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1 Bayes Classifier

In the lecture we saw that the Bayes classifier is
c*(r) 1= argmax,cy p(y|z). (1)

a) Which of these decision functions is equivalent to ¢*?
e ci(7) := argmax, p() e c3(v) := argmax, p(v,y)

e ¢5(r) i= argmax, p(y) e i) = argmax, p(xly)

p(+1\x)]

For Y = {—1,+1}, we can express the Bayes classifier as ¢*(x) = sign[log o)

b) Which of the following expressions are equivalent to ¢*?

o c5(x) 1= sign[{EEE1Y) ® co(x) := sign[p(+1]z) — p(—1|z)]

o co() :=signflog p(+1]a) +log p(—1|x) * cu(e) = sign[fEEy — 1

e c;(x) := sign[log p(+1|x) — log p(—1|x)] o o) = sign[% — 1]

e cg(x) :=sign[logp(z,+1) —log p(x, —1)] e ci5(x) :=sign[log ggﬂﬂ; + log %}

2 Gaussian Discriminant Analysis

Gaussian Discriminant Analysis (GDA) is an easy-to-compute method for generative probabilistic classification.
For a training set D = {(z*,y'),..., (x™, y")} set
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and define
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p(zly) = Norrrss eXP(—§($ — ) X (T — ) (3)

a) Show for binary classification tasks: GDA leads to a linear decision rule, regardless of what p(y) is.
b) GDA is popular when there are many classes but only few examples for each class. Can you imagine why?

3 Robustness of the Perceptron

Look at the dataset with the following three points:

D= { (@ 1), ((j) 1), ((Z) 1)} C R x {£1}.

e For any 0 < p < 1, find values for @ and b such that the Perceptron algorithm converges to a correct
classifier with robustness p.

e What’s the maximal robustness you can achieve for any choice of a and b?



4 Perceptron Training as Convex Optimization

The following form of Perceptron training can be interpreted as optimizing a convex, but non-differentiable,
objective function by stochastic gradient descent. What is the objective? What is the stepsize rule? Discuss
advantages and shortcomings of this interpretation.

Algorithm 1 Randomized Perceptron Training

input linearly separable training set D = {(z!,%'),..., (2", y")} C R? x {£1}
1: wy <0
2: fort=1,...,7 do
3:  (z,y)  random example from D

4:  if y(w,, x) <0 then
5: Wey1 $ Wy + Yx

6: else

T Wig1 < Wy

8 end if

9: end for

output wryq

5 Hard-Margin SVM Dual

Compute the dual optimization problem to the hard-margin SVM training problem:

1 9 : ,
min —l|w subject to  y'((w,x") +b) > 1, fori=1,...,n.
Lmin ol subject to y((w,a®) +8) >

6 Missing Proofs

e Let fi,..., fx be differentiable at wy and let f(w) = max{fi(w),..., fx(w)}. Let k be any index with
fr(wo) = f(wo). Show that any v that is a subgradient of f; at wy is also a subgradient of f at wy.

e Let f be a convex function and denote by w* a minimum of f. Let w;y1 = w;—mnv, where v is a subgradient
of the f at w;.

Show: there exists a stepsize 7 such that ||w.r1 — w*|| < [|Jwy — w*||, except if wy is a minimum already.

e In your above proof, w* can be any minimum of f. Let w] and wj be two different minima, then w; will
converge towards both of them. Isn’t this impossible?

Note: this is not a trivial question: convex functions can have multiple global minima, e.g. f(w) = 0 has
infinitely many.

e Let g(a) = maxgeo f(0) + SF, a;g:(A) be the dual function of an optimization problem.

Show: ¢ is always a convex function w.r.t. , even if the original optimization problem was not convex.

7 Practical Experiments I1I

e Pick one more training methods from the previous sheet and implement it.
e In addition, implement a linear support vector machine (SVM) with training by the subgradient method.
e What error rates do both methods achieve on the datasets from the previous sheet?

e For the wine data, make a plot of the SVM'’s objective values and the Euclidean distance to the optimium
(after you computed it in an earlier run) after each iteration.



