
Statistical Machine Learning

Christoph Lampert

Spring Semester 2015/2016 // Lecture 11

1 / 26

Representation Learning

2 / 26

Metric Learning

Task: nearest-neighbor classification, or information retrieval

What distance to use? Euclidean might not be the best...

Metric Learning
Given data {(x1, y1), (x2, y2), . . . , (xn, yn)} ⊂ X × Y, find a distance
function, d(x, x̄) : X × X → R, such that

d(xi, xj) small ⇔ yi = yj

Special case: Mahalanobis Metric Learning
For X ⊂ Rd, parameterize

d2
M (x, x̄) = (x− x̄)>M(x− x̄)

and learn positive (semi-)definite M ∈ Rd×d.

3 / 26

Metric Learning

Task: nearest-neighbor classification, or information retrieval

What distance to use? Euclidean might not be the best...

Metric Learning
Given data {(x1, y1), (x2, y2), . . . , (xn, yn)} ⊂ X × Y, find a distance
function, d(x, x̄) : X × X → R, such that

d(xi, xj) small ⇔ yi = yj

Special case: Mahalanobis Metric Learning
For X ⊂ Rd, parameterize

d2
M (x, x̄) = (x− x̄)>M(x− x̄)

and learn positive (semi-)definite M ∈ Rd×d.

3 / 26

Relevant Component Analysis (RCA) [Bar-Hillel et al ., 2003]

Given group X1 = {x1
1, . . . , x

1
n1}, . . . , XK = {xK1 , . . . , xKnK}

(e.g. Xk = {xi : yi = k} all example of each label). Solve

min
M<0

K∑
k=1

nk∑
i=1

d2
M (xki ,mk) subject to detM ≥ 1.

with mk = 1
nk

∑nk

i=1 x
k
i .

• pull examples of same class together
• but prevent overall volume from shrinking to 0

Disadvantages:
• optimizing over all positive definite matrices is hard
• enforces low average distance, but outliers might exist that hurt
k-NN performance

4 / 26

Large Margin Nearest Neighbor (LMNN) [Weinberger et al ., 2006]

Given data {(x1, y1), (x2, y2), . . . , (xn, yn)} ⊂ X × Y, solve

min
M<0,ξ≥0

n∑
i,j=1

d2
M (xi, xj) +

∑
i,j,l

ξijl

subject to, for all i, j, l with yi = yj 6= yl,

d2
M (xi, xl)− d2

M (xi, xj) ≥ 1− ξijk

• pull examples together,
• but enforce examples of different classes to have larger distance
from each other than examples of same class
• convex optimization problem

Disadvantages:
• optimizing over all positive definite matrices is still hard

5 / 26

Distance Learning, Alternative Views

Minimizing a function over the set of all positive definite matrices:
• difficult, since matrix entries must fulfill many constraints of high
order (e.g. detM ≥ 0)
• but: set is convex, so no danger of getting stuck in local optima

Alternative: parameterize M = L>L with L ∈ Rm×n

• simpler, since M automatically positive definite for any L
• enforcing a low rank on M is easy, since rank(M) ≤ m
• but: non-convex objective, only local optimum might be found

Other interpretation: learn a representation, x 7→ Lx, because

d2
M (x, x̄) = (x− x̄)>M(x− x̄) = (x− x̄)>L>L(x− x̄)

= (Lx− Lx̄)>(Lx− Lx̄) = d2
Eucl(Lx,Lx̄)

6 / 26

Distance Learning, Alternative Views

Minimizing a function over the set of all positive definite matrices:
• difficult, since matrix entries must fulfill many constraints of high
order (e.g. detM ≥ 0)
• but: set is convex, so no danger of getting stuck in local optima

Alternative: parameterize M = L>L with L ∈ Rm×n

• simpler, since M automatically positive definite for any L
• enforcing a low rank on M is easy, since rank(M) ≤ m
• but: non-convex objective, only local optimum might be found

Other interpretation: learn a representation, x 7→ Lx, because

d2
M (x, x̄) = (x− x̄)>M(x− x̄) = (x− x̄)>L>L(x− x̄)

