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Factor Graphs Parameter Estimation

Relationship Factorizations to Graphs

I Consider p(a, b, c) = φ(a, b)φ(b, c)φ(c , a)

I What is the graph of the corresponding Markov network?

a

c b

I How about this one? p(a, b, c) = φ(a, b, c)

I The same!

I no one-to-one relation between the graph and the factorization of the potential functions!
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Factor Graphs Parameter Estimation

Relationship Factorizations to Graphs

Why is this a problem?

I Many problems have only small (e.g. pairwise) interactions, e.g. ”friendship” in Facebook

I p(x1, . . . , x6) = 1
Z

∏
i 6=j φij(xi , xj) with xi ∈ {1, . . . , L}

I
(6

2

)
= 15 factors of size 2 → distribution specified by 15L2 values

I corresponding graph: fully connected

I also compatible with, e.g.,

p(x1, . . . , x6) =
1

Z
φ(x1, x2, x3, x4)φ(x1, x2, x5, x6)φ(x3, x4, x5, x6) → 3L4 values!

I or even p(x1, . . . , x6) = 1
Z φ(x1, . . . , x6) → L6 values!

The graph alone does not tell us if the model is tractable or not. So why bother with it???
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Factor Graphs Parameter Estimation

Relationship Potentials to Graphs

I We overcome his by augmenting the notation.

I We introduce an extra node (a square) for each factor in the factorization
The square is connected to all nodes contributing to the factor.

a

c b

a

c b

a

c b

(a) (b) (c)

I (a): Markov Network graph

I (b): Factor graph representation of p(a, b, c) ∝ φ(a, b, c)

I (c): Factor graph representation of p(a, b, c) ∝ φ(a, b)φ(b, c)φ(c , a)

I Different factor graphs can have the same Markov network (b,c)⇒(a)
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Factor Graphs Parameter Estimation

Directed Factor Graphs

I This also works for directed graph / belief network.

I The structure of the factorization is retained:

a

c b

a

c b

I But doesn’t add much information, so typically not used.
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Factor Graphs Parameter Estimation

Factor Graph Definition

Factor Graph

Given a function
f (x1, . . . , xn) =

∏
i

ψi (Xi ),

the factor graph (FG) has a node (represented by a square) for each factor ψi (Xi ) and a
variable node (represented by a circle) for each variable xj .

When used to represent a
distribution

p(x1, . . . , xn) =
1

Z

∏
i

ψi (Xi ),

a normalization constant is assumed.
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Factor Graphs Parameter Estimation

Bipartite graph

Bipartite

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such
that every edge connects a vertex in U to one in V

a

c b

I Factor graphs are bipartite graphs. Edge are always between a variables node (circle) and
a factor node (square).
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Factor Graphs Parameter Estimation

Factor graph: example 1

I Question: which factorization ?

I Answer:
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Factor Graphs Parameter Estimation

Factor graph: example 1

I Question: which factorization ?

I Answer:

p(x) =
1

Z
fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3)
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Factor Graphs Parameter Estimation

Factor graph: example 2

I Question: Which factor graph ?

p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2)

I Answer:
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Factor Graphs Parameter Estimation

Example: A Factor Graph and Energy Function for Image Denoising

X : Y :

p(x , y) =
1

Z
e−E(x ,y) E (x , y) =

∑
i∈{pixels}

Ei (xi , yi ) +
∑

(i ,j)∈{edges}

Eij(yi , yj)

Pairwise Markov Random Field (MRF):

I Ei (xi , yi ) = α(xi − yi )
2 outputs are likely similar to inputs

I Eij(yi , yj) = β|yi − yj | neighboring outputs are likely similar to each other → smooth output

I α ∈ R and β ∈ R can be adjusted per image
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Factor Graphs Parameter Estimation

Example: A Factor Graph and Energy Function for Human Pose Estimation

. . .

Ytop

Yhead

YtorsoYrarm

Yrhnd

Yrleg

Yrfoot Ylfoot

Ylleg

Ylarm

Ylhnd

X

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

F
(1)

top

F
(2)

top,head

p(y |x) =
1

Z
e−E(y ;x) E (y ; x) =

∑
i∈{head,torso,. . . }

Ei (yi ; xi ) +
∑
(i ,j)

Eij(yi , yj)

I unary factors (depend on one label): appearance
I e.g. Ehead(y ; x) ”Does location y in image x look like a head?”

