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Relationship Factorizations to Graphs

> Consider  p(a, b, c) = ¢(a, b)¢(b, c)¢(c, a)
» What is the graph of the corresponding Markov network?

» How about this one? p(a, b, c) = &(a, b, c)
» The same!



Factor Graphs
0000000000000 00

Relationship Factorizations to Graphs

v

Consider  p(a, b, c) = ¢(a, b)¢(b, c)¢(c, a)
What is the graph of the corresponding Markov network?

v

v

How about this one? p(a, b, c) = &(a, b, c)
The same!

v

» no one-to-one relation between the graph and the factorization of the potential functions!
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» Many problems have only small (e.g. pairwise) interactions, e.g. "friendship” in Facebook

> p(x1,. ... %) = 5 [T 9ii(xi, ) with x; € {1,...,L}
(g) = 15 factors of size2 — distribution specified by 15L? values

v

v

corresponding graph: fully connected

» also compatible with, e.g.,
1
Plxt, s x6) = — o1, X2, X3, Xa)(x1, %2, %5, X6 ) H(x3, X, X5, X6) —  3L* values!
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Relationship Factorizations to Graphs

Why is this a problem?

» Many problems have only small (e.g. pairwise) interactions, e.g. "friendship” in Facebook

> p(x1,. ... %) = 5 [T 9ii(xi, ) with x; € {1,...,L}
> (g) = 15 factors of size2 — distribution specified by 15L? values

» corresponding graph: fully connected

» also compatible with, e.g.,
1
Plxt, s x6) = — o1, X2, X3, Xa)(x1, %2, %5, X6 ) H(x3, X, X5, X6) —  3L* values!

> or even p(x1,...,X) = %(;S(xl, ceey X6) — L% values!

The graph alone does not tell us if the model is tractable or not. So why bother with it?7?7
4/32
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Relationship Potentials to Graphs

» We overcome his by augmenting the notation.

» We introduce an extra node (a square) for each factor in the factorization
The square is connected to all nodes contributing to the factor.

(<) @ (<)

O—O O U O=O0
(a) (b) ()

» (a): Markov Network graph

Parameter Estima
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The square is connected to all nodes contributing to the factor.

(<) @ (<)

% oo b

(a) (b) ()

» (a): Markov Network graph

v

(b): Factor graph representation of p(a, b, c) x ¢(a, b, c)



Factor Graphs

000e00000000000

Relationship Potentials to Graphs

» We overcome his by augmenting the notation.
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We introduce an extra node (a square) for each factor in the factorization
The square is connected to all nodes contributing to the factor.
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(a) (b) ()

» (a): Markov Network graph

v

(b): Factor graph representation of p(a, b, c) x ¢(a, b, c)
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Relationship Potentials to Graphs

» We overcome his by augmenting the notation.

v

We introduce an extra node (a square) for each factor in the factorization
The square is connected to all nodes contributing to the factor.

(<) @ (<)

% oo b

(a) (b) ()
(a): Markov Network graph

v

v

(b): Factor graph representation of p(a, b, c) x ¢(a, b, c)
(c): Factor graph representation of p(a, b, ¢) x ¢(a, b)p(b, ¢c)¢(c, a)

v

v

Different factor graphs can have the same Markov network (b,c)=(a)
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Directed Factor Graphs

» This also works for directed graph / belief network.

