Introduction to Probabilistic Graphical Models

Christoph Lampert

IST Austria (Institute of Science and Technology Austria)

Schedule

Refresher of Probabilities
Introduction to Probabilistic Graphical Models
Probabilistic Inference
Learning Conditional Random Fields
MAP Prediction / Energy Minimization
Learning Structured Support Vector Machines

Links to slide download: http://pub.ist.ac.at/~chl/courses/PGM_W16/

Password for ZIP files (if any): pgm2016

Email for questions, suggestions or typos that you found: chl@ist.ac.at

Structured Support Vector Machines

 $\min_f \mathbb{E}_{(x,y)} \Delta(y, f(x))$

- ▶ Training examples $(x^1, y^1), \dots, (x^N, y^N) \in \mathcal{X} \times \mathcal{Y}$
- ▶ Loss function $\Delta : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.
- ▶ How to make predictions $f: \mathcal{X} \to \mathcal{Y}$?

- ▶ Training examples $(x^1, y^1), \dots, (x^N, y^N) \in \mathcal{X} \times \mathcal{Y}$
- ▶ Loss function $\Delta: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.
- ▶ How to make predictions $f: \mathcal{X} \to \mathcal{Y}$?

Approach 1) Probabilistic Learning

- 1) Use training data to learn a probability distribution p(y|x)
- 2) Use $f(x) := \operatorname{argmin}_{v \in \mathcal{V}} \mathbb{E}_{\bar{y} \sim p(y|x)} \Delta(\bar{y}, y)$ to make predictions.

- ▶ Training examples $(x^1, y^1), \dots, (x^N, y^N) \in \mathcal{X} \times \mathcal{Y}$
- ▶ Loss function $\Delta: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.
- ▶ How to make predictions $f: \mathcal{X} \to \mathcal{Y}$?

Approach 1) Probabilistic Learning

- 1) Use training data to learn a probability distribution p(y|x)
- 2) Use $f(x) := \operatorname{argmin}_{v \in \mathcal{V}} \mathbb{E}_{\bar{y} \sim p(y|x)} \Delta(\bar{y}, y)$ to make predictions.

For example, if $\Delta(\bar{y}, y) = [\bar{y} \neq y]$ or intractable otherwise:

$$f(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(y|x) = \underset{y \in \mathcal{Y}}{\operatorname{argmin}} E(x, y)$$

for
$$p(y|x) \propto e^{-E(x,y)}$$
 and $E(x,y) = \langle \theta, \phi(x,y) \rangle$.

- ▶ Training examples $(x^1, y^1), \dots, (x^N, y^N) \in \mathcal{X} \times \mathcal{Y}$
- ▶ Loss function $\Delta: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.
- ▶ How to make predictions $f: \mathcal{X} \to \mathcal{Y}$?

Approach 2) Loss-minimizing Parameter Estimation

- 1) Use training data to learn an energy function E(x, y)
- 2) Use $f(x) := \operatorname{argmin}_{y \in \mathcal{Y}} E(x, y)$ to make predictions.

- ▶ Training examples $(x^1, y^1), \dots, (x^N, y^N) \in \mathcal{X} \times \mathcal{Y}$
- ▶ Loss function $\Delta: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.
- ▶ How to make predictions $f: \mathcal{X} \to \mathcal{Y}$?

Approach 2) Loss-minimizing Parameter Estimation

- 1) Use training data to learn an energy function E(x, y)
- 2) Use $f(x) := \operatorname{argmin}_{y \in \mathcal{Y}} E(x, y)$ to make predictions.

Slight variation (for historic reasons):

- 1) Learn a compatibility function g(x, y) (think: "g = -E")
- 2) Use $f(x) := \operatorname{argmax}_{y \in \mathcal{Y}} g(x, y)$ to make predictions.

Loss-Minimizing Parameter Learning

- ▶ $\mathcal{D} = \{(x^1, y^1), \dots, (x^N, y^N)\}$ i.i.d. training set
- $\phi: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^D$ be a feature function.
- $ightharpoonup \Delta: \mathcal{Y} imes \mathcal{Y} o \mathbb{R}$ be a loss function.
- \blacktriangleright Find a weight vector w^* that minimizes the expected loss

$$\mathbb{E}_{(x,y)}\Delta(y,f(x))$$

for
$$f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle$$
.

Loss-Minimizing Parameter Learning

- ▶ $\mathcal{D} = \{(x^1, y^1), \dots, (x^N, y^N)\}$ i.i.d. training set
- \bullet $\phi: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^D$ be a feature function.
- $ightharpoonup \Delta: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ be a loss function.
- \blacktriangleright Find a weight vector w^* that minimizes the expected loss

$$\mathbb{E}_{(x,y)}\Delta(y,f(x))$$

for
$$f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle$$
.

Advantage:

- ▶ We directly optimize for the quantity of interest: expected loss.
- ▶ No expensive-to-compute partition function Z will show up.

Disadvantage:

- ▶ We need to know the loss function already at training time.
- ▶ We can't use probabilistic reasoning to find w^* .