I pairwise factors (depend on two labels): geometry
I e.g. Ehead-torso(yhead, ytorso) ”Is location yhead above location ytorso?”
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Factor Graphs Parameter Estimation

Example: A Factor Graph and Energy Function for Image Segmentation

X : Y :

p(y |x) =
1

Z
e−E(y ;x) E (y ; x) =

∑
i∈{pixels}

Ei (yi ; xi ) +
∑

(i ,j)∈{edges}

Eij(yi , yj)

Energy function components (”Ising” model):

I Ei (yi = 1, xi ) =

{
low if xi is the right color, e.g. brown

high otherwise
Ei (yi = 0, xi ) = −Ei (yi = 1, xi )

I Ei (yi , yj) =

{
low if yi = yj

high otherwise

higher probability if neighbors have same labels
→ smooth labelings
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Factor Graphs Parameter Estimation

Example: A Factor Graph and Energy Function for Graph Matching

G = (V , E)
X :


x1a x1b x1c x1d

x2a x2b x2c x2d

x3a x3b x3c x3d

x4a x4b x4c x4d

 ∈ {0, 1}|V |×|V ′|
(which left node matches to which right node)

G ′ = (V ′, E ′)

p1(x) =
1

Z
e−E1(x) E1(x) =


∑

(i,j)∈V×V ′
xij |deg(vi )− deg(vj )|) if x is a valid assignment,

∞ otherwise.

p2(x) =
1

Z
e−αE1(x)−βE2(x) E2(x) =


∑

(i,j,k,l)∈V×V×V ′×V ′
xikxjl |dist(vi , vj )− dist(v ′k , v

′
l )| if x is valid,

∞ otherwise.

p3(x) =
1

Z
e−αE1(x)−βE2(x)−γE3(x) E3(x) =


∑

(i,j,k,r,s,t)∈V×V×V×V ′×V ′×V ′
xirxjsxkt |∠(vi , vj , vk )− ∠(v ′r , v

′
s , v
′
t )| if x is valid,

∞ otherwise.

Assign higher probability if similarity or geometry matches well.
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Factor Graphs Parameter Estimation

Summary (so far)

The graphs of graphical models represent families of probability distributions graphically:

I Bayesian networks: directed acyclic graphs, product of conditional distribution
I by default, arrows have no causal interpretation
I but: causal Bayesian networks also exist

I Markov networks: undirected, local cliques of dependent variables
I Factor graphs

I makes the factorization explicit
I not a larger class of distributions, “just” a different way of drawing the graph

I for modeling undirected models, thinking in terms of factor graphs is very useful
I very often only a few factor ’types’, evaluated on different subsets of variables

To specify an actual distribution, we also have to provide:
I for directed models: the conditional tables
I for undirected models: the potentials

Often, these are learned from training data (while the graph structure is fixed manually).
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Factor Graphs Parameter Estimation

Learning from data

For many processes, we are not given the probabilities/factor values, but we observe data:
D = {x1, . . . , xn}.

Probability Estimation

For a given model class, probability estimation is the task of identifying the
probability distribution from observed data.

General assumption:

I training data is sampled independently from a distribution of interest (i.i.d.)

17 / 32



Factor Graphs Parameter Estimation

Learning from data

Example: coin toss

You repeatedly flip a coin. xi ∈ {head, tail} is the output of the i-th repeat.
What are the coin’s probabilities p(head) and p(tail)?

Standard method:
I we write θhead = p(head) and θtail = p(tail) (one is enough: θtail = 1− θhead)

I we estimate a value for θhead from the data as

θ̂head =
number of head in the observations

total number of observations
=

1

n

n∑
i=1

Jxi = headK

where J·K are Iverson brackets: JPK =

{
1 if condition P is true,

0 otherwise.

I note: the ˆ of θ̂head indicates that this is an estimate based on data
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Factor Graphs Parameter Estimation

Learning from data

Example: Gaussians

You know that a random variable has Gaussian distribution,

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

What are µ and σ?

Standard method: given i.i.d. samples: x1, . . . , xn
I µ̂ = 1

n

∑n
i=1 xi

I σ̂2 = 1
n

∑n
i=1(xi − µ̂)2
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Factor Graphs Parameter Estimation

Learning from data

Example: Gaussians

You know that a set of d random variables x = (x1, . . . , xd) have a jointly
Gaussian distribution,

p(x) =
1√

(2π)d |Σ|
e−

1
2

(x−µ)>Σ−1(x−µ).

What are µ and Σ?