» The structure of the factorization is retained:

» But doesn’t add much information, so typically not used.
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Factor Graph Definition

Given a function
f(le O 7Xn) - H¢i(Xi)7

the factor graph (FG) has a node (represented by a square) for each factor ¢;(X;) and a
variable node (represented by a circle) for each variable x;.
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Factor Graph Definition

Given a function
f(le cee 7Xn) = H¢i(Xi)7

the factor graph (FG) has a node (represented by a square) for each factor ¢;(X;) and a
variable node (represented by a circle) for each variable x;. When used to represent a
distribution

1
p(x1, ..., xp) = > Hiﬁi(Xi),

a normalization constant is assumed.
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Bipartite graph

Bipartite

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such
that every edge connects a vertex in U to one in V

» Factor graphs are bipartite graphs. Edge are always between a variables node (circle) and
a factor node (square).
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Factor graph: example 1

» Question: which factorization 7

fa fb fc fd

» Answer:
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Factor graph: example 1

» Question: which factorization ?

fa fb fc fd
» Answer:

p(x) = %fa(xl, x2)fp(x1, x2) fe (X2, x3)fu (x3)
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Factor graph: example 2

» Question: Which factor graph 7

p(x1,x2,x3) = p(x1)p(x2)p(xs | x1,x2)

» Answer:

10/32
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Factor graph: example 2

» Question: Which factor graph 7

p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2)

» Answer:
T T3

Je

3

10/32
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Example: A Factor Graph and Energy Function for Image Denoising
- .

1 —E(x
ply) = Ze 500 E(ay)= 3 Elay)+ >0 Eilny)

ice{pixels} (ij)e{edges}
Pairwise Markov Random Field (MRF):
> Ei(xi,yi) = a(x; — y,-)2 outputs are likely similar to inputs
> Ei(yi,yj) = Blyi — yjl neighboring outputs are likely similar to each other — smooth output

» a € R and g € R can be adjusted per image

11/32
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Example: A Factor Graph and Energy Function for Human Pose Estimation

1 g
plylx) = e FU2) E(yix) = > Ei(yiixi) + Y Ei(yi,))
i€{head,torso,. ..} (74)

» unary factors (depend on one label): appearance
> e.g Enead(y; x) "Does location y in image x look like a head?”

» pairwise factors (depend on two labels): geometry

> eg. Ehead—torso(yheadv)/torso) "Is location Yhead above location Ytorso 77
12 /32
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Example: A Factor Graph and Energy Function for Image Segmentation

4% W

1 e
plylx) = e E0x) E(yix)= Y Elix)+ Y. Eilviy)
ie{pixels} (i)e{edges}

Energy function components ("Ising” model):

> E(yi=1,x) = Io.w if x; is 'the right color, e.g. brown Eyi = 0,%) = —Ei(yi = 1, x)
high otherwise
> Eyi,y) = low if y; =y; higher probability if neighbors have same labels
i Yj) = h|gh otherwise — smooth Iabelings

13/32



Example: A Factor Graph and Energy Function for Graph Matching
Xla X1p Xlc Xid
X | X Xeb Xee Xad | (0, 1}1VIxI1V'l
G = (V,S) X3a X3b X3¢ X3d G = (V', 5/)

X4a Xap X4c X4d

(which left node matches to which right node)

14 /32
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Example: A Factor Graph and Energy Function for Graph Matching

X |
G =(V,8) X3a

X1b
X2p
X3b
X4p

Xlc
X2¢
X3¢
X4c

X1d
X2d [VIx|V/|
€ {0,1}

X3d G/ — (VI, (c/‘/)
X4d

(which left node matches to which right node)

pi(x) = %E_EI(X) Ei(x) = {

xjj |deg(v;) — deg(v;)]) if x is a valid assignment,

(iJ)EVXV!
oo

otherwise.

14 /32
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Xla X1p Xlc Xid
X . | Xea Xeb X2 Xad | {0, 1}IVIxIV'
G=(V,&) X3a X3p X3¢ X3d G = (V', 5/)
X4a Xap X4c Xad
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1 > xj|deg(vi) — deg(v;)|) if x is a valid assignment,
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00 otherwise.

(i J,k,)EVXV XV XV

1
p2(x) = Ee*‘l’:—l(x)*mfz(x) Ex(x) =
00 otherwise.