= (Lx− Lx̄)>(Lx− Lx̄) = d2
Eucl(Lx,Lx̄)

6 / 26

Distance Learning, Alternative Views

Minimizing a function over the set of all positive definite matrices:
• difficult, since matrix entries must fulfill many constraints of high
order (e.g. detM ≥ 0)
• but: set is convex, so no danger of getting stuck in local optima

Alternative: parameterize M = L>L with L ∈ Rm×n

• simpler, since M automatically positive definite for any L
• enforcing a low rank on M is easy, since rank(M) ≤ m
• but: non-convex objective, only local optimum might be found

Other interpretation: learn a representation, x 7→ Lx, because

d2
M (x, x̄) = (x− x̄)>M(x− x̄) = (x− x̄)>L>L(x− x̄)

= (Lx− Lx̄)>(Lx− Lx̄) = d2
Eucl(Lx,Lx̄)

6 / 26

Representation Learning: Sparse Coding

Common problem in signal processing :
Coding
Let D = {d1, . . . , dm} ⊂ Rd be a dictionary, e.g. of typical signals.
Given x ∈ Rd, find coefficients α1, . . . αm, such that

x ≈
m∑
j=1

αjdj

Typical Cases:
• no constraints on α:

minα ‖x−
m∑
j=1

αjdj‖2

→ linear algebra, project x to span(d1, . . . , dm)
7 / 26

Representation Learning: Sparse Coding

Typical Cases:
• enforce sparsity in α

min
α

m∑
j=1
|αj | subject to ‖x−

m∑
j=1

αjdj‖ ≤ ε

or

min
α
‖x−

m∑
j=1

αjdj‖2 + λ
m∑
j=1
|αj |

called Sparse Coding,

• popular, e.g., in Neuroscience
I αj are neuron firing rates,
I sparsity expresses that at every time only a few neurons fire

8 / 26

Representation Learning: Sparse Coding

What, if we don’t know D = {d1, . . . , dm} ⊂ Rd ? Learn it from data!

Dictionary Learning
Given x1, . . . , xn:

min
α,D

n∑
i=1
‖xi −

m∑
j=1

αijdj‖2 + λ
m∑
j=1
|αj |

Solve by alternating optimization
• initialize D (e.g. random elements xi)
• repeat

I solve for α with fixed D
I solve for D with fixed α

• until convergence

Convergences to local optimum, multiple restarts for better results
9 / 26

Example: Dictionary Learning

For x1, . . . , xn image patches.

Learned dictionary:

(claim: human visual system has similar representation)
10 / 26

Example: Dictionary Learning

For x1, . . . , xn images of faces.

Learned dictionary:

(used, e.g., in face recognition systems)

11 / 26

Deep Learning

12 / 26

"Artificial Neural Network" aka "Deep Learning"

Artificial Neural Network have been proposed as promising models to
achieve artificial intelligence since the 1950s.

Main idea:
• stack layers of simple
elements ("neurons")
• (part of) one layer’s
output is the next
layer’s input.

Models differ in:
• network topology (number of layers and neurons, connectivity)
• neuron output (binary or real-valued)
• parameterization of each neuron

13 / 26

"Artificial Neural Network" aka "Deep Learning"

Main step: end-to-end training across L layers

f(x) = hL ◦ gL · · · ◦ h1 ◦ g1(x)

where
• each gl : Rdl−1 → Rdl is linear, i.e. gl(x) = Wlx for Wl ∈ Rdl×dl−1

• each hl : Rdl → Rdl is non-linear but acts componentwise, e.g.

hl(z) = (σ(z[1]), . . . , σ(z[l]))

for σ(t) = tanh(t) or σ(t) = max{0, t} or σ(t) = 1
1+e−t

Trained end-to-end by minimizing a loss function:

min
W1,...,WL

n∑
i=1

`(yi, f(xi))

• typically: stochastic gradient descent (with mini-batches).
• organize computations efficiently: backpropagation algorithmic

14 / 26

Example 1: Deep Autoencoder Networks [Hinton et al, 2006]