Standard method: given i.i.d. samples: x1, . . . , xn
I µ̂ = 1

n

∑n
i=1 xi

I Σ̂ = 1
n

∑n
i=1(xi − µ̂)(xi − µ̂)>
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Factor Graphs Parameter Estimation

Maximum Likelihood Estimation

Assume a parametric model: p(x) = p(x ; θ), try to find value of θ:

I Gaussian: p(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 , parametrized by θ = (µ, σ2)

What about discrete probability tables? We make each entry a parameter:

I coin toss: p(head) = θhead, p(tail) = θtail has parameters θ = (θhead, θtail).

Maximum Likelihood Estimation

Given a parametric model p(x ; θ) and data, D = {x1, . . . , xn}, estimate parameters as

θ̂ML = argmax
θ
L(θ) for L(θ) = p(D; θ) =

n∏
i=1

p(xi ; θ) data likelihood

i.e. the parameter value that makes the observed data most likely.
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Factor Graphs Parameter Estimation

Maximum Likelihood Estimation

The Maximum Likelihood Estimator

θ̂ML = argmax
θ
L(θ) for L(θ) =

n∏
i=1

p(xi ; θ)

is equivalent to the maximizer of the log-likelihood,

L(θ) := logL(θ) =
n∑

i=1

log p(xi ; θ)

or the minimizer of its negative.

argmax
θ
L(θ) = argmax

θ
logL(θ) = argmax

θ
L(θ) = argmin

θ
[−L(θ)]

(mathematically equivalent, but often easier expressions and numerically more stable)
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Maximum Likelihood Estimation

Maximum likelihood estimator for Gaussian data

I Assume: Gaussian distribution with θ = (µ, σ2)

p(xi ; θ) =
1√

2πσ2
e−

(xi−µ)2

2σ2 L(θ) = −
n∑

i=1

(xi − µ)2

2σ2
− n log

√
2πσ2

I smooth convex function of θ. Find minimum, θ̂, by setting derivative to 0:

0 =
dL

dµ
(θ̂) =

1

σ̂2

n∑
i=1

(xi − µ̂) ⇒ nµ̂ =
n∑

i=1

xi ⇒ µ̂ =
1

n

n∑
i=1

xi

0 =
dL

dσ2
=

1

2σ̂4

n∑
i=1

(xi − µ̂)2 − n

2σ̂2
⇒ σ̂2 =

1

n

n∑
i=1

(xi − µ̂)2

Maximum likelihood estimate is standard solution. Also works for vectors (a bit more work)
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Maximum likelihood estimator for coin toss
I Coin toss: use x = 1 for head and x = 0 for tail

I Assume: true distribution p(x ; θ0, θ1) with p(X = 1) = θ1, p(X = 0) = θ0.

p(xi ; θ0, θ1) = θxi1 (θ0)1−xi with convention 00 = 1

L(θ0, θ1) =
n∑

i=1

log[θxi1 θ
1−xi
0 ] =

n∑
i=1

[xi log θ1 + (1− xi ) log θ0]

= log θ1

n∑
i=1

xi + log θ0

n∑
i=1

(1− xi )

I monotonically increasing function of θ0 ∈ [0, 1] and θ1 ∈ [0, 1]

I maximum at θ0 = 1 and θ1 = 1 → what went wrong?
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Factor Graphs Parameter Estimation

Maximum likelihood estimator for coin toss

Minimize with side condition θ0 + θ1 = 1 → use a Lagrangian multiplier!

max
θ0,θ1∈[0,1]

L(θ0, θ1), subject to θ0 + θ1 = 1

Lagrange conditions: solution (θ̂0, θ̂1, λ̂) is critical point of the Lagrangian:

L(θ0, θ1, λ) = L(θ0, θ1)− λ(θ0 + θ1 − 1)

0 =
dL

dθ1
(θ̂0, θ̂1, λ̂) =

1

θ̂1

n∑
i=1

xi − λ → θ̂1 =
1

λ̂

n∑
i=1

xi

0 =
dL

dθ0
(θ̂0, θ̂1, λ̂) =

1

θ̂0

n∑
i=1

(1− xi )− λ → θ̂0 =
1

λ̂

n∑
i=1

(1− xi )

0 =
dL

dλ
(θ̂0, θ̂1, λ̂) = 1− 1

λ̂

n∑
i=1

xi −
1

λ̂

n∑
i=1

(1− xi ) → λ̂ = n

MLE for coin toss is the same as the usual (textbook) estimates: θk = 1
n

∑n
i=1Jxi = kK
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Maximum Likelihood Estimation: Alternative Explanation

Reminder:

Kullback-Leibler divergence

Measure of (dis)similarity between probability distributions

I discrete:

DKL(q‖p) =
∑
x∈X

q(x) log
q(x)

p(x)