{ > xpxj |dist(vy, v;) — dist(v, v/)| if x is valid,
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Example: A Factor Graph and Energy Function for Graph Matching

X |
G =(V,8) X3a

X1b
X2p
X3b
X4p

Xlc
X2¢
X3¢
X4c

X1d
X2d [VIx|V/|
€ {0,1}

X3d G/ — (VI, (c/‘/)
X4d

(which left node matches to which right node)

>
p1(x) = %e_El(X) Ei(x) = {(i,j)e\/x %

o0

1
p2(x) = Ee*aEl(X)*BEz(X) Ex(x)

p3(x) = %efaEl(X)*BEz(X)*vEs(X) Es(x) =

o0

|

{(iyj«kyf,s,f)EVX VX VXV xVIxV!

(i J,k,)EVXV XV XV
oo

xjj |deg(v;) — deg(v;)]) if x is a valid assignment,
otherwise.
> xpxj |dist(vy, v;) — dist(v, v/)| if x is valid,
otherwise.
XirXjs Xkt | £(Viy Vi, vic) — Z(V], v, vi)| if x is valid,
otherwise.

14 /32



Example: A Factor Graph and Energy Function for Graph Matching

Xla X1p Xlc Xid
X . | Xea Xeb X2 Xad | {0, 1}IVIxIV'
G=(V,&) X3a X3p X3¢ X3d G = (V', 5/)
X4a Xap X4c Xad
(which left node matches to which right node)

1 > xj|deg(vi) — deg(v;)|) if x is a valid assignment,
p1(x) = Ee_El(X) Ei(x) = { (ihhevxV’

00 otherwise.

Xikxi |dist(v;, v;) — dist(v], v/ if x is valid,
pa(x) = lefaﬁ(x)*BEz(x) Ex(x) = (i,j,k,l)ev§v><\l/’>‘<,\/|/ (vi j) ( k /)l
z [e%S) otherwise.
XirXisXke | £ (Vi vj, vi) — Z(v], vl v} if x is valid,
p3(x) = lefaEl(X)fﬁEQ(x)fvEﬂx) E3(x) = { (isskris,t)EVXVX VX VXV X v5| (Vi1 ) (vr, v3. o)l
z 0 otherwise.

Assign higher probability if similarity or geometry matches well. )
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Summary (so far)

The graphs of graphical models represent families of probability distributions graphically:

» Bayesian networks: directed acyclic graphs, product of conditional distribution
» by default, arrows have no causal interpretation
» but: causal Bayesian networks also exist
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Summary (so far)

The graphs of graphical models represent families of probability distributions graphically:

» Bayesian networks: directed acyclic graphs, product of conditional distribution
» by default, arrows have no causal interpretation
» but: causal Bayesian networks also exist

Markov networks: undirected, local cliques of dependent variables

Factor graphs

» makes the factorization explicit
» not a larger class of distributions, “just” a different way of drawing the graph

for modeling undirected models, thinking in terms of factor graphs is very useful
» very often only a few factor 'types’, evaluated on different subsets of variables

vy

\4
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Summary (so far)

The graphs of graphical models represent families of probability distributions graphically:

» Bayesian networks: directed acyclic graphs, product of conditional distribution
» by default, arrows have no causal interpretation
» but: causal Bayesian networks also exist
» Markov networks: undirected, local cliques of dependent variables
» Factor graphs
» makes the factorization explicit
» not a larger class of distributions, “just” a different way of drawing the graph
» for modeling undirected models, thinking in terms of factor graphs is very useful
» very often only a few factor 'types’, evaluated on different subsets of variables

To specify an actual distribution, we also have to provide:
» for directed models: the conditional tables
» for undirected models: the potentials

Often, these are learned from training data (while the graph structure is fixed manually).

15/32
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Learning from data

For many processes, we are not given the probabilities/factor values, but we observe data:
D= {x1,...,%n}

Probability Estimation

For a given model class, probability estimation is the task of identifying the
probability distribution from observed data.

