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Nonlinear Classifiers

What, if a linear classifier is really not a good choice?

Change the data representation, e.g. Cartesian → polar coordinates
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Nonlinear Classifiers

Definition (Max-margin Generalized Linear Classifier)

Let C > 0. Assume a necessarily linearly separable training set

D = {(x1, y1), . . . xn , yn)} ⊂ X × Y.

Let φ : X → H be a feature map from X into a Hilbert space H.

Then we can form a new training set

Dφ = { (φ(x1), y1), . . . , (φ(xn), yn) } ⊂ H × Y.

The maximum-(soft)-margin linear classifier in H,

g(x) = sign[〈w, φ(x)〉H + b]

for w ∈ H and b ∈ R is called max-margin generalized linear classifier.

It is still linear w.r.t w, but (in general) nonlinear with respect to x.
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Example (Polar coordinates)

Left: dataset D for which no good linear classifier exists.
Right: dataset Dφ for φ : X → H with X = R2 and H = R2

φ(x, y) = (
√

x2 + y2, arctan y
x ) (and φ(0, 0) = (0, 0))

φ−→

Any classifier in H induces a classifier in X .
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Other popular feature mappings, φ

Example (d-th degree polynomials)

φ :
(
x1, . . . , xn

)
7→
(
1, x1, . . . , xn , x2

1 , . . . , x2
n , . . . , xd

1 , . . . , xd
n

)
Resulting classifier: d-th degree polynomial in x.g(x) = sign f (x) with

f (x) = 〈w, φ(x)〉 =
∑

j
wjφ(x)j =

∑
i
aixi +

∑
ij

bijxixj + . . .

Example (Distance map)

For a set of prototype p1, . . . , pN ∈ H:

φ : ~x 7→
(
e−‖~x−~p1‖2

, . . . , e−‖~x−~pN‖2
)

Classifier: combine weights from close enough prototypes
g(x) = sign〈w, φ(x)〉 = sign

∑n
i=1

aie−‖~x−~pi‖2
.

5 / 32



(Generalized) Maximum Margin Classifiers – Optimization II

min
w∈Rd ,b∈R,ξ∈Rn

1
2‖w‖

2 + C
n∑

i=1
ξi

subject to

yi〈w, φ(x i)〉 ≥ 1− ξi , for i = 1, . . . ,n,
ξi ≥ 0. for i = 1, . . . ,n.

How to solve numerically?
• off-the-shelf Quadratic Program (QP) solver
only for small dimensions and training sets (a few hundred),
• variants of gradient descent,
high dimensional data, large training sets (millions)
• by convex duality,
for very high dimensional data and not so many examples (d � n)
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Subgradient-Based Optimization

min
w∈Rd ,b∈R,ξ∈Rn

1
2‖w‖

2 + C
n∑

i=1
ξi

subject to

yi(〈w, x i〉+ b) ≥ 1− ξi , and ξi ≥ 0, for i = 1, . . . ,n.

For any fixed (w, b) we can find the optimal ξ1, . . . , ξn :
ξi = max{ 0, 1− yi(〈w, xi〉+ b) }.

Plug into original problem:

min
w∈Rd ,b∈R

1
2‖w‖

2 + C
n∑

i=1
max{ 0, 1− yi(〈w, xi〉+ b)}.
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SVM Training in the Primal

min
w∈Rd ,b∈R

1
2‖w‖

2 + C
n∑

i=1
max{ 0, 1− yi(〈w, xi〉+ b)}.

• unconstrained optimization problem
• convex

I 1
2‖w‖

2 is convex (differentiable with Hessian = Id < 0)
I linear/affine functions are convex
I pointwise max over convex functions is convex.
I sum of convex functions is convex.

• not differentiable!

We can’t use gradient descent, since some points have no gradients!
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Subgradients

Definition: Let f : Rd → R be a convex function. A vector v ∈ Rd is
called a subgradient of f at w0, if

f (w) ≥ f (w0) + 〈v,w − w0〉 for all w.

f(w)

w

A general convex f can have more than one subgradient at a position.
• We write ∇f (w0) for the set of subgradients of f at w0,
• v ∈ ∇f (w0) indicates that v is a subgradient of f at w0.
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Subgradients

• For differentiable f , the gradient v = ∇f (w0) is the only subgradient.
f(w)

w
w0

f(w0)
f(w0)+⟨v,w-w 0⟩

• If f1, . . . , fK are differentiable at w0 and

f (w) = max{f1(w), . . . , fK (w)},

then v = ∇fk(w0) is a subgradient of f at w0, where k any index for
which fk(w0) = f (w0).

