Statistical Machine Learning

Christoph Lampert

I ANTUN AUSTRIA

Institute of Science and Technology

Spring Semester 2015/2016 // Lecture 4

13/.32



Nonlinear Classifiers

What, if a linear classifier is really not a good choice?
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Change the data representation, e.g. Cartesian — polar coordinates 3.



Nonlinear Classifiers

Let C' > 0. Assume a necessarily linearly separable training set
D= {(z',9y"),... 2" y")} C X x Y.
Let ¢ : X — H be a feature map from X into a Hilbert space H.
Then we can form a new training set
D? = { (¢(a'),y"), ..., (#(z"),9") } CH X .
The maximum-(soft)-margin linear classifier in H,
9(z) = sign[(w, ¢(z))» + 0]

for w € ‘H and b € R is called max-margin generalized linear classifier.

It is still /inear w.r.t w, but (in general) nonlinear with respect to z.
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Example (Polar coordinates)

Left: dataset D for which no good linear classifier exists.
Right: dataset D? for ¢ : X — H with X = R? and H = R?

é(z, ) = (/22 + y2, arctan %) (and ¢(0,0) = (0,0))
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Example (Polar coordinates)

Left: dataset D for which no good linear classifier exists.
Right: dataset D? for ¢ : X — H with X = R? and H = R?

o(z,y) = (/22 + 42, arctan%) (and ¢(0,0) = (0,0))
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Any classifier in H induces a classifier in X



Other popular feature mappings, ¢

Example (d-th degree polynomials)

. 2 2 d d
o : (xl,...,xn)»—>(1,x1,...,xn,xl,...,xn,...,zl,...,zn>

Resulting classifier: d-th degree polynomial in z.g(z) = sign f(z) with

f@) = (w,d(@)) = 3 wid(a); = 3wz + D byziz; +

Example (Distance map)

For a set of prototype p1,...,pn € H:
— 72— 112 22
¢;IH(6 IE=l> | el pNn)

Classifier: combine weights from close enough prototypes
g(z) = sign{w, ¢(z)) = slgnz a.e*Hf*ﬁv:

2
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(Generalized) Maximum Margin Classifiers — Optimization Il

1 9 LI
min —||w||*+ C g ’
weRd beR,E€R 2 el = ¢

subject to

yiw, p(zh)) >1—¢°, fori=1,...,n,
£€>0. fori=1,...,n.
How to solve numerically?
off-the-shelf Quadratic Program (QP) solver
only for small dimensions and training sets (a few hundred),
variants of gradient descent,

high dimensional data, large training sets (millions)
by convex duality,

for very high dimensional data and not so many examples (d > n)
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(Generalized) Maximum Margin Classifiers — Optimization Il

1 2 n N
min —|wl||* + C E !
weRL beR,E€Rr 2 el = ¢

subject to

y (w2’ +b) >1—¢, fori=1,...,n,
£€>0. fori=1,...,n.
How to solve numerically?
off-the-shelf Quadratic Program (QP) solver
only for small dimensions and training sets (a few hundred),
variants of gradient descent,

high dimensional data, large training sets (millions)
by convex duality,

for very high dimensional data and not so many examples (d > n)
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Subgradient-Based Optimization

1 2 n ;
min —||wl||* + C !
weR? beR £ER? 2 el ; ¢

subject to

yi((w,z) +b) >1—¢% and €8>0, fori=1,...,n.
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Subgradient-Based Optimization

1oy
min —||wl||* + C !
weR? beR £ER? 2 el ; ¢

subject to

yi((w,z) +b) >1—¢% and €8>0, fori=1,...,n.

For any fixed (w, b) we can find the optimal &, ..., &,:
& =max{ 0,1 — y;((w,z;) +b) }.
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Subgradient-Based Optimization

1oy
min —||wl||* + C !
weR? beR £ER? 2 el ; ¢

subject to

yi((w,z) +b) >1—¢% and €8>0, fori=1,...,n.

For any fixed (w, b) we can find the optimal &, ..., &,:
& =max{ 0,1 — y;((w,z;) +b) }.

Plug into original problem:

. 1
min -

weR?,beR 2Hw”2 + 0 max{ 0,1 yi((w,z;) + b)}.

=1
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SVM Training in the Primal

. 1
min -

_min o 4+ Oy max{ 0,1 - pil(w.z) + b))

=1

unconstrained optimization problem
convex

» Z||w||? is convex (differentiable with Hessian = Id 3= 0)
» linear/affine functions are convex

» pointwise max over convex functions is convex.

» sum of convex functions is convex.

not differentiable!
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SVM Training in the Primal

. 1
min -

_min o 4+ Oy max{ 0,1 - pil(w.z) + b))

=1

unconstrained optimization problem

convex
» Z||w||? is convex (differentiable with Hessian = Id 3= 0)
» linear/affine functions are convex
» pointwise max over convex functions is convex.
» sum of convex functions is convex.

not differentiable!