I continuous:

DKL(q‖p) =

∫ ∞
−∞

q(x) log
q(x)

p(x)

Not a ”distance”: not symmetric, no triangular inequality
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Factor Graphs Parameter Estimation

Let q be the empirical data distribution: q(x) = 1
n

∑n
i=1 δxi (x) for δxi (x) = Jx = xiK.

argmin
θ

DKL(q(x)‖p(x ; θ))

= argmin
θ

∑
x

q(x) log
q(x)

p(x ; θ)

= argmin
θ

∑
x

q(x) log q(x)−
∑
x

q(x) log p(x ; θ)

= argmax
θ

∑
x

q(x) log p(x ; θ)

= argmax
θ

1

n

n∑
i=1

log p(xi ; θ)

= argmax
θ

L(θ)

= argmax
θ
L(θ)

Maximum likelihood is equivalent to finding the parameter that minimizes the KL-divergence
between the model distribution and the empirical data distribution.
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Factor Graphs Parameter Estimation

Estimating an unknown value from data

Maximum likelihood is one example of how to estimate an unknown value from data.
We’ll see other estimators (MAP, Pseudolikelihood, . . . ) later.

Estimators

An estimator is a rule for calculating an estimate, Ê (S), of a quantity E based on observed
data, S . If S is random, then Ê (S) is also random.

Properties of estimators: unbiasedness

We can compute the expected value of the estimate, ES [Ê (S)].

I if ES [Ê (S)] = E , we call the estimator unbiased. Think of Ê as a noisy version of E .

I bias(Ê ) = ES [Ê (S)]− E
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Estimating an unknown value from data

Maximum likelihood is one example of how to estimate an unknown value from data.
We’ll see other estimators (Bayesian, Pseudolikelihood, . . . ) later.

Estimators

An estimator is a rule for calculating an estimate, Ê (S), of a quantity E based on observed
data, S . If S is random, then Ê (S) is also random.

Properties of estimators: variance

How far is one estimate from the expected value? (Ê (S)− ES [Ê (S))2

I Var(Ê ) = ES [
(
Ê (S)− ES [Ê (S)]

)2
]

If Var(Ê ) is large, then the estimate fluctuates a lot for different S .
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Factor Graphs Parameter Estimation

Bias-Variance Trade-Off

It’s good to have small or no bias, and it’s good to have small variance.

If you can’t have both at the same time, look for a reasonable trade-off.
Image: adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html 30 / 32
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Estimating an unknown value from data

For data sets of increasing size, S1, S2, . . . , we can look a the behavior of the estimates
Ê (S1), Ê (S2), . . . . It would be nice if they converged to the true value, E .

Properties of estimators: consistency

We call an estimator Ê a consistent estimator of a value E if

Pr{ lim
n→∞

‖E (Sn)− E | > ε} = 0

(”E (Sn) converges to E in probability”)

Any unbiased estimator is consistent if its variance that converges to 0 as the size of S grows
to infinity. For example: MLE of coin toss, MLE of Gaussian.
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Consistency of Maximum Likelihood

Assume that the observed data comes from a distribution that is in the model class
(and some weak technical conditions are fulfilled).

I Maximum likelihood is a consistent estimator.
→ in the limit of infinite data, the parameter estimate will converge to the true value.

What if the observed data does not come from a distribution in the model class?

I Maximum likelihood is not consistent (there might not even be a ’correct’ parameter).

I It might not converge to the ’best possible’ parameter, either.

32 / 32



Factor Graphs Parameter Estimation

Consistency of Maximum Likelihood

Assume that the observed data comes from a distribution that is in the model class
(and some weak technical conditions are fulfilled).

I Maximum likelihood is a consistent estimator.
→ in the limit of infinite data, the parameter estimate will converge to the true value.

What if the observed data does not come from a distribution in the model class?

I Maximum likelihood is not consistent (there might not even be a ’correct’ parameter).

I It might not converge to the ’best possible’ parameter, either.

32 / 32



Factor Graphs Parameter Estimation

Consistency of Maximum Likelihood

Assume that the observed data comes from a distribution that is in the model class
(and some weak technical conditions are fulfilled).

I Maximum likelihood is a consistent estimator.
→ in the limit of infinite data, the parameter estimate will converge to the true value.

What if the observed data does not come from a distribution in the model class?

I Maximum likelihood is not consistent (there might not even be a ’correct’ parameter).

I It might not converge to the ’best possible’ parameter, either.

32 / 32


	Factor Graphs
	Parameter Estimation