• Subgradients are only well defined for convex functions!
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Illustration: Optimization using Gradients

f (w1,w2) = (w1)2 + 2(w2)2 strictly convex, differentiable

Gradient of a differentiable function is a descent direction:
• for any wt there exists an η such that f (wt + ηv) < f (wt)
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Illustration: Optimization using Subgradients?

f (w1,w2) = |w1|+ 2|w2| convex, not differentiable

Subgradient might not be a not a descent direction:
• for wt we might have f (wt + ηv) ≥ f (wt) for all η ∈ R

• but: there is an η that brings us closer to the optimum,
‖wt+1 − w∗‖ < ‖wt − w∗‖ (Proof: exercise...)
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Subgradient Method (not Descent!)

input step sizes η1, η2, . . .
1: w1 ← 0
2: for t = 1, . . . ,T do
3: v ← a subgradient of L at wt
4: wt+1 ← wt − ηtv
5: end for
output wt with smallest values L(wt) for t = 1, . . . ,T

Stepsize rules: how to choose η1, η2, . . . ,?
• ηt = η constant: will get us (only) close to the optimum
• decrease slowly, but not too slowly: converges to optimum

∞∑
t=1

ηt =∞
∞∑

t=1
(ηt)2 <∞ e.g. ηt = η

t + t0

How to choose overall η? trial-and-error
• Try different values, see which one decreases the objective (fastest)
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Stochastic Optimization

Many objective functions in ML contain a sum over all training exampes:

LLogReg(w) =
n∑

i=1
log(1 + exp(−yi(〈w, xi〉+ b))),

LSVM (w) = 1
2‖w‖

2 + C
n∑

i=1
max{ 0, 1− yi(〈w, xi〉+ b)}.

Computing the gradient or subgradient scales like O(nd),
• d is the dimensionality of the data
• n is the number of training examples.

Both d and n can be big (millions). What can we do?
• we’ll not get rid of O(d), since w ∈ Rd ,
• but we can get rid of the scaling with O(n) for each update!
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Let f (w) =
n∑

i=1
fi(w), with convex, differentiable f1, . . . , fn .

Stochastic Gradient Descent

input step sizes η1, η2, . . .
1: w1 ← 0
2: for t = 1, . . . ,T do
3: i ← random index in 1, 2, . . . ,n
4: v ← n∇fi(wt)
5: wt+1 ← wt − ηtv
6: end for
output wT , or average 1

T−T0

∑T
t=T0 wt

• Each iteration takes only O(d),
• Gradient is "wrong" is each step, but correct in expectation.
• No line search, since evaluating f (w − ηv) would be O(nd),
• Objective does not decrease in every step,
• Converges to optimum if ηt is square summable, but not summable.16 / 32



Let f (w) =
n∑

i=1
fi(w), with convex f1, . . . , fn .

Stochastic Subgradient Method

input step sizes η1, η2, . . .
1: w1 ← 0
2: for t = 1, . . . ,T do
3: i ← random index in 1, 2, . . . ,n
4: v ← n times a subgradient of fi at wt
5: wt+1 ← wt − ηtv
6: end for
output wT , or average 1

T−T0

∑T
t=T0 wt

• Each iteration takes only O(d),
• Converges to optimum if ηt is square summable, but not summable.
• Even better: pick not completely at random but go in epochs:
randomly shuffle dataset, go through all examples, reshuffle, etc.
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Stochastic Primal SVMs Training

LSVM (w, b) =
n∑

i=1

( 1
2n ‖w‖

2 + C max{ 0, 1− yi(〈w, xi〉+ b)}
)
.

input step sizes η1, η2, . . . or step size rule, such as ηt = η
t+t0

1: (w1, b1)← (0, 0)
2: for t = 1, . . . ,T do
3: pick (x, y) from D (randomly, or in epochs)
4: if y〈x,w〉+ b ≥ 1 then
5: wt+1 ← (1− ηt)wt
6: else
7: wt+1 ← (1− ηt)wt + nCηtyx
8: bt+1 ← ηtnCy
9: end if

10: end for
output wT , or average 1

T−T0

∑T
t=T0 wt

State-of-the-art in SVM training, but setting stepsizes can be painful.
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SVM Optimization by Dualization

Back to the original formulation

min
w∈Rd ,b∈R,ξ∈Rn

1
2‖w‖

2 + C
n∑

i=1
ξi

subject to, for i = 1, . . . ,n,

yi(〈w, x i〉+ b) ≥ 1− ξi , and ξi ≥ 0.

Convex optimization problem: we can study its dual problem.
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General Principle of Dualization

Assume a constrained optimization problem:
min

θ∈Θ⊂RK
f (θ)

subject to

g1(θ) ≤ 0, g2(θ) ≤ 0, . . . , gk(θ) ≤ 0.