Task: for
$$f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \ \langle w, \phi(x, y) \rangle$$

$$\min_{w \in \mathbb{R}^D} \ \mathbb{E}_{(x, y)} \Delta(y, f(x))$$

Two major problems:

- lacktriangle data distribution is unknown ightarrow we can't compute $\mathbb E$
- $f: \mathcal{X} \to \mathcal{Y}$ has output in a discrete space
 - $\rightarrow f$ is piecewise constant w.r.t. w
 - $\rightarrow \Delta(y, f(x))$ is discontinuous, piecewise constant w.r.t w

we can't apply gradient-based optimization

Task: for
$$f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle$$

$$\min_{w \in \mathbb{R}^D} \quad \mathbb{E}_{(x,y)} \Delta(y, f(x))$$

Problem 1:

▶ data distribution is unknown

Solution:

- ▶ Replace $\mathbb{E}_{(x,y)\sim d(x,y)}(\cdot)$ with empirical estimate $\frac{1}{N}\sum_{(x^n,y^n)}(\cdot)$
- ► To avoid overfitting: add a regularizer, e.g. $\frac{\lambda}{2} ||w||^2$.

New task:
$$\min_{w \in \mathbb{R}^D} \quad \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^N \Delta(y^n, f(x^n)).$$

Task: for
$$f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle$$

$$\min_{w \in \mathbb{R}^D} \quad \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^N \Delta(y^n, f(x^n)).$$

Problem:

▶ $\Delta(y^n, f(x^n)) = \Delta(y, \operatorname{argmax}_{v}\langle w, \phi(x, y)\rangle)$ discontinuous w.r.t. w.

Solution:

- ▶ Replace $\Delta(y, y')$ with well behaved $\ell(x, y, w)$
- ▶ Typically: ℓ upper bound to Δ , continuous and convex w.r.t. w.

New task:
$$\min_{w \in \mathbb{R}^D} \quad \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^N \ell(x^n, y^n, w))$$

$$\min_{w \in \mathbb{R}^D} \qquad \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^N \ell(x^n, y^n, w))$$

Regularization + Loss on training data

$$\min_{w \in \mathbb{R}^D} \qquad \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^N \ell(x^n, y^n, w))$$

Regularization + Loss on training data

Hinge loss: maximum margin training

$$\ell(x^n, y^n, w) := \max_{y \in \mathcal{Y}} \left[\Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right]$$

$$\min_{w \in \mathbb{R}^D} \qquad \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^N \ell(x^n, y^n, w))$$

Regularization + Loss on training data

Hinge loss: maximum margin training

$$\ell(x^n, y^n, w) := \max_{y \in \mathcal{Y}} \left[\Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right]$$

- \blacktriangleright ℓ is maximum over linear functions \rightarrow continuous, convex.
- ▶ ℓ is an upper bound to Δ : "small $\ell \Rightarrow$ small Δ "

$$\min_{w \in \mathbb{R}^D} \qquad \qquad \frac{\lambda}{2} \|w\|^2 \quad + \quad \frac{1}{N} \sum_{n=1}^N \ell(x^n, y^n, w))$$

Regularization + Loss on training data

Hinge loss: maximum margin training

$$\ell(x^n, y^n, w) := \max_{v \in \mathcal{V}} \left[\Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right]$$

Alternative:

Logistic loss

$$\ell(x^n, y^n, w) := \log \sum_{y \in \mathcal{Y}} \exp \left(\langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right)$$

Differentiable, convex, not an upper bound to $\Delta(y, y')$.

Hinge loss

$$\min_{w} \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^{N} \max_{y \in \mathcal{Y}} \left[\Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right]$$

Log-loss

$$\min_{w} \frac{\lambda}{2} ||w||^2 + \sum_{n=1}^{N} \log \sum_{y \in \mathcal{Y}} \exp(\langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle)$$

Structured Output Support Vector Machine

$$\min_{w} \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^{N} \max_{y \in \mathcal{Y}} \left[\Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right]$$

Conditional Random Field

$$\min_{w} \frac{\lambda}{2} \|w\|^{2} + \sum_{n=1}^{N} \underbrace{\log \sum_{y \in \mathcal{Y}} \exp(\langle w, \phi(x^{n}, y) \rangle - \langle w, \phi(x^{n}, y^{n}) \rangle)}_{= -\langle w, \phi(x^{n}, y^{n}) \rangle + \log \sum_{y} \exp(\langle w, \phi(x^{n}, y) \rangle)}_{= \text{cond.log.likelihood}}$$

CRFs and SSVMs have more in common than usually assumed.

- ▶ $\log \sum_{v} \exp(\cdot)$ can be interpreted as a soft-max (differentiable)
- SSVM training takes loss function into account
- ▶ CRF is trained without specific loss, but loss enters at prediction time

Example: Multiclass Support Vector Machine

$$\blacktriangleright \ \mathcal{Y} = \{1, 2, \dots, K\}, \quad \Delta(y, y') = \begin{cases} 1 & \text{for } y \neq y' \\ 0 & \text{otherwise} \end{cases}.$$

Solve:

$$\min_{w} \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^{N} \max_{y \in \mathcal{Y}} \left[\Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right]$$

Classification:
$$f(x) = \operatorname{argmax}_{v \in \mathcal{V}} \langle w, \phi(x, y) \rangle$$
.