General assumption:

» training data is sampled independently from a distribution of interest (i.i.d.)

17 /32



Parameter Estimation
0000000000000 000

Learning from data

Example: coin toss

You repeatedly flip a coin. x; € {head, tail} is the output of the i-th repeat.
What are the coin's probabilities p(head) and p(tail)?

Standard method:
> we write Opeag = p(head) and Orai1 = p(tail) (one is enough: Oraiz = 1 — bhead)

18 /32
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You repeatedly flip a coin. x; € {head, tail} is the output of the i-th repeat.
What are the coin's probabilities p(head) and p(tail)?

Standard method:
> we write Opeag = p(head) and Orai1 = p(tail) (one is enough: Oraiz = 1 — bhead)

» we estimate a value for Oyeaq from the data as

~ number of head in the observations 1 < i head]
= " = — X = ea.
head total number of observations n Z - !
1=

1 if condition P is true,

where [-] are Iverson brackets: [P] = _
0 otherwise.
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Learning from data

Example: coin toss

You repeatedly flip a coin. x; € {head, tail} is the output of the i-th repeat.
What are the coin's probabilities p(head) and p(tail)?

Standard method:
> we write Opeag = p(head) and Orai1 = p(tail) (one is enough: Oraiz = 1 — bhead)

» we estimate a value for Oyeaq from the data as

~ number of head in the observations 1 < i head]
= " = — X = ea.
head total number of observations n Z - !
1=

1 if condition P is true,

where [-] are Iverson brackets: [P] = _
0 otherwise.

> note: the ~ of Gyeaq indicates that this is an estimate based on data
18 /32
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Learning from data

Example: Gaussians

You know that a random variable has Gaussian distribution,
1 _x=w)?
p(x) = e 27
2o
What are y and o7
Standard method: given i.i.d. samples: xi,..., X,

=4l
> 8% =13 — )

19/32



Parameter Estimation
Learning from data
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Example: Gaussians

You know that a set of d random variables x = (x

1...,x9) have a jointly
Gaussian distribution,
p(X) 71 e_%(x_u)—rzil(x_“).
(2m)9|x]
What are p and 7
Standard method: given i.i.d. samples: xi,..., Xy

> =YX
> i =

(i — ) — )T



Parameter Estimation
Maximum Likelihood Estimation

Assume a parametric model: p(x) = p(x; ), try to find value of 6:

_x=m? .
» Gaussian: p(x) = \/2:7lr7e 202, parametrized by 6 = (u, 0?)
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Assume a parametric model: p(x) = p(x; ), try to find value of 6:

_x=m? .
» Gaussian: p(x) = \/2;7e 202, parametrized by 6 = (u, 0?)

What about discrete probability tables? We make each entry a parameter:
> coin toss: p(head) = Opeaq, p(tail) = Orai1 has parameters 0 = (Oneaq, Oraii)-

Maximum Likelihood Estimation

Given a parametric model p(x;#) and data, D = {xi,...,x,}, estimate parameters as

One = argmax £(0) for  L(0) = p(D;0) = Hp(x,-; 0) data likelihood
0 i=1

i.e. the parameter value that makes the observed data most likely.
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Maximum Likelihood Estimation

The Maximum Likelihood Estimator

O = argmax £(0) for L(A) = Hp(x,-; 6)
0 ,

is equivalent to the maximizer of the log-likelihood,
L(0) := log £(0) = Y _ log p(xi; )
i=1

or the minimizer of its negative.

argmax L£(0) = argmaxlog L£(0) = argmax L(0) = argmin[—L(6)]
0 0 0 0

(mathematically equivalent, but often easier expressions and numerically more stable)
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aximum ikeIihood Estimation

Maximum likelihood estimator for Gaussian data

» Assume: Gaussian distribution with § = (u, 0?)