We can’t use gradient descent, since some points have no gradients!
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Definition: Let f : R? — R be a convex function. A vector v € R% is
called a subgradient of f at wy, if

f(w) > f(wo) + (v, w — wpy) for all w.

f(w)

10/ 32



Definition: Let f : R? — R be a convex function. A vector v € R% is
called a subgradient of f at wy, if

f(w) > f(wo) + (v, w — wpy) for all w.

f(wo)+ (V,W-Wo)
f(we) [1o

'Wo
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Definition: Let f : R? — R be a convex function. A vector v € R% is
called a subgradient of f at wy, if

f(w) > f(wo) + (v, w — wpy) for all w.

f(wo)+ (V,W-Wo)
f(we) [1o

'Wo

A general convex f can have more than one subgradient at a position.
We write Vf(wp) for the set of subgradients of f at wyp,
v € Vf(wp) indicates that v is a subgradient of f at wy.
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For differentiable f, the gradient v = Vf(wy) is the only subgradient.

f(Wu) + (V,W-Wu)

If fi,...,fx are differentiable at wy and

f(w) = max{fi(w),..., fx(w)},

then v = Vi (wp) is a subgradient of f at wpy, where k any index for
which fi(wo) = f(wo).

Subgradients are only well defined for convex functions!
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lllustration: Optimization using Gradients

flwr, wo) = (wy)? + 2(ws)? strictly convex, differentiable
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lllustration: Optimization using Gradients

Flwr, wy) = (w1)? + 2(ws)?

100

80

60

40

20

strictly convex, differentiable

50

20

40

60

80

100

12 /32



lllustration: Optimization using Gradients
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lllustration: Optimization using Gradients

flwr, wo) = (wy)? + 2(ws)? strictly convex, differentiable
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Gradient of a differentiable function is a descent direction:
for any w; there exists an 7 such that f(w; + nv) < f(wy)
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lllustration: Optimization using Subgradients?

flwr, wa) = |wy| + 2|we| convex, not differentiable
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lllustration: Optimization using Subgradients?

flwr, wa) = |wy| + 2|we| convex, not differentiable
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flwr, wa) = |wi| + 2|ws
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lllustration: Optimization using Subgradients?
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lllustration: Optimization using Subgradients?

flwr, wa) = |wi| + 2|ws
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lllustration: Optimization using Subgradients?

flwy, we) = |wi| + 2|ws| convex, not differentiable
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Subgradient might not be a not a descent direction:
for w; we might have f(w; + nv) > f(wy) for all n € R
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lllustration: Optimization using Subgradients?

flwy, we) = |wi| + 2|ws| convex, not differentiable
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Subgradient might not be a not a descent direction:
for w; we might have f(w; + nv) > f(wy) for all n € R
but: there is an 7 that brings us closer to the optimum,
|wip1 — w*|| < [Jwy — w*||  (Proof: exercise...)
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Subgradient Method (not Descent!)

input step sizes 11,12, . ..
1: wp <0
2. fort=1,...,T do
3: v < asubgradient of £ at w;
4: W41 £ Wp — MU
5. end for
output w; with smallest values £(w;) for t =1,..., T
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Subgradient Method (not Descent!)

input step sizes 11,12, . ..

1. w <0

2. fort=1,...,T do

3: v < asubgradient of £ at w;

4 Wil < W — MU

5. end for
output w; with smallest values £(w;) for t =1,..., T
Stepsize rules: how to choose n1,12,...,7

n; = 1 constant: will get us (only) close to the optimum
decrease slowly, but not too slowly: converges to optimum

o0 o0 77
2
= 0 < 0 e.g. = —
;nt ;(m) g Mt L+ o

How to choose overall n? trial-and-error
Try different values, see which one decreases the objective (fastest)
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Stochastic Optimization

Many objective functions in ML contain a sum over all training exampes:

ELogReg ZlOg 1 =+ exp( yl(<w x’L> + b)))
=1
1 n
Lsyy(w) = §Hw\|2 + CZmax{ 0,1 —y;({w, z;) + b)}.
i=1

Computing the gradient or subgradient scales like O(nd),
d is the dimensionality of the data

n is the number of training examples.

Both d and n can be big (millions). What can we do?
we'll not get rid of O(d), since w € RY,
but we can get rid of the scaling with O(n) for each update!
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Let flw) = Zfi(w), with convex, differentiable fi,. .., f,.
i=1

Stochastic Gradient Descent

input step sizes 71,72, . ..

w; < 0
cfort=1,..., T do
i < random index in 1,2,...,n

v < nVfi(w)
Wiyl £ W — NV
6: end for
output wrp, or average T+TO Z;‘F:TO Wy

@ PP

Each iteration takes only O(d),

Gradient is "wrong" is each step, but correct in expectation.

