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Overview (tentative)

Date no. Topic
Mar 01 Tue 1 A Hands-On Introduction
Mar 03 Thu 2 Bayesian Decision Theory

Generative Probabilistic Models
Mar 08 Tue 3 Discriminative Probabilistic Models

Maximum Margin Classifiers
Mar 10 Thu 4 Optimization, Kernel Classifiers
Mar 15 Tue 5 More Optimization; Model Selection
Mar 17 Thu 6 Beyond Binary Classification
Mar 21 – Apr 01 Spring Break
Apr 05 Tue 7 Learning Theory I
Apr 07 Thu 8 Learning Theory II
Apr 12 Tue 9 ...overflow buffer...
Apr 14 Thu 10 Probabilistic Graphical Models
Apr 19 Tue 11 Deep Learning
Apr 21 Thu 12 Unsupervised Learning
until May 01 final project
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The Holy Grail of Statistical Machine Learning

What problems
are "learnable"?
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PAC Learning Scenario

• X : input set, Y: label set, here: Y = {−1, 1} or Y = {0, 1}
• p(x, y): data distribution (unknown to us)
• for now: deterministic labels, y = f(x) for unknown f : X → Y

• Dm = {(x1, y1), . . . , (xm, ym)} i.i.d.∼ p(x, y): training set
• ` : Y × Y → R: loss function. here: `(y, y′) = Jy 6= y′K
• H ⊆ {h : X → Y}: hypothesis set (the lerner’s choice)

e.g. "all linear classifiers in Rd", or "all binary decision trees", . . .

Quantity of interest:
• Rp(h) = E(x,y)∼p(x,y) `( y, h(x) ) = Prx∼p(x){ f(x) 6= h(x) }

What does "learning" mean?
• We know: there is (at least one) f : X → Y that has R(f) = 0.
• Can we find such f from Dm? If yes, how large must m be?
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Definition (Probably Approximately Correct (PAC) Learnability)

A hypothesis class H is called PAC learnable by an algorithm A, if
• for every ε > 0 (accuracy → "approximate correct")
• and every δ > 0 (confidence → "probably")

there exists an
• m0 = m0(ε, δ) ∈ N (minimal training set size)

such that
• for any probability distribution p over X , and
• for any labeling function f ∈ H, with Rp(f) = 0,

when we run the learning algorithm A on a training set consisting of
m ≥ m0 examples sampled i.i.d. from p, the algorithm returns a
hypothesis h ∈ H that, with probability at least 1− δ, fulfills Rp(h) ≤ ε.

∀m ≥ m0(ε, δ) Pr
Dm∼p

[Rd(A[Dm]) > ε ] ≤ δ.

Note: for "efficient learning", A must run in poly(m, 1
ε ,

1
δ , "size of Dm")5 / 21



Empirical Risk Minimization

What learning algorithm?

Definition (Empirical Risk Minimization (ERM) Algorithm)

input hypothesis set H ⊆ {h : X → Y} (not necessarily finite)

input training set D = {(x1, y1), . . . , (xm, ym)}

output h ∈ argmin
h∈H

1
m

m∑
i=1

`( yi, h(xi) ) (lowest training error)

ERM learns a classifier that has minimal training error.
• There might be multiple, we can’t control which one.
• We saw already: ERM might well or might not work.
• Can we characterize when ERM works and when it fails?
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Examples

A constant decision is PAC-learnable

• X = R, Y = {±1}, `(y, y′) = Jy, y′K
• H = {h+, h−} with h+(x) = +1 and h−(x) = −1
• p arbitrary

ERM needs only 1 example, then its solution is unique and perfect.

A parity bit is learnable

• X = {0, 1}d, Y = {±1}, `(y, y′) = Jy, y′K
• H = {he, ho} with he(x) = ⊗di=1xi and ho(x) = 1−⊗di=1xi

• p arbitrary
• Dm = {(x1, y1), . . . , (xm, ym)}

ERM needs only 1 example, then it’s solution is unique and perfect.
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Examples

Coordinate classifiers

• X = Rd, Y = {±1}, `(y, y′) = Jy, y′K
• H = {h1, . . . , hd} with hi(x) = sign x[i]

Lemma
If p is uniform in [−1, 1]d, ERM works for m0(ε, δ) = dlog2

d−1
δ e

Proof: blackboard/notes

Here: for general distributions, we might have to return hypothesis with
ε > 0, and m0 will depend on ε.
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Can we prove general statements?