We define the Lagrangian, that combines objective and constraints
L(θ, α) = f (θ) + α1g1(θ) + · · ·+ αkgk(θ)

with Lagrange multipliers, α1, . . . , αk ≥ 0. Note:

max
α1≥0,...,αk≥0

L(θ, α) =
{

f (θ) if g1(θ) ≤ 0, g2(θ) ≤ 0, . . . , gk(θ) ≤ 0
∞ otherwise.

Any optimal solution, θ, for minθ∈Θ maxα≥0 L(θ, α) is also optimal for
the original constrained problem.
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General Principle of Dualization

Theorem (Special Case of Slater’s Condition)

If f is convex, g1, . . . , gk are affine functions, and there exists at least one
point θ ∈ relint(Θ) that is feasible (i.e. gi(θ) ≤ 0 for i = 1, . . . , k). Then

min
θ∈Θ

max
α≥0

L(θ, α) = max
α≥0

min
θ∈Θ

L(θ, α)

Call f (θ) the primal and h(α) = minθ∈Θ L(θ, α) be the dual function.

The theorem states that minimizing the primal f (θ) (with constraints
given by the gk) is equivalent to maximizing its dual h(α) (with α ≥ 0).

min
θ∈RK

f (θ) = max
α∈Rk

+

h(α)

21 / 32



General Principle of Dualization

Theorem (Special Case of Slater’s Condition)

If f is convex, g1, . . . , gk are affine functions, and there exists at least one
point θ ∈ relint(Θ) that is feasible (i.e. gi(θ) ≤ 0 for i = 1, . . . , k). Then

min
θ∈Θ

max
α≥0

L(θ, α) = max
α≥0

min
θ∈Θ

L(θ, α)

Call f (θ) the primal and h(α) = minθ∈Θ L(θ, α) be the dual function.

The theorem states that minimizing the primal f (θ) (with constraints
given by the gk) is equivalent to maximizing its dual h(α) (with α ≥ 0).

min
θ∈RK

f (θ) = max
α∈Rk

+

h(α)

21 / 32



Dualizing of the SVM optimization problem

The SVM optimization problem fulfills the conditions of the theorem.

min
w∈Rd ,b∈R,ξ∈Rn

1
2‖w‖

2 + C
n∑

i=1
ξi

subject to, for i = 1, . . . ,n,

yi(〈w, x i〉+ b) ≥ 1− ξi , and ξi ≥ 0.

We can compute its minimal value as maxα≥0,β≥0 h(α, β) with

h(α, β) = min
(w,b)

1
2‖w‖

2+C
∑

i
ξi +

∑
i
αi(1−ξi−yi(〈w, x i〉+b)−

∑
i
βiξi

(Blackboard...)
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Dualizing of the SVM optimization problem

In a minimum w.r.t. (w, b):

0 = ∂

∂wL(w, b, ξ, α, β) = w −
∑

i
αiyix i ⇒ w =

∑
i
αiyix i

0 = ∂

∂bL(w, b, ξ, α, β) =
∑

i
αiyi

0 = ∂

∂ξi
L(w, b, ξ, α, β) = C − αi − βi

Insert new constraints into objective:

max
α≥0

1
2‖
∑

i
αiyix i‖2 +

∑
i
αi −

∑
i
αiyi

〈∑
j
αjyjx j , x i〉

23 / 32



SVM Dual Optimization Problem

max
α≥0

−1
2
∑
i,j
αiαjyiyj〈x i , x j〉+

∑
i
αi

subject to
∑

i
αiyi = 0 and 0 ≤ αi ≤ C , for i = 1, . . . ,n.

• Examples x i with αi 6= 0 are called support vectors.
• From the coefficients α1, . . . , αn we can recover the optimal w:

w =
∑

i
αiyix i

b = 1− yi〈x i ,w〉 for any i with 0 < αi < C
(more complex rule for b if not such i exists).
• The prediction rule becomes

g(x) = sign
(
〈w, x〉+ b

)
= sign

( n∑
i=1

αiyi〈xi , x〉+ b
)
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SVM Dual Optimization Problem

max
α≥0

−1
2
∑
i,j
αiαjyiyj〈x i , x j〉+

∑
i
αi

subject to∑
i
αiyi = 0 and 0 ≤ αi ≤ C , for i = 1, . . . ,n.

Why solve the dual optimization problem?

• fewer unknowns: α ∈ Rn instead of (w, b, ξ) ∈ Rd+1+n

• less storage when d � n:
(〈x i , x j〉)i,j ∈ Rn×n instead of (x1, . . . , xn) ∈ Rn×d

• Kernelization
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Kernelization

Definition (Positive Definite Kernel Function)

Let X be a non-empty set. A function k : X × X → R is called positive
definite kernel function, if the following conditions hold:
• k is symmetric, i.e. k(x, x ′) = k(x ′, x) for all x, x ′ ∈ X .
• For any finite set of points x1, . . . , xn ∈ X , the kernel matrix

Kij = (k(xi , xj))i,j (1)

is positive semidefinite, i.e. for all vectors t ∈ Rn

n∑
i,j=1

tiKijtj ≥ 0. (2)
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Kernelization

Lemma (Kernel function)

Let φ : X → H be a feature map into a Hilbert space H. Then the
function

k(x, x̄) =
〈
φ(x), φ(x̄)

〉
H

is a positive definite kernel function.

