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Overview (tentative)

Date no. | Topic

Mar 01 Tue 1 | A Hands-On Introduction

Mar 03 | Thu 2 | Bayesian Decision Theory
Generative Probabilistic Models
Mar 08 Tue 3 | Discriminative Probabilistic Models
Maximum Margin Classifiers

Mar 10 | Thu 4 | Optimization, Kernel Classifiers

Mar 15 Tue 5 | More Optimization; Model Selection
Mar 17 | Thu 6 | Beyond Binary Classification

Mar 21 — Apr 01 Spring Break

Apr 05 Tue 7 | Learning Theory |

Apr 07 Thu 8 | Learning Theory Il

Apr 12 Tue 9 | ...overflow buffer...

Apr 14 Thu 10 | Probabilistic Graphical Models

Apr 19 Tue 11 | Deep Learning

Apr 21 Thu 12 | Unsupervised Learning

until May 01 final project
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The Holy Grail of Statistical Machine Learning

What problems
are "learnable"?




PAC Learning Scenario

X' input set, : label set, here: Y = {—1,1} or Y = {0, 1}
p(z,y): data distribution (unknown to us)

for now: deterministic labels, y = f(x) for unknown f: X — )
D ={(z1,11)s -+ (Tm, ym) } b p(z,y): training set

£:Y xY — R: loss function. here: ((y,y') = [y # V']

H C {h:X — V}: hypothesis set (the lerner's choice)
e.g. "all linear classifiers in R%", or "all binary decision trees", ...

Quantity of interest:
Rp(h) = E(:c,y)fvp(w,y) E( Y, h(l‘)) = Pracwp(ac){ f(l’) 7& h($) }

What does "learning" mean?
We know: there is (at least one) f: X — Y that has R(f) = 0.
Can we find such f from D,,? If yes, how large must m be?
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Definition (Probably Approximately Correct (PAC) Learnability)

A hypothesis class H is called PAC learnable by an algorithm A, if

for every € > 0 (accuracy — "approximate correct")
and every § > 0 (confidence — "probably")

there exists an
mo = mo(€,0) €N (minimal training set size)

such that

for any probability distribution p over X, and
for any labeling function f € H, with R,(f) =0,

when we run the learning algorithm A on a training set consisting of
m > myg examples sampled i.i.d. from p, the algorithm returns a
hypothesis i € # that, with probability at least 1 — 4, fulfills R,(h) < e.

¥m > mo(e.8)  Pr [Ra(A[Dy]) > ¢] <6.

Note: for "efficient learning", A must run in poly(m, %, %, "size of Dy, ';)/ .



Empirical Risk Minimization

What learning algorithm?

Definition (Empirical Risk Minimization (ERM) Algorithm)

input hypothesis set H C {h: X — Y} (not necessarily finite)

input training set D = {(x1,91), ..., (Tm,Ym)}

1 m
output h € argmin — ZE( Yi, h(zi))  (lowest training error)
heH M .=

ERM learns a classifier that has minimal training error.
There might be multiple, we can’t control which one.
We saw already: ERM might well or might not work.
Can we characterize when ERM works and when it fails?
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A constant decision is PAC-learnable

X =R, Y={£1} Ly,y) = [y,¥]
H = {hs+,h_} with hy(z) =+1 and h_(z) = —1
p arbitrary

ERM needs only 1 example, then its solution is unique and perfect.

A parity bit is learnable

X ={0,1}4, ¥y = {1}, U(y,) = [y,¥]

H = {he, ho} with he(z) = ®L 2; and hy(z) = 1 — @,
p arbitrary

Dm = {(mla yl); ceey (mmaym)}

ERM needs only 1 example, then it's solution is unique and perfect.
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Coordinate classifiers

X = Rdv Y= {:tl}' E(ya y/) = [[y7y/]]
H ={hi,...,hq} with h;(x) = sign z[i]

Lemma
If p is uniform in [—1,1]%, ERM works for mo(e,§) = [log, 45

Proof: blackboard/notes

Here: for general distributions, we might have to return hypothesis with
€ > 0, and mg will depend on e.
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Can we prove general statements?