Crammer-Singer Multiclass SVM

Example: Multiclass Support Vector Machine

$$\blacktriangleright \ \mathcal{Y} = \{1, 2, \dots, K\}, \quad \Delta(y, y') = \begin{cases} 1 & \text{for } y \neq y' \\ 0 & \text{otherwise} \end{cases}.$$

$$\phi(x,y) = \left(\llbracket y = 1 \rrbracket \phi(x), \ \llbracket y = 2 \rrbracket \phi(x), \ \dots, \ \llbracket y = K \rrbracket \phi(x) \right)$$

Solve:

$$\min_{w} \frac{\lambda}{2} \|w\|^{2} + \frac{1}{N} \sum_{n=1}^{N} \max_{y \in \mathcal{Y}} \underbrace{\left[\Delta(y^{n}, y) + \langle w, \phi(x^{n}, y) \rangle - \langle w, \phi(x^{n}, y^{n}) \rangle \right]}_{= \left\{ \sum_{1 + \langle w, \phi(x^{n}, y) \rangle - \langle w, \phi(x^{n}, y^{n}) \rangle \text{ for } y = y^{n} \atop \text{for } y \neq y^{n} \right\}}$$

Classification: $f(x) = \operatorname{argmax}_{v \in \mathcal{V}} \langle w, \phi(x, y) \rangle$.

Crammer-Singer Multiclass SVM

Example: Hierarchical Multiclass SVM

Hierarchical Multiclass Loss:

$$\Delta(y,y') := \frac{1}{2} ({\sf distance in tree})$$
 $\Delta({\sf cat},{\sf cat}) = 0, \quad \Delta({\sf cat},{\sf dog}) = 1,$ $\Delta({\sf cat},{\sf bus}) = 2, \quad {\it etc}.$

$$\min_{w} \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^{N} \max_{y \in \mathcal{Y}} \left[\Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right]$$

Example: Hierarchical Multiclass SVM

Hierarchical Multiclass Loss:

$$\Delta(y,y') := \frac{1}{2} ({\sf distance in tree})$$
 $\Delta({\sf cat},{\sf cat}) = 0, \quad \Delta({\sf cat},{\sf dog}) = 1,$ $\Delta({\sf cat},{\sf bus}) = 2, \quad {\it etc}.$

$$\min_{w} \frac{\lambda}{2} \|w\|^{2} + \frac{1}{N} \sum_{n=1}^{N} \max_{y \in \mathcal{Y}} \underbrace{\left[\Delta(y^{n}, y) + \langle w, \phi(x^{n}, y) \rangle - \langle w, \phi(x^{n}, y^{n}) \rangle \right]}_{\text{e.g. if } y^{n} = \text{cat,} \begin{cases} \langle w, \phi(x^{n}, \text{cat}) \rangle - \langle w, \phi(x^{n}, \text{dog}) \rangle \stackrel{!}{\geq} 1 \\ \langle w, \phi(x^{n}, \text{cat}) \rangle - \langle w, \phi(x^{n}, \text{cat}) \rangle \stackrel{!}{\geq} 2 \end{cases}}_{\text{(w. } \phi(x^{n}, \text{cat})) = \langle w, \phi(x^{n}, \text{pus}) \rangle \stackrel{!}{\geq} 2}_{\text{2}}$$

- ▶ labels that cause more loss are pushed further away
 - \rightarrow lower chance of high-loss mistake at test time

Example: RNA Secondary Structure Prediction De Bona et al., 2007]

AAAAACCCCCCCCAGAGGAGAUUG GAGAUCAAAGGUGGUUCGGAUGUC GAAGUGUACCGAACCCGGGGG

- $\mathcal{X} = \Sigma^*$ for $\Sigma = \{A, C, G, U\}$ (nucleotide sequence)
- ▶ $\mathcal{Y} = \{(i,j) : i,j \in \mathbb{N}, i < j\}$ (i,j) mean " x_i binds with x_j "
- $\phi(x,y)$ stacked domain-specific features, e.g. binding energy of $x_i \leftrightarrow x_j$, preferred patterns (motifs), loop properties, . . .
- $ightharpoonup \Delta(\bar{y}, y)$: number of wrong/missing bindings (Hamming loss)

$$\min_{w} \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{1}^{N} \max_{y \in \mathcal{Y}} \left[\Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right]$$

Example: Sentence Parsing [Taskar et al., 2004]

The screen was a sea of red.