No line search, since evaluating f(w — nv) would be O(nd),
Objective does not decrease in every step,

Converges to optimum if 1, is sauare summable but not summabile 32



Let flw) = zn:fi(w), with convex fi,..., fn.
i=1

Stochastic Subgradient Method

input step sizes 11,12, . ..

w; < 0
fort=1,...,T do
i < random index in 1,2,...,n

v < n times a subgradient of f; at w;
W41 < Wy — NV

6: end for
output wr, or average T+TO Z?:To Wy

@2 PR

Each iteration takes only O(d),

Converges to optimum if 7); is square summable, but not summable.
Even better: pick not completely at random but go in epochs:
randomly shuffle dataset, go through all examples, reshuffle, etc.
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Stochastic Primal SVMs Training

n

Lovm(w,0) =Y (5wl + Cmax{ 0.1~ yl(w, z) + )} ).
i=1

input step sizes 11,12, ... or step size rule, such as n; =
1: (wl, bl) — (0,0)
2. fort=1,...,T do

i
t+to

3:  pick (z,y) from D (randomly, or in epochs)
4 if y(z,w) + b>1 then

5: W41 < (1 — m)wt

6: else

7: W1 < (1 — ne)we + nCnyyz

8: bir1 < nmnCy

9: endif

10: end for

1 T
output wr, or average D i=T, Wt

State-of-the-art in SVM training, but setting stepsizes can be painful.
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SVM Optimization by Dualization

Back to the original formulation

1 9 LI
min —|wl||* + C !
weRd beR EcRr 2 el ; ¢

subject to, for i =1,...,n,

yi(<w7 fU%) +b)>1- &, and £ >0.

Convex optimization problem: we can study its dual problem.
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General Principle of Dualization

Assume a constrained optimization problem:

i 0
Gergglilf f( )
subject to
91(0) <0, g(0) <0, ..., g(0)<0.
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General Principle of Dualization

Assume a constrained optimization problem:

i 0
Bergglilf f( )
subject to
91(0) <0, g(0) <0, ..., g(0)<0.

We define the Lagrangian, that combines objective and constraints
L(0,a) = f(0) +a1g1(0) + - + argr(0)
with Lagrange multipliers, a1,...,a; > 0. Note:

%) otherwise.

max  L(0,«a) = {

a12>0,...,a;,>0

Any optimal solution, 6, for mingcg max,>o £(6, ) is also optimal for
the original constrained problem. 20/ 32



General Principle of Dualization

Theorem (Special Case of Slater’s Condition)

If f is convex, g1, ..., g are affine functions, and there exists at least one
point 6 € relint(©) that is feasible (i.e. g;(0) <0 fori=1,...,k). Then

minmax £(,a) = max min £(0,«)
0cO® a>0 a>0  6e€O

21 /32



General Principle of Dualization

Theorem (Special Case of Slater’s Condition)

If f is convex, g1, ..., g are affine functions, and there exists at least one
point 6 € relint(©) that is feasible (i.e. g;(0) <0 fori=1,...,k). Then

minmax £(,a) = max min £(0,«)
0cO® a>0 a>0  6e€O

Call f(0) the primal and h(a) = mingcg L£(6, ) be the dual function.

The theorem states that minimizing the primal f(6) (with constraints
given by the g;) is equivalent to maximizing its dual h(«) (with a > 0).

i ) = max h(«
min £(6) max (@)
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Dualizing of the SVM optimization problem

The SVM optimization problem fulfills the conditions of the theorem.

1 2 n N
min —|wl||* + C E !
weRL beR,E€R 2 el = ¢

subject to, fori=1,...,n,

yi((w, 2y +b)>1—¢,  and £ >0.

We can compute its minimal value as max,>¢ g>0 h(a, 5) with
h(e, B) = mlbr)l *||w||2+025z+2 ai(1=&i—y' ((w, z")+b) = Bk,

(Blackboard...)
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Dualizing of the SVM optimization problem

In @ minimum w.r.t. (w,b):

0 i i i
OZ%E(w,b,f,a,ﬁ):w—;aiy:c = w:;aiyx

0

8b (U}bf, «, ):zl:azyl
(%E(wbg, ,B):C—Oé@—ﬁl

Insert new constraints into objective:

max I X aw'e P+ Yo~ e Sag'a o)
i i J
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SVM Dual Optimization Problem

1 S
max —§Zaiajyly7<xl,m7>+2ai
ij i

a>0

subject to Zaiyiz() and 0< ;< C,fori=1,...,n.
i

Examples z? with a; # 0 are called support vectors.

From the coefficients «q, ..., o, we can recover the optimal w:
w= Z ay'at
i
b=1-y"z', w) for any ¢ with 0 < a; < C
(more complex rule for b if not such ¢ exists).