Theorem (PAC Learnability of finite hypothesis classes)

Let H ={h1,...,hk} be a finite hypothesis class and f € H (i.e. the
true labeling function is one of the hypotheses).

Then H is PAC-learnable by the empirical risk minimization algorithm
with mo(e, 6) = [¢(log(|H| +log(1/9))]

Proof: blackboard/notes
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Examples: Finite hypothesis classes

Model selection:

Clients offer me trained classifiers: 1) decision tree, 2) LogReg or an
3) SVM? Which of the three should | buy?

Finite precision:
For X C R?, the hypothesis set # = {f(z) = sign{w, z)} is infinite.

But: on a computer, w is restricted to 64-bit doubles: |H,.| = 2647

mo(e,8) = L(log(|H| + log(1/6) ) ~ 1(44d + log(1/9))

Implementation:

H = { all algorithms implementable in 1 MB C-code } is finite.

Logarithmic dependence on || makes even large (finite) hypothesis sets
(kind of ) practical.
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Example: Learning Thresholding Functions

‘ a h
N |
| o , K —HK—XX
af f
0 1

X =1[0,1], ¥ ={0,1},
H ={hy(z) =[xz >a], for 0 <a <1},
f(z) = ha,(x) for some0<af<1

ERM rule: h = argmin — Z[[h (zi) # i,
ho€H

~—

pick smallest possible "+1" region when not unique
(to make algorithm deterministic): a = ming;.,,_1){z;}

Claim: ERM learns f (in the PAC sense). Proof: textbook...
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Example: Learning Intervals
‘ h
1
EXX X
| arf br

0 1
X =10,1], Y ={0,1},
?—l:{h[mb](x): [x>aNnz<Db], for0§a§b§1},
f(x) = hig,; p,)(x) for some 0 < ap < by < 1.
training set S = {(z1,v1), - (xm,ym)}

ERM rule: h = argmin — Z[[h[ab (i) # yil,
[a,p] T

pick smallest possible "+1" interval when not unique:
a = min{i:yizl}{xi}' b= max{i:yizl}{xi}

Claim: ERM learns f in the PAC sense. Proof: textbook...
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Example: Learning Unions of Intervals
_—h—__
U 1,
XX *e——
af bt

.
0 1
X =10,1], Y ={0,1},
H = {hiay(x) for T={I1,..., I} for some K € N},
for hz(z) =[x € UK, I] with I; = [ay, by]
f(z) = hz,(z) for some set of intervals Z;
training set S = {(z1,¥1),. -, (Tm,Ym)}

m

1
ERM rule: h = in — hz(x; il
e b — arganin & 3 Th(n) # 4]

i=1
pick smallest possible "+1" region when not unique
Claim: ERM fails to learn f in the PAC sense.
Proof: textbook... (but obvious: hggm = 0 except in 1, ..., ZTm)
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There’s No Free Lunch

Observation: ERM can learn all finite classes, but not some infinite ones.

Is there a better algorithm than ERM, one that always works?
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There’s No Free Lunch

Observation: ERM can learn all finite classes, but not some infinite ones.

Is there a better algorithm than ERM, one that always works?

X input set, Y = {0, 1} label set, £: Y x Y — {0,1}: 0/1-loss,
A an arbitrary learning algorithm for binary classification,

m (training size) any number smaller than |X'|/2
There exists
a data distribution p over X x )/, and
a function f: X x Y — {0,1} with R,(f) =0, but
Pr [R,(A[S]) >1/8]>1/7.