- ➤ X = {English sentences}
- $\triangleright \mathcal{Y} = \{\text{parse tree}\}$
- $\blacktriangleright \phi(x,y)$ domain-specific features:
 - ▶ word properties, e.g. "· starts with capital letter", "· ends in ing"
 - ▶ grammatical rules: $NP \rightarrow DT + NN$
- $ightharpoonup \Delta(\bar{y},y)$: number of wrong assignments

Solving S-SVM Training Numerically

We can solve SSVM training like CRF training:

Solving S-SVM Training Numerically

We can solve SSVM training like CRF training:

$$\min_{w} \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^{N} \left[\max_{y \in \mathcal{Y}} \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right]$$

Solving S-SVM Training Numerically

We can solve SSVM training like CRF training:

$$\min_{w} \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^{N} \left[\max_{y \in \mathcal{Y}} \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right]$$

- continuous
- unconstrained <a>©
- ► convex 🙂
- ▶ non-differentiable 🙁
 - \rightarrow we can't use gradient descent directly.
 - \rightarrow we'll have to use **subgradients**

Solving S-SVM Training Numerically - Subgradient Method

Definition

Let $f: \mathbb{R}^D \to \mathbb{R}$ be a convex, not necessarily differentiable, function.

A vector $v \in \mathbb{R}^D$ is called a **subgradient** of f at w_0 , if

$$f(w) \ge f(w_0) + \langle v, w - w_0 \rangle$$
 for all w .

Solving S-SVM Training Numerically – Subgradient Method

Definition

Let $f: \mathbb{R}^D \to \mathbb{R}$ be a convex, not necessarily differentiable, function.

A vector $v \in \mathbb{R}^D$ is called a **subgradient** of f at w_0 , if

$$f(w) \ge f(w_0) + \langle v, w - w_0 \rangle$$
 for all w .

Solving S-SVM Training Numerically - Subgradient Method

Definition

Let $f: \mathbb{R}^D \to \mathbb{R}$ be a convex, not necessarily differentiable, function.

A vector $v \in \mathbb{R}^D$ is called a **subgradient** of f at w_0 , if

$$f(w) \ge f(w_0) + \langle v, w - w_0 \rangle$$
 for all w .

Solving S-SVM Training Numerically – Subgradient Method

Definition

Let $f: \mathbb{R}^D \to \mathbb{R}$ be a convex, not necessarily differentiable, function.

A vector $v \in \mathbb{R}^D$ is called a **subgradient** of f at w_0 , if

$$f(w) \ge f(w_0) + \langle v, w - w_0 \rangle$$
 for all w .

For differentiable f, the gradient $v = \nabla f(w_0)$ is the only subgradient.

Subgradient Method Minimization – minimize F(w) [Shor, 1985]

- ▶ require: tolerance $\epsilon > 0$, stepsizes η_t
- ▶ $\theta_{cur} \leftarrow 0$
- ▶ repeat
 - $ightharpoonup v \in
 abla_w^{\mathrm{sub}} F(\theta_{\mathit{cur}})$
 - $\bullet \ \theta_{cur} \leftarrow \theta_{cur} \eta_t v$
- ▶ until F changed less than ϵ
- ▶ return θ_{cur}

Subgradient method looks very similar to gradient descent:

- ▶ iterative update in opposite direction of (sub)gradients
- converges to global minimum for convex F,

Caveats for non-differentiable *F*:

- ▶ only possible for convex functions (unlike gradient descent)
- ▶ not a descent method: the objective can sometimes go up, but overall it will decrease

Subgradient method

Subgradient method

Subgradient method

Subgradient method

All points along subgradient have larger objective than starting point!

Subgradient method

All points along subgradient have larger objective than starting point!

Subgradient method

Why does it work anyway? Distance to optimum decreases in every step!

Computing a subgradient:

$$\min_{w} \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \ell^n(w)$$

with
$$\ell^n(w) = \max_y \ell^n_y(w)$$
, and

$$\ell_y^n(w) := \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle$$

Computing a subgradient:

$$\min_{w} \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \ell^n(w)$$

$$\ell_{y}^{n}(w) := \Delta(y^{n}, y) + \langle w, \phi(x^{n}, y) \rangle - \langle w, \phi(x^{n}, y^{n}) \rangle$$

Computing a subgradient:

$$\min_{w} \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \ell^n(w)$$

$$\ell_{y}^{n}(w) := \Delta(y^{n}, y) + \langle w, \phi(x^{n}, y) \rangle - \langle w, \phi(x^{n}, y^{n}) \rangle$$

Computing a subgradient:

$$\min_{w} \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \ell^n(w)$$

$$\ell_{y}^{n}(w) := \Delta(y^{n}, y) + \langle w, \phi(x^{n}, y) \rangle - \langle w, \phi(x^{n}, y^{n}) \rangle$$

Computing a subgradient:

$$\min_{w} \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \ell^n(w)$$

$$\ell_{y}^{n}(w) := \Delta(y^{n}, y) + \langle w, \phi(x^{n}, y) \rangle - \langle w, \phi(x^{n}, y^{n}) \rangle$$

Computing a subgradient:

$$\min_{w} \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \ell^n(w)$$

$$\ell_{y}^{n}(w) := \Delta(y^{n}, y) + \langle w, \phi(x^{n}, y) \rangle - \langle w, \phi(x^{n}, y^{n}) \rangle$$

Computing a subgradient:

$$\min_{w} \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \ell^n(w)$$

$$\ell_{\gamma}^{n}(w) := \Delta(y^{n}, y) + \langle w, \phi(x^{n}, y) \rangle - \langle w, \phi(x^{n}, y^{n}) \rangle$$

Computing a subgradient:

$$\min_{w} \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \ell^n(w)$$

$$\ell_{y}^{n}(w) := \Delta(y^{n}, y) + \langle w, \phi(x^{n}, y) \rangle - \langle w, \phi(x^{n}, y^{n}) \rangle$$

Subgradient of ℓ^n at w_0 : find maximal (active) y, use $v = \nabla \ell_y^n(w_0)$.