Theorem (PAC Learnability of finite hypothesis classes)

Let H = {h1, . . . , hK} be a finite hypothesis class and f ∈ H (i.e. the
true labeling function is one of the hypotheses).

Then H is PAC-learnable by the empirical risk minimization algorithm
with m0(ε, δ) = d1

ε ( log(|H|+ log(1/δ) )e

Proof: blackboard/notes
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Examples: Finite hypothesis classes

Model selection:
• Clients offer me trained classifiers: 1) decision tree, 2) LogReg or an
3) SVM? Which of the three should I buy?

Finite precision:
• For X ⊂ Rd, the hypothesis set H = {f(x) = sign〈w, x〉} is infinite.
• But: on a computer, w is restricted to 64-bit doubles: |Hc| = 264d.
m0(ε, δ) = 1

ε ( log(|H|+ log(1/δ) ) ≈ 1
ε (44d+ log(1/δ))

Implementation:
• H = { all algorithms implementable in 1MB C-code } is finite.

Logarithmic dependence on |H| makes even large (finite) hypothesis sets
(kind of) practical.
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Example: Learning Thresholding Functions

a

0 1
af

x xx x x x
h

xx
f

• X = [0, 1], Y = {0, 1},
• H = {ha(x) = Jx ≥ a K, for 0 ≤ a ≤ 1},
• f(x) = haf

(x) for some 0 ≤ af ≤ 1.

• ERM rule: h = argmin
ha∈H

1
m

m∑
i=1

Jha(xi) 6= yiK,

pick smallest possible "+1" region when not unique
(to make algorithm deterministic): a = min{i:yi=1}{xi}

Claim: ERM learns f (in the PAC sense). Proof: textbook...
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Example: Learning Intervals

0 1
af bf

x xx x x x x xx
h

• X = [0, 1], Y = {0, 1},
• H =

{
h[a,b](x) = Jx ≥ a ∧ x ≤ b K, for 0 ≤ a ≤ b ≤ 1

}
,

• f(x) = h[af ,bf ](x) for some 0 ≤ af ≤ bf ≤ 1.
• training set S = {(x1, y1), . . . , (xm, ym)}

• ERM rule: h = argmin
[a,b]

1
m

m∑
i=1

Jh[a,b](xi) 6= yiK,

pick smallest possible "+1" interval when not unique:
a = min{i:yi=1}{xi}, b = max{i:yi=1}{xi}

Claim: ERM learns f in the PAC sense. Proof: textbook...
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Example: Learning Unions of Intervals

0 1
af bf

x xx x x x x xx
h

• X = [0, 1], Y = {0, 1},
• H =

{
h[a,b](x) for I = {I1, . . . , IK} for some K ∈ N

}
,

for hI(x) = Jx ∈
⋃K
k=1 IkK with Ii = [ak, bk]

• f(x) = hIf
(x) for some set of intervals If

• training set S = {(x1, y1), . . . , (xm, ym)}

• ERM rule: h = argmin
I

1
m

m∑
i=1

JhI(xi) 6= yiK,

pick smallest possible "+1" region when not unique

Claim: ERM fails to learn f in the PAC sense.
Proof: textbook... (but obvious: hERM ≡ 0 except in x1, . . . , xm)
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There’s No Free Lunch

Observation: ERM can learn all finite classes, but not some infinite ones.

Is there a better algorithm than ERM, one that always works?

No-Free-Lunch Theorem

• X input set, Y = {0, 1} label set, ` : Y × Y → {0, 1}: 0/1-loss,
• A an arbitrary learning algorithm for binary classification,
• m (training size) any number smaller than |X |/2

There exists
• a data distribution p over X × Y, and
• a function f : X × Y → {0, 1} with Rp(f) = 0, but

Pr
S∼p⊗m

[ Rp(A[S]) ≥ 1/8 ] ≥ 1/7.