The prediction rule becomes

g(z) = sign ((w, x) + b) = sign (Zn:ai%(xi, x) + b)
i=1
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SVM Dual Optimization Problem

1 S
max —§Zaiajy’y]<x’,mj>+2ai
i i

a>0

subject to

Zaiyizo and 0<o;<C, fori=1,...,n.
i

Why solve the dual optimization problem?
fewer unknowns: o € R” instead of (w, b,£) € R4+1+n

less storage when d > n:
((z%,27));; € R™™ instead of (21,...,2") € R"*4

Kernelization
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Kernelization

Definition (Positive Definite Kernel Function)

Let X be a non-empty set. A function k: X x X — R is called positive
definite kernel function, if the following conditions hold:

k is symmetric, i.e. k(z,2") = k(2/, z) for all z,2' € X.

For any finite set of points zi,...,z, € X, the kernel matrix

Ky = (k(x;, Ij))i,j (1)

is positive semidefinite, i.e. for all vectors t € R”

n
> Kyt > 0. (2)
ij=1
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Kernelization

Lemma (Kernel function)

Let ¢ : X — H be a feature map into a Hilbert space H. Then the
function

k(z,7) = ( ¢(2),9(Z) ),

is a positive definite kernel function.

Proof.
symmetry: k(z,z) = (¢(x), ¢(2))n = (0(Z), p(x))n = k(z, )
positive definiteness: xi,...,x, € X, and arbitrary t € R", then

S tik(z,m)ty = > tit(p(a), d(a7))n

ij=1 i.j=1

= (L uola), S pole), = || X wota)

2
> 0.
H
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Theorem (Mercer’s Condition)

Let X be non-empty set. For any positive definite kernel function
k:X x X — R, there exists a Hilbert space H with inner product
(+,+)3, and a feature map ¢ : X — H such that

k(z,7) = ( ¢(2),9(Z) ),y

Proof. later, in more refined form

Note: H and ¢ are not unique, e.g.
k(z,z) = 22%

Hi=R, ¢1(z) = V2z, ($1(2), $1(Z))n, = 22T
Ha = R?, ¢o(z) = (_i,) (91(2), 92(2)) 2, = 222

X

Hs = R3, ¢3(:I7) =101, <¢3($),¢3(§3)>H3 = 2z, etc.

T
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Definition (Reproducing Kernel Hilbert Space)

Let H be a Hilbert space of functions f : X — R. A kernel
k:X x X — R is called reproducing kernel, if

f(x) = (k(z,-), f()n  forall feH.

H is then called a reproducing kernel Hilbert space (RKHS).

Theorem (Moore-Aronszajn Theorem)

Let k: X x X — R be a positive definite kernel on X. Then there is a
unique Hilbert space of functions, f : X — R, for which k is a
reproducing kernel.
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Proof sketch. One can construct the space explicitly: Set

HP® = span{ k(-,z) forz € X },

i.e., for every f € HP™® exist z!,..., 2™ € X and a',...,a™ € R, with
m .
FO) =Y a'k(-,a)
i=1

We define an inner product as
(f.9) = (3 k(") > alk(,3)) == 3 alalk(a, 27).
i j i

Make HP'™ into Hilbert space H by enforcing completeness.

Complete proof: [B. Schélkopf, A. Smola, "Learning with Kernels", 2001].

30/ 32



Let
D= {(z',y"),...,(z" y") } C X x {£1} training set
k:X x X — R be a pos.def. kernel with feature map ¢ : X — H.

Support Vector Machine in Kernelized Form

For any C' > 0, the max-margin classifier for the feature map ¢ is

g(x) = sign f(z) with  f(z Za k(z?, ) + b,

for coefficients «q, ..., «, obtained by solving
n
min —— alal k(z!, 27) +
al,...,a”eR ]Zl 4 ?ﬂ ( ) ;1

subject to Zaiyizo and 0< ;< C,fori=1,...,n
i

Note: we don't need to know ¢ or H, explicitly. Knowing k is enough.
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Useful and Popular Kernel Functions

For z,z € R%:
k(z,z) = (1 + (z,2’))? for p € N (polynomial kernel)

f(z) =3, a;y’k(z%, 2) = polynomial of degree d

k(x,7) = exp(—A||x — z||?) for A > 0 (Gaussian or RBF kernel)
f(z) =3, ay’ exp(—A||z® — z||?) = weighted/soft nearest neighbor

For z, z histograms with d bins:

k(z,z) = Zle min(z;j, z;) histogram intersection kernel
-\ d T; T 2
k(z,z) = 375, s x° kernel
. 7.)\2
k(z,%) =exp (- A0, (xéj;%) ) exponentiated x? kernel

Generally: interpret kernel function as a similarly measure.
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