Computing a subgradient:

$$\min_{w} \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \ell^n(w)$$

with $\ell^n(w) = \max_{v} \ell^n_v(w)$, and

$$\ell_{\nu}^{n}(w) := \Delta(y^{n}, y) + \langle w, \phi(x^{n}, y) \rangle - \langle w, \phi(x^{n}, y^{n}) \rangle$$

Not necessarily unique, but $v = \nabla \ell_y^n(w_0)$ works for any maximal y

Subgradient Method S-SVM Training

input training pairs $\{(x^1, y^1), \dots, (x^n, y^n)\} \subset \mathcal{X} \times \mathcal{Y}$, input feature map $\phi(x, y)$, loss function $\Delta(y, y')$, regularizer λ , input number of iterations T, stepsizes η_t for $t = 1, \dots, T$

- 1: $w \leftarrow \vec{0}$
- 2: for t=1,...,T do
- 3: **for** i=1,...,n **do**
- 4: $\hat{y} \leftarrow \operatorname{argmax}_{y \in \mathcal{V}} \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle \langle w, \phi(x^n, y^n) \rangle$
- 5: $\mathbf{v}^n \leftarrow \phi(\mathbf{x}^n, \hat{\mathbf{v}}) \phi(\mathbf{x}^n, \mathbf{v}^n)$
 - end for
 - $w \leftarrow w \eta_t (\lambda w \frac{1}{N} \sum_n v^n)$
- 7: $W \leftarrow W \eta_t (\lambda W \frac{1}{N} \sum_n V^n)$ 8: **end for**

output prediction function $f(x) = \operatorname{argmax}_{v \in \mathcal{V}} \langle w, \phi(x, y) \rangle$.

Obs: each update of w needs N argmax-prediction (one per example). Obs: computing the argmax is (loss augmented) **energy minimization**

- $ightharpoonup \mathcal{X}$ images, $\mathcal{Y} = \{$ binary segmentation masks $\}$.
- ► Training example(s): $(x^n, y^n) = \left((x^n, y^n) = (x^n, y^n) \right)$
- $lackbox{} \Delta(y, \bar{y}) = \sum_{p} \llbracket y_p
 eq \bar{y}_p
 rbracket$ (Hamming loss)

- \triangleright \mathcal{X} images, $\mathcal{Y} = \{$ binary segmentation masks $\}$.

$$ightharpoonup \Delta(y, \bar{y}) = \sum_{p} ||y_p \neq \bar{y}_p||$$
 (Hamming loss)

$$t = 1$$
: $w = 0$,

$$\hat{y} = \underset{y}{\operatorname{argmax}} \left[\langle w, \phi(x^n, y) \rangle + \Delta(y^n, y) \right]$$
 $\stackrel{w=0}{=} \underset{y}{\operatorname{argmax}} \Delta(y^n, y) = \text{"the opposite of } y^n \text{"}$

- $ightharpoonup \mathcal{X}$ images, $\mathcal{Y} = \{$ binary segmentation masks $\}$.
- ► Training example(s): $(x^n, y^n) = \left((x^n, y^n) \right)$
- $ightharpoonup \Delta(y, \bar{y}) = \sum_p \llbracket y_p
 eq \bar{y}_p
 rbracket$ (Hamming loss)

$$t=1$$
: $\hat{y}=\phi(y^n)-\phi(\hat{y})$: black +, white +, green $-$, blue $-$, gray $-$

- $\triangleright \mathcal{X}$ images. $\mathcal{Y} = \{$ binary segmentation masks $\}$.

$$ightharpoonup \Delta(y, \bar{y}) = \sum_{p} \llbracket y_p
eq \bar{y}_p
rbracket$$
 (Hamming loss)

$$t=1$$
: $\hat{y}=\phi(y^n)-\phi(\hat{y})$: black +, white +, green $-$, blue $-$, gray $-$

$$t=2$$
: $\hat{y}=\phi(y^n)-\phi(\hat{y})$: black +, white +, green =, blue =, gray $-$

- $ightharpoonup \mathcal{X}$ images, $\mathcal{Y} = \{ \text{ binary segmentation masks } \}.$
- to images, y (amary segmentation master

•
$$\Delta(y, \bar{y}) = \sum_{p} \llbracket y_p \neq \bar{y}_p
rbracket$$
 (Hamming loss)

$$t=1$$
: $\hat{y}=\phi(y^n)-\phi(\hat{y})$: black +, white +, green -, blue -, gray -

$$t=2$$
: $\hat{y}=\phi(y^n)-\phi(\hat{y})$: black +, white +, green =, blue =, gray -

$$t=3$$
: $\hat{y}=\phi(y^n)-\phi(\hat{y})$: black =, white =, green $-$, blue $-$, gray $-$