)= Lo L) =3 W= g Vare?
p(le )—We o ()——;M—nog ixes

» smooth convex function of #. Find minimum, é by setting derivative to 0:
dl . 1 & . L = 1
OZE(Q)ZQZ(X:'—M) = =Y x = *Z
i=1 i=1 i—1

a1 N R o
dr? ~ e LA g > =) i)
=

i=1

]

0=

Maximum likelihood estimate is standard solution. Also works for vectors (a bit more work)

23 /32
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Maximum likelihood estimator for coin toss

» Coin toss: use x = 1 for head and x = 0 for tail
» Assume: true distribution p(x; 6p, 61) with p(X = 1) = 61, p(X = 0) = 6.

p(xi; 00,01) = GX’(Ho)l_X" with convention 0° = 1
L(6o, 01) Z log[07705 ] = ) [xilog 61 + (1 — x;) log 0]

i=1
n

= log 61 Zx,- + log 6o Z(l — Xj)

i=1 i=1

24 /32
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Maximum likelihood estimator for coin toss

» Coin toss: use x = 1 for head and x = 0 for tail
» Assume: true distribution p(x; 6p, 61) with p(X = 1) = 61, p(X = 0) = 6.

p(xi; 00,01) = GX’(Ho)l_X" with convention 0° = 1

n

L(6o, 01) ng[ex'el 1 =) [xilog b1 + (1 — x;) log o]
=l
n

= log 61 Zx,- + log 6o Z(l — Xj)

i=1 i=1

» monotonically increasing function of 6y € [0,1] and 6; € [0, 1]

» maximum at g =1 and 0; =1 — what went wrong?

24 /32
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Maximum likelihood estimator for coin toss

Minimize with side condition 6y + 63 = 1 — use a Lagrangian multiplier!

max L(0p,01), subjecttofp+6;=1
90,916[0 1]

Lagrange conditions: solution (90,é1, 3\) is critical point of the Lagrangian:

£(60,01,\) = L(6g,61) — N0 + 61 — 1)

dg i s A

0= d (90,31, —T.ZX,'_A — 91:§§X,'
de N N

0= 0,9,)\ = = 1*X,' - A — 0o = = ].*X,'
0.0, QO;( ) =320 —x)

0= L (90,(91 —1— ZX, AZ].—X,’) — X:n

i=1

MLE for coin toss is the same as the usual (textbook) estimates: 0 = 13"  [x; = K]
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Maximu

Reminder:

Kullback-Leibler divergence

Measure of (dis)similarity between probability distributions

» discrete:

Dic(qllp) —X;(q( )log 5
» continuous: -

Dralalle) = [~ atx)ios 4

Not a "distance”: not symmetric, no triangular inequality

26 /32
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Let g be the empirical data distribution: g(x) = %27:1 Ox (x) for 6x,(x) = [x = xi].

arggnin Dk (q(x)||p(x; 6))
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Let g be the empirical data distribution: g(x) = %27:1 Ox (x) for 6x,(x) = [x = xi].

q(x)
p(x; 0)

arggnin Dk (q(x)||p(x;0)) = argmmz ) log
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Let g be the empirical data distribution: g(x) = %27:1 Ox (x) for 6x,(x) = [x = xi].

arggnin Dk (q(x)||p(x;0)) = argmm Z ) log p((])((xé)
= argmln Z x) log g(x) — Z q(x) log p(x; 0)

X
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Let g be the empirical data distribution: g(x) = %27:1 Ox (x) for 6x,(x) = [x = xi].

arggnin Dk (q(x)||p(x;0)) = argmm Z ) log p((])((xé)
= argmln Z x) log g(x) — Z q(x) log p(x; 0)
= arg;naxz q(x) log p(x; 0)

X
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Let g be the empirical data distribution: g(x) = %27:1 Ox (x) for 6x,(x) = [x = xi].

arggnin Dk (q(x)||p(x;0)) = argmm Z ) log p((])((xé)
= argmln Z x) log g(x) — Z q(x) log p(x; 0)
= arg;naxz q(x) log p(x; 0)