Proof.
• symmetry: k(x, x̄) = 〈φ(x), φ(x̄)〉H = 〈φ(x̄), φ(x)〉H = k(x̄, x)

• positive definiteness: x1, . . . , xn ∈ X , and arbitrary t ∈ Rn , then
n∑

i,j=1
tik(xi , xj)tj =

n∑
i,j=1

titj〈φ(x i), φ(x j)〉H

=
〈∑

i
tiφ(x i),

∑
j

tjφ(x j)
〉
H

=
∥∥∥∑

i
tiφ(x i)

∥∥∥2

H
≥ 0.

�
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Theorem (Mercer’s Condition)

Let X be non-empty set. For any positive definite kernel function
k : X × X → R, there exists a Hilbert space H with inner product
〈· , ·〉H, and a feature map φ : X → H such that

k(x, x̄) =
〈
φ(x), φ(x̄)

〉
H.

Proof. later, in more refined form

Note: H and φ are not unique, e.g.
k(x, x̄) = 2xx̄

• H1 = R, φ1(x) =
√

2x, 〈φ1(x), φ1(x̄)〉H1 = 2xx̄

• H2 = R2, φ2(x) =
(

x
−x

)
, 〈φ1(x), φ2(x̄)〉H2 = 2xx̄

• H3 = R3, φ3(x) =

x
0
x

, 〈φ3(x), φ3(x̄)〉H3 = 2xx̄, etc.
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Definition (Reproducing Kernel Hilbert Space)

Let H be a Hilbert space of functions f : X → R. A kernel
k : X × X → R is called reproducing kernel, if

f (x) = 〈k(x, ·), f (·)〉H for all f ∈ H.

H is then called a reproducing kernel Hilbert space (RKHS).

Theorem (Moore-Aronszajn Theorem)

Let k : X × X → R be a positive definite kernel on X . Then there is a
unique Hilbert space of functions, f : X → R, for which k is a
reproducing kernel.
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Proof sketch. One can construct the space explicitly: Set

Hpre = span{ k(·, x) for x ∈ X },

i.e., for every f ∈ Hpre exist x1, . . . , xm ∈ X and α1, . . . , αm ∈ R, with

f (·) =
m∑

i=1
αik(·, x i).

We define an inner product as

〈f , g〉 =
〈∑

i
αik(·, x i),

∑
j
ᾱjk(·, x̄ j)

〉
:=
∑
i,j
αi ᾱjk(x i , x̄ j).

Make Hpre into Hilbert space H by enforcing completeness.

Complete proof: [B. Schölkopf, A. Smola, "Learning with Kernels", 2001].
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Let
• D = {(x1, y1), . . . , (xn , yn) } ⊂ X × {±1} training set
• k : X × X → R be a pos.def. kernel with feature map φ : X → H.

Support Vector Machine in Kernelized Form
For any C > 0, the max-margin classifier for the feature map φ is

g(x) = sign f (x) with f (x) =
∑

i
αik(x i , x) + b,

for coefficients α1, . . . , αn obtained by solving

min
α1,...,αn∈R

−1
2

n∑
i,j=1

αiαjyiyjk(x i , x j) +
n∑

i=1
αi

subject to
∑

i
αiyi = 0 and 0 ≤ αi ≤ C , for i = 1, . . . ,n.

Note: we don’t need to know φ or H, explicitly. Knowing k is enough.
31 / 32



Useful and Popular Kernel Functions

For x, x̄ ∈ Rd :
• k(x, x̄) = (1 + 〈x, x ′〉)p for p ∈ N (polynomial kernel)

f (x) =
∑

i αiyik(x i , x) = polynomial of degree d

• k(x, x̄) = exp(−λ‖x − x̄‖2) for λ > 0 (Gaussian or RBF kernel)

f (x) =
∑

i αiyi exp(−λ‖x i − x‖2) = weighted/soft nearest neighbor

For x, x̄ histograms with d bins:
• k(x, x̄) =

∑d
j=1 min(xj , x̄j) histogram intersection kernel

• k(x, x̄) =
∑d

j=1
xj x̄j

xj+x̄j
χ2 kernel

• k(x, x̄) = exp
(
− λ

∑d
j=1

(xj−x̄j)2

xj+x̄j

)
exponentiated χ2 kernel

Generally: interpret kernel function as a similarly measure.
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