- $ightharpoonup \mathcal{X}$ images, $\mathcal{Y} = \{ \text{ binary segmentation masks } \}.$
- to images, 5 (smally segmentation master)

► Training example(s):
$$(x^n, y^n) = \begin{pmatrix} & & \\ & & \end{pmatrix}$$

► $\Delta(y, \bar{y}) = \sum_p \llbracket y_p \neq \bar{y}_p \rrbracket$ (Hamming loss)

$$t=1$$
: $\hat{y}=\phi(y^n)-\phi(\hat{y})$: black +, white +, green $-$, blue $-$, gray $-$

$$t=2$$
: $\hat{y}=\phi(y^n)-\phi(\hat{y})$: black +, white +, green =, blue =, gray $-$

$$t=3$$
: $\hat{y}=\phi(y^n)-\phi(\hat{y})$: black =, white =, green -, blue -, gray -

$$t=4$$
: $\hat{y}=\phi(y^n)-\phi(\hat{y})$: black =, white =, green -, blue =, gray =

- $ightharpoonup \mathcal{X}$ images, $\mathcal{Y} = \{$ binary segmentation masks $\}$.
- ► Training example(s): $(x^n, y^n) = \left(\bigcap_{i=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{j$
- $\Delta(y, \bar{y}) = \sum_{p} \llbracket y_p \neq \bar{y}_p \rrbracket$ (Hamming loss)

$$t=1$$
: $\hat{y}=\phi(y^n)-\phi(\hat{y})$: black +, white +, green -, blue -, gray -

$$t=2$$
: $\hat{y}=\phi(y^n)-\phi(\hat{y})$: black +, white +, green =, blue =, gray -

$$t=3$$
: $\hat{y}=\phi(y^n)-\phi(\hat{y})$: black =, white =, green $-$, blue $-$, gray $-$

$$t=4$$
: $\hat{y}=\phi(y^n)-\phi(\hat{y})$: black =, white =, green -, blue =, gray =

$$t=5$$
: $\hat{y}=\phi(y^n)-\phi(\hat{y})$: black =, white =, green =, blue =, gray =

 $t = 6, \ldots$: no more changes.

Stochastic Subgradient Method S-SVM Training

input training pairs $\{(x^1, y^1), \dots, (x^n, y^n)\} \subset \mathcal{X} \times \mathcal{Y}$, **input** feature map $\phi(x, y)$, loss function $\Delta(y, y')$, regularizer λ , **input** number of iterations T, stepsizes η_t for $t = 1, \dots, T$

- 1: $w \leftarrow \vec{0}$
- 2: for t=1,...,T do
- 3: $(x^n, y^n) \leftarrow \text{randomly chosen training example pair}$
- 4: $\hat{y} \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}} \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle \langle w, \phi(x^n, y^n) \rangle$
- 5: $w \leftarrow w \eta_t(\lambda w \frac{1}{N}[\phi(x^n, \hat{y}) \phi(x^n, y^n)])$
- 6: end for

output prediction function $f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle$.

Observation: each update of w needs only 1 argmax-prediction (but we'll need many iterations until convergence)

Structured Support Vector Machine:

$$\min_{w} \quad \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^{N} \max_{y \in \mathcal{Y}} \left[\Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right) \right]$$

Subgradient method converges slowly. Can we do better?

Structured Support Vector Machine:

$$\min_{w} \quad \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^{N} \max_{y \in \mathcal{Y}} \left[\Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right) \right]$$

Subgradient method converges slowly. Can we do better?

We can use inequalities and slack variables to reformulate the optimization.

Structured SVM (equivalent formulation):

Idea: slack variables

$$\min_{w,\xi} \quad \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \xi^n$$

subject to, for n = 1, ..., N,

$$\max_{y \in \mathcal{Y}} \left[\Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \right] \leq \xi^n$$

Note: $\xi^n \ge 0$ automatic, because left hand side is non-negative.

Differentiable objective, convex, N non-linear contraints,

Structured SVM (also equivalent formulation):

Idea: expand max term into individual constraints

$$\min_{w,\xi} \quad \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \xi^n$$

subject to, for n = 1, ..., N,

$$\Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle \le \xi^n$$
, for all $y \in \mathcal{Y}$

Differentiable objective, convex, $N|\mathcal{Y}|$ linear constraints

Solve an S-SVM like a linear Support Vector Machine:

$$\min_{w \in \mathbb{R}^D, \xi \in \mathbb{R}^n} \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^N \xi^n$$

subject to, for $i = 1, \ldots n$,

$$\langle w, \phi(x^n, y^n) \rangle - \langle w, \phi(x^n, y) \rangle \ge \Delta(y^n, y) - \xi^n$$
, for all $y \in \mathcal{Y}$.

Introduce feature vectors $\delta\phi(x^n,y^n,y):=\phi(x^n,y^n)-\phi(x^n,y)$.