Image: http://wiki.ldv.ei.tum.de

15 / 26

Example 1: Deep Autoencoder Networks [Hinton et al, 2006]

Given: data {x1, . . . , xn} ⊂ Rd
Goal: learn a new data representation, φ : Rd → Rd′

• symmetric topology, (2K + 1) layers,
layer k and 2K + 2− k are mirrored copies of each other
• layers are fully connected to each other
• number of neuron per layer decreases from outer to inner layers
• each neuron i is a stochastic binary function, fi, of its input x:

p(fi = 1|x) = 1
1 + exp(−ai)

sigmoid (logistic function)

with ai(x) =
∑

j
wijxj + bj "activation"

• objective is reconstruction error,
∑
i ‖xi − F (xi)‖2 (non-convex)

I first, train each layer as separate auto-encoder
I then, train jointly by gradient descent
I also possible: binary-valued outputs ("restricted Boltzman machine")

• after training, middle layer is new data representation
16 / 26

Demo:
http://dpkingma.com/sgvb_mnist_demo/demo.html

17 / 26

http://dpkingma.com/sgvb_mnist_demo/demo.html

Example 2: Convolutional Neural Networks (CNNs) [LeCun et al, 1980s]

[Krizhevsky et al, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012]

18 / 26

Example 2: Convolutional Neural Networks (CNNs) [LeCun et al, 1980s]

19 / 26

Example 2: Convolutional Neural Networks (CNNs) [LeCun et al, 1980s]

Given: training set {(x1, y1), . . . , (xn, yn)} ⊂ Rd × Y
Goal: learn a classifier, G : Rd → Y
• each neuron i is a real-valued function, fi, of its input x:

Fi(x) = max{0, ai} Rectified Linear Unit (ReLU)
with ai(x) =

∑
j
wijxj + bj "activation"

• first layers convolutions,
I shared weights wij , acting on different subwindows of the layer’s input

• last few layers fully connected
I individual weights for every neuron-neuron connection

• last layer: one neuron output, Fk, per target class
• objective is squared or log-loss

I non-convex optimization w.r.t. most parameters
I train jointly by gradient descent, often with GPU support
I additional tricks: weight decay, momentum term, dropout, batch

normalization,. . .

• after training, G(x) = argmaxy Fy(x)
20 / 26

Demo:
http://cs.stanford.edu/people/karpathy/convnetjs/demo/

cifar10.html

21 / 26

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Example 3: word2vec [Mikolov et al, ICLR 2013]

For every (e.g. English) word, learn a vector wi ∈ Rd, such that it is
"easy" to predict the next word of a text from a short history.

Image: https://www.tensorflow.org/versions/r0.8/tutorials/word2vec/index.html 22 / 26

Demo:
http://deeplearner.fz-qqq.net/

23 / 26

http://deeplearner.fz-qqq.net/

Example 4: Long-Short Term Memory Networks (LSTM) [Hochreiter,

Schmidthuber, 1997]

Each "neuron" has a memory cell that can keep its value indefinitely.
Access controlled by additional inputs: store or erase a value.

• network handles sequential inputs/outputs with ’long-term’ memory
• internal weights can be used as representation for a sequence

Image: Wikipedia (BiObserver, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=43992484)
24 / 26

Demo:
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

25 / 26

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Summary – Representation Learning

Representation Learning is a recent trend in Machine Learning:

• Metric learning is well understood
I for linear (Mahalanobis), convex formulations exist
I can vastly improve quality, e.g., of nearest neigbhor classifiers,
I less impact on linear classifiers that learn per-coordinate weights, e.g.

linear SVMs

• Dictionary learning is popular in some application areas, e.g.
I face recognition (explains one face as mixture of others)
I computational neuroscience (dictionary elements ≡ neurons), etc.

• recent trend: Deep Network
I learn data representation and classifiers jointly, end-to-end
I very impressive results in Computer Vision, Speech, Language, . . .
I results have become more reproducible in the last few years,
I but, still a lot of engineering required to get good results

26 / 26

