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Representation Learning
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Metric Learning

Task: nearest-neighbor classification, or information retrieval

What distance to use? Euclidean might not be the best...
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Metric Learning

Task: nearest-neighbor classification, or information retrieval
What distance to use? Euclidean might not be the best...

Metric Learning

Given data {(z1,v1), (2,92), .-, (Tn,yn)} C X x Y, find a distance
function, d(z,z) : X x X — R, such that

d(zs,z;) small & y; =y,

Special case: Mahalanobis Metric Learning

For X C RY, parameterize
3(z,7) = (x—z) Mz — Z)
and learn positive (semi-)definite M € R