Solve

$$\min_{w \in \mathbb{R}^{D}, \xi \in \mathbb{R}^{n}_{+}} \frac{\lambda}{2} ||w||^{2} + \frac{1}{N} \sum_{n=1}^{N} \xi^{n}$$

subject to, for $i=1,\ldots n$, for all $y\in\mathcal{Y}$,

$$\langle w, \delta \phi(x^n, y^n, y) \rangle \ge \Delta(y^n, y) - \xi^n.$$

"Quadratic program":

- ► quadratic objective ©
- ▶ linear constraints ☺
- ► (same structure as an ordinary support vector machine)

Solve

$$\min_{w \in \mathbb{R}^{D}, \xi \in \mathbb{R}^{n}_{+}} \frac{\lambda}{2} ||w||^{2} + \frac{1}{N} \sum_{n=1}^{N} \xi^{n}$$

subject to, for $i=1,\ldots n$, for all $y\in\mathcal{Y}$,

$$\langle w, \delta \phi(x^n, y^n, y) \rangle \ge \Delta(y^n, y) - \xi^n.$$

"Quadratic program":

- ► quadratic objective ©
- ▶ linear constraints ☺
- ► (same structure as an ordinary support vector machine)

Question: Can we use an ordinary QP or SVM solver?

Solve

$$\min_{w \in \mathbb{R}^{D}, \xi \in \mathbb{R}^{n}_{+}} \frac{\lambda}{2} \|w\|^{2} + \frac{1}{N} \sum_{n=1}^{N} \xi^{n}$$

subject to, for $i=1,\ldots n$, for all $y\in \mathcal{Y}$,

$$\langle w, \delta \phi(x^n, y^n, y) \rangle \ge \Delta(y^n, y) - \xi^n.$$

- "Quadratic program":
 - ► quadratic objective ©
 - ▶ linear constraints ☺
 - ► (same structure as an ordinary support vector machine)

Question: Can we use an ordinary QP or SVM solver?

Answer: Almost! We could, if there weren't $N|\mathcal{Y}|$ constraints .

► E.g. 100 binary 16×16 images: 10^{79} constraints

Solving S-SVM Training Numerically – Working Set

Solution: working set training

- ▶ It's enough if we enforce the **active constraints**. The others will be fulfilled automatically.
- ▶ We don't know which ones are active for the optimal solution.
- ▶ But it's likely to be only a small number ← can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Solving S-SVM Training Numerically – Working Set

Solution: working set training

- ▶ It's enough if we enforce the **active constraints**. The others will be fulfilled automatically.
- ▶ We don't know which ones are active for the optimal solution.
- ▶ But it's likely to be only a small number ← can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Solving S-SVM Training Numerically – Working Set

- ▶ Start with working set $S = \emptyset$ (no contraints)
- ► Repeat until convergence:
 - ► Solve S-SVM training problem with constraints from *S*
 - ► Check, if solution violates any of the full constraint set
 - ▶ if no: we found the optimal solution, terminate.
 - ▶ if yes: add most violated constraints to *S*, iterate.

Solving S-SVM Training Numerically – Working Set

Solution: working set training

- ▶ It's enough if we enforce the **active constraints**. The others will be fulfilled automatically.
- ▶ We don't know which ones are active for the optimal solution.
- ▶ But it's likely to be only a small number ← can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Solving S-SVM Training Numerically – Working Set

- ▶ Start with working set $S = \emptyset$ (no contraints)
- ► Repeat until convergence:
 - ► Solve S-SVM training problem with constraints from *S*
 - ► Check, if solution violates any of the full constraint set
 - ▶ if no: we found the optimal solution, terminate.
 - ▶ if yes: add most violated constraints to *S*, iterate.

Good practical performance and theoretic guarantees:

ightharpoonup polynomial time convergence ϵ -close to the global optimum

Working Set S-SVM Training

input training pairs $\{(x^1, y^1), \dots, (x^n, y^n)\} \subset \mathcal{X} \times \mathcal{Y}$, **input** feature map $\phi(x, y)$, loss function $\Delta(y, y')$, regularizer λ

- 1: $w \leftarrow 0$, $S \leftarrow \emptyset$
- 2: repeat
- 3: $(w, \xi) \leftarrow solution to QP only with constraints from S$
- 5. $(w,\zeta) \leftarrow \text{solution to Q} \text{rothy with constraints } \text{respectively}$
- 4: $\mathbf{for} = 1, \dots, n \mathbf{do}$
- 5: $\hat{y} \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}} \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle$
- 6: **if** $\hat{y} \neq y^n$ **then**
 - $S \leftarrow S \cup \{(x^n, \hat{y})\}$ end if
- 9: end for

7:

8.

- 10: **until** *S* doesn't change anymore.
- **output** prediction function $f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle$.

Obs: each update of w needs N argmax-predictions (one per example), but we solve globally for next w, not by local steps.