Summary: For every learner, there exists a task on which it fails!
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Agnostic PAC Learning

More realistic scenario: labeling isn’t a deterministic function
• X : input set
• Y: output/label set, for now: Y = {−1, 1} or Y = {0, 1}
• p(x, y): data distribution (unknown to us)
• deterministic labels, y = f(x) for unknown f : X → Y

• S = {(x1, y1), . . . , (xm, ym)} i.i.d.∼ p(x, y): training set
• ` : Y × Y → R: loss function, `(y, y′) = Jy 6= y′K
• H ⊆ {h : X → Y}: hypothesis set (the lerner’s choice)

Quantity of interest:
• Rp(h) = E

(x,y)∼p(x,y)
`(y, h(x)) = Pr

(x,y)∼p(x,y)
{h(x) 6= y}

What can we learn?
• there might not be any f : X → Y that has R(f) = 0.
• but can we at least find the best h from the hypothesis set?
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Definition (Agnostic PAC Learning)

A hypothesis class H is called agnostic PAC learnable by A, if
• for every ε > 0 (accuracy → "approximate correct")
• and every δ > 0 (confidence → "probably")

there exists an
• m0 = m0(ε, δ) ∈ N (minimal training set size)

such that
• for every probability distribution p(x, y) over X × Y,

when we run the learning algorithm A on a training set consisting of
m ≥ m0 examples sampled i.i.d. from d, the algorithm returns a
hypothesis h ∈ H that, with probability at least 1− δ, fulfills

Rp(h) ≤min
h̄∈H
Rp(h̄) + ε.

∀m ≥ m0(ε, δ) Pr
S∼p⊗m

[Rp(A[S])−min
h̄∈H
Rp(h̄) > ε ] ≤ δ.
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Theorem (PAC Learnability of finite hypothesis classes)

Let H = {h1, . . . , hK} be a finite hypothesis class.

Then H is agnostic PAC-learnable by ERM with
m0(ε, δ) = d 2

ε2 ( log(|H|+ log(2/δ) )e.

Proof sketch. Step 1: we bound R(h)− R̂m(h) uniformly in h:

Lemma
For any ε > 0, δ > 0, the following inequality hold uniformly in h ∈ H
with probability at least 1− δ w.r.t. Dm:

|Rp(h)− R̂m(h)| ≤

√
log |H|+ log 2

δ

2m

Proof: blackboard/notes
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Step 2: we use the lemma to bound the difference between
• hERM ∈ argminh̄∈H R̂m(h̄) (result of ERM)
• h∗ ∈ argminh̄∈HRp(h̄) (if exists, otherwise use argument of

arbitrarily close approximation)

Rp(hERM)−Rp(h∗) ≤ 2

√
log |H|+ log 2

δ

2m
m≥m0
≤ ε
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Vapnik-Chervonenkis (VC) dimension

Definition
Let H ⊆ {X → {0, 1} } be a hypothesis class and
C = {x1, . . . , xm} ⊆ X be a finite set. The restriction of H to C is

HC =
{ (

h(x1), h(x2), . . . , h(xm)
)

: h ∈ H
}
⊆ {0, 1}m

Definition (Shattering)

A hypothesis class H shatters a finite set C ⊆ X , if the restriction of H
to C is the set of all possible labeling of C by {0, 1}, i.e. |HC | = 2|C|.

Definition (VC Dimension)

The VC dimension of a hypothesis class H, denoted VCdim(H), is the
maximal size of a set C ⊆ X that can be shattered by H. If H can
shatter sets of arbitrarily large size we say that VCdim(H) =∞.
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Lemma
For any finite H, we have VCdim(H) ≤ log2 |H|.

Proof. |HC | ≤ |H|. So |HC | = 2|C| implies |C| ≤ log2H

Lemma
Let H = {h(x) = sign〈w, x〉 : w ∈ Rd} be set of all linear classifiers in
Rd. Then VCdim(H) = d.

Proof. textbook...

Lemma
X = R, H = {hω(x) = sign[sin(ωx)] : ω ∈ R}. VCdim(H) =∞.

Proof. pick C = {1, . . . ,m} and show that for each
(y1, . . . , ym) ∈ {±1}m an ω exists such that hω(i) = yi.
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Theorem (Fundamental Theorem of Statistical Learning (Subset))

Let H ⊆ {X → {0, 1} } be a hypothesis set, and let ` be the 0/1-loss.
Then, the following statements are equivalent:
• H is PAC learnable.
• H is agnostic PAC learnable.
• Any ERM rule learns H in the PAC learning sense.
• Any ERM rule learns H in the agnostic PAC learning sense.
• H has finite VC-dimension.

Proof. textbook...
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