S~p®m

Summary: For every learner, there exists a task on which it fails!
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Agnostic PAC Learning

More realistic scenario: labeling isn't a deterministic function
X input set
Y: output/label set, for now: J = {—1,1} or Y = {0,1}
p(z,y): data distribution (unknown to us)
deterministietabels,y—=F{x)forunknewn—X—
S={(z1,91),-, (Tm,Ym)} i~ p(x,y): training set
£:Y x Y — R: loss function, ¢(y,y') = [y # V']
H C {h:X — V}: hypothesis set (the lerner’s choice)

Quantity of interest:

Rp(h)= —E  Lyh(x)= Pr {h(z)#y}
(z,y)~p(z,y) (z,y)~p(,y)

What can we learn?
there might not be any f: X — Y that has R(f) = 0.
but can we at least find the best h from the hypothesis set?
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Definition (Agnostic PAC Learning)

A hypothesis class H is called agnostic PAC learnable by A, if
for every € > 0 (accuracy — "approximate correct")
and every § > 0 (confidence — "probably")

there exists an
mo = mo(€,0) €N (minimal training set size)

such that
for every probability distribution p(z,y) over X x ),

when we run the learning algorithm A on a training set consisting of
m > mg examples sampled i.i.d. from d, the algorithm returns a
hypothesis h € H that, with probability at least 1 — 4, fulfills

Rp(h) <minR,(h) +e.
heH

Vm > mg(e, 0) Swz%m[Rp(A[S])—%réi??Rp(h) > €] <6
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Theorem (PAC Learnability of finite hypothesis classes)

Let H ={h1,...,hk} be a finite hypothesis class.

Then H is agnostic PAC-learnable by ERM with
mo(e,8) = [ 5 (log(|#| + log(2/4))].

Proof sketch. Step 1: we bound R(h) — R, (h) uniformly in h:

Lemma

For any e > 0, 6 > 0, the following inequality hold uniformly in h € H
with probability at least 1 — § w.r.t. D,:

A log [H| + log 2
_ < =Sl o)
[Ry(h) — Ron(h)] < 1) 2

Proof: blackboard/notes
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Step 2: we use the lemma to bound the difference between
herm € argming,, ﬁm(ﬁ) (result of ERM)

h* € argming_, R,(h) (if exists, otherwise use argument of
arbitrarily close approximation)

. log|H| +1log2 m
Ry (hera) — Ry (1) < 2/ 274 1108 3

v
I/\O3
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Vapnik-Chervonenkis (VC) dimension

Let H C {X — {0,1} } be a hypothesis class and
C={z1,...,zm} C X be a finite set. The restriction of H to C is

Ho ={ (1), h(@), ... h(wm)) : heH} C{0,1}™

Definition (Shattering)

A hypothesis class H shatters a finite set C' C X, if the restriction of H
to C' is the set of all possible labeling of C by {0, 1}, i.e. |[H¢| = 2/¢I.

Definition (VC Dimension)

The VC dimension of a hypothesis class #, denoted VCdim(H), is the
maximal size of a set C' C X that can be shattered by H. If H can
shatter sets of arbitrarily large size we say that VCdim(#H) = occ.
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Lemma
For any finite H, we have VCdim(H) < logy |H|.

Proof. [Hc| < |H|. So |Hc| = 2/€! implies |C| < logy H

Lemma

Let H = {h(x) = sign(w,z) : w € R4} be set of all linear classifiers in
R?. Then VCdim(H) = d.

Proof. textbook...

Lemma
X =R, H={h,(z)=signsin(wr)]:weR}). VCdim(H)= cc.

Proof. pick C' = {1,...,m} and show that for each
Y1y .-+, Ym) € {£1}™ an w exists such that h (i) = y;.
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Theorem (Fundamental Theorem of Statistical Learning (Subset))

Let H C{X — {0,1}} be a hypothesis set, and let ¢ be the 0/1-loss.
Then, the following statements are equivalent:

‘H is PAC learnable.
‘H is agnostic PAC learnable.
Any ERM rule learns H in the PAC learning sense.

Any ERM rule learns H in the agnostic PAC learning sense.
‘H has finite VC-dimension.

Proof. textbook...
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