Dual S-SVM

We can also dualize the S-SVM optimization:

$$\max_{\alpha \in \mathbb{R}^{N|\mathcal{Y}|}} \quad -\frac{1}{2} \sum_{\substack{y, \bar{y} \in \mathcal{Y} \\ n, \bar{n} = 1, \dots, N}} \alpha_{ny} \alpha_{\bar{n}\bar{y}} \langle \phi(x^n, y), \phi(x^{\bar{n}}, \bar{y}) \rangle + \sum_{\substack{n = 1, \dots, N \\ y \in \mathcal{Y}}} \alpha_{ny} \Delta(y^n, y)$$

subject to, for n = 1, ..., N,

$$\alpha_{ny} \ge 0,$$
 and $\sum_{y \in \mathcal{Y}} \alpha_{ny} \le \frac{2}{\lambda N}.$

Quadratic (convex) objective, linear constraints, $N|\mathcal{Y}|$ unknowns

Dual S-SVM

We can also dualize the S-SVM optimization:

$$\max_{\alpha \in \mathbb{R}^{N|\mathcal{Y}|}} \quad -\frac{1}{2} \sum_{\substack{y, \bar{y} \in \mathcal{Y} \\ n, \bar{n} = 1, \dots, N}} \alpha_{ny} \alpha_{\bar{n}\bar{y}} \left\langle \phi(x^n, y), \phi(x^{\bar{n}}, \bar{y}) \right\rangle + \sum_{\substack{n = 1, \dots, N \\ y \in \mathcal{Y}}} \alpha_{ny} \Delta(y^n, y)$$

subject to, for n = 1, ..., N,

$$\alpha_{ny} \ge 0,$$
 and $\sum_{v \in \mathcal{V}} \alpha_{ny} \le \frac{2}{\lambda N}.$

Quadratic (convex) objective, linear constraints, $N|\mathcal{Y}|$ unknowns

Recover weight vector from dual coefficients: $w = \sum_{n,\alpha} \alpha_{ny} \phi(x^n, y)$

Some current state-of-the-art methods work solve the dual: [Lacoste-Julien et al. ICML 2013], [Shah et al. CVPR 2015]

Summary – S-SVM Learning

- ▶ training set $\{(x^1, y^1), \dots, (x^n, y^n)\} \subset \mathcal{X} \times \mathcal{Y}$
- ▶ loss function $\Delta: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.
- parameterize $f(x) := \operatorname{argmax}_y \langle w, \phi(x, y) \rangle$

Task: find w that minimizes expected loss on future data, $\mathbb{E}_{(x,y)}\Delta(y,f(x))$

Summary – S-SVM Learning

- ▶ training set $\{(x^1, y^1), \dots, (x^n, y^n)\} \subset \mathcal{X} \times \mathcal{Y}$
- ▶ loss function $\Delta : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.
- ▶ parameterize $f(x) := \operatorname{argmax}_y \langle w, \phi(x, y) \rangle$

Task: find w that minimizes expected loss on future data, $\mathbb{E}_{(x,y)}\Delta(y,f(x))$

S-SVM solution derived from regularized risk minimization:

▶ enforce correct output to be better than all others by a margin:

$$\langle w, \phi(x^n, y^n) \rangle \ge \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle$$
 for all $y \in \mathcal{Y}$.

- ► convex optimization problem, but non-differentiable
- lacktriangleright many equivalent formulations ightarrow different training algorithms
- ▶ training needs many argmax predictions, but no probabilistic inference

SSVMs with Latent Variables

Latent variables also possible in S-SVMs

- ▶ $x \in \mathcal{X}$ always observed,
- ▶ $y \in \mathcal{Y}$ observed only in training,
- ▶ $z \in \mathcal{Z}$ never observed (latent).

Decision function: $f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \max_{z \in \mathcal{Z}} \langle w, \phi(x, y, z) \rangle$

SSVMs with Latent Variables

Latent variables also possible in S-SVMs

- $\triangleright x \in \mathcal{X}$ always observed,
- $\mathbf{v} \in \mathcal{Y}$ observed only in training.
- $ightharpoonup z \in \mathcal{Z}$ never observed (latent).

 $f(x) = \operatorname{argmax}_{v \in \mathcal{V}} \max_{z \in \mathcal{Z}} \langle w, \phi(x, y, z) \rangle$ **Decision function:**

Maximum Margin Training with Maximization over Latent Variables

Solve:
$$\min_{w,\xi} \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{n=1}^{N} \max_{y \in \mathcal{Y}} \ell_w^n(y)$$

 $\ell_w^n(y) = \Delta(y^n, y) + \max_{z \in \mathcal{Z}} \langle w, \phi(x^n, y, z) \rangle - \max_{z \in \mathcal{Z}} \langle w, \phi(x^n, y^n, z) \rangle$ with

Problem: not convex \rightarrow can have local minima

Summary - Structured Prediction and Learning

Structured Prediction and Learning is full of Open Research Questions

- ► How to train faster?
 - ► CRFs need many runs of probablistic inference,
 - ► SSVMs need many runs of argmax-predictions.
- ▶ How to reduce the necessary amount of training data?
 - semi-supervised learning? transfer learning?
- ► Can we understand structured learning with approximate inference?
 - often computing $\nabla \mathcal{L}(w)$ or $\operatorname{argmax}_{v}\langle w, \phi(x, y) \rangle$ exactly is infeasible.
 - ▶ can we guarantee good results even with approximate inference?
- ► Learning data representations
 - ▶ e.g. by combinations with deep learning
- ► More and new applications!