X

1 n
argmax iE—l og p(xi; 0)
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Let g be the empirical data distribution: g(x) = %27:1 Ox (x) for 6x,(x) = [x = xi].

q(x)
p(x; 0)
= argmln Z x) log g(x) — Z q(x) log p(x; 0)

X

= arg;naxz q(x) log p(x; 0)

X

arggnin Dk (q(x)||p(x;0)) = argmmz ) log

1 n
argmax iE—l og p(xi; 0)

= argmax L(0)
0
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Let g be the empirical data distribution: g(x) = %27:1 Ox (x) for 6x,(x) = [x = xi].

q(x)
p(x;0)

= argmln Z x) log g(x) — Z q(x) log p(x; 0)

X

= arg;naxz q(x) log p(x; 0)

X

1 n
argmax iE—l og p(xi; 0)

arggnin Dk (q(x)||p(x;0)) = argmmz ) log

= argmax L(0)
0

= argmax L(6)
0

Maximum likelihood is equivalent to finding the parameter that minimizes the KL-divergence

between the model distribution and the empirical data distribution. i
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Maximum likelihood is one example of how to estimate an unknown value from data.
We'll see other estimators (MAP, Pseudolikelihood, ...) later.

An estimator is a rule for calculating an estimate, E(S) of a quantity E based on observed
data, S. If S is random, then E(S) is also random.

Properties of estimators: unbiasedness

We can compute the expected value of the estimate, Es[E(S)].

» if Es[E(S)] = E, we call the estimator unbiased. ~ Think of £ as a noisy version of E.
> bias(E) = Es[E(S)] — E
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Maximum likelihood is one example of how to estimate an unknown value from data.
We'll see other estimators (Bayesian, Pseudolikelihood, ...) later.

An estimator is a rule for calculating an estimate, E(S) of a quantity E based on observed
data, S. If S is random, then E(S) is also random.

Properties of estimators: variance

How far is one estimate from the expected value? (E(S) — Es[E(S))?
> Var(E) = Es[( E(S) — Es[E(S)])?]

If Var(E) is large, then the estimate fluctuates a lot for different S.
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Bias-Variance Trade-Off

It's good to have small or no bias, and it's good to have small variance.

High Variance

Low Variance

)

Low Bias

High Bias

36732

If you can't have both at the same time, look for a reasonable trade-off.

Image: adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html
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Estimating an unknown value from data

For data sets of increasing size, 51, 5»,..., we can look a the behavior of the estimates
E(51),E(S2),.... It would be nice if they converged to the true value, E.

Properties of estimators: consistency

We call an estimator £ a consistent estimator of a value E if
Pr{ lim ||[E(S,) —E| >¢} =0
n—o0

(" E(Sn) converges to E in probability™)

Any unbiased estimator is consistent if its variance that converges to 0 as the size of S grows
to infinity. For example: MLE of coin toss, MLE of Gaussian.
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Consistency of Maximum Likelihood

Assume that the observed data comes from a distribution that is in the model class
(and some weak technical conditions are fulfilled).
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Consistency of Maximum Likelihood

Assume that the observed data comes from a distribution that is in the model class
(and some weak technical conditions are fulfilled).

» Maximum likelihood is a consistent estimator.
— in the limit of infinite data, the parameter estimate will converge to the true value.
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Consistency of Maximum Likelihood

Assume that the observed data comes from a distribution that is in the model class
(and some weak technical conditions are fulfilled).

» Maximum likelihood is a consistent estimator.
— in the limit of infinite data, the parameter estimate will converge to the true value.

What if the observed data does not come from a distribution in the model class?

» Maximum likelihood is not consistent (there might not even be a 'correct’ parameter).

» It might not converge to the 'best possible’ parameter, either.

32/32



	Factor Graphs
	Parameter Estimation

