien et al. ICML 2013], [Shah et al. CVPR 2015]
32/35
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Summary — S-SVM Learning

» training set {(x%,y1),...,(x",y")} C X x Y
» loss function A : Y x Y — R.
> parameterize f(x) := argmax, (w, ¢(x, y))

Task: find w that minimizes expected loss on future data, E(, ,)A(y, f(x))
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Summary — S-SVM Learning

> training set {(x%,y1),...,(x",y")} C X x Y
» loss function A : Y x Y — R.
> parameterize f(x) := argmax, (w, ¢(x, y))

Task: find w that minimizes expected loss on future data, E(, ,)A(y, f(x))

S-SVM solution derived from regularized risk minimization:

» enforce |correct output to be better than all others by a margin :

(w, o(x",¥")) > A(y",y) + (w,¢(x",y)) forallye).

> convex optimization problem, but non-differentiable

» many equivalent formulations — different training algorithms

» training needs many argmax predictions, but no probabilistic inference
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SSVMs with Latent Variables

Latent variables also possible in S-SVMs

» x € X always observed,
> y € ) observed only in training,
» z € Z never observed (latent).

Decision function: f(x) = argmax, ¢y Maxzez (w, o(x,y,z))
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SSVMs with Latent Variables

Latent variables also possible in S-SVMs

» x € X always observed,
> y € ) observed only in training,
» z € Z never observed (latent).

Decision function: f(x) = argmax,cy maxzez (w, d(x,y, z))

Maximum Margin Training with Maximization over Latent Variables

A
Solve: rx?EHWHz Zmax 20 (y)

B

with — 05,(y) = AQY",y) + max (w, 6(x", y, 2)) — max (w, 6(x", ", 2)

Problem: not convex — can have local minima

[Yu, Joachims, " Learning Structural SVMs with Latent Variables”, 2009]
similar: [Felzenszwalb et al., " A Discriminatively Trained, Multiscale, Deformable Part Model”, 2008], but ) = {£1} 34/35



ummary — Structured Prediction and Learning

Structured Prediction and Learning is full of Open Research Questions

» How to train faster?

» CRFs need many runs of probablistic inference,
» SSVMs need many runs of argmax-predictions.

v

How to reduce the necessary amount of training data?
» semi-supervised learning? transfer learning?

v

Can we understand structured learning with approximate inference?

» often computing VL(w) or argmax, (w, ¢(x, y)) exactly is infeasible.
» can we guarantee good results even with approximate inference?

v

Learning data representations
» e.g. by combinations with deep learning

\4

More and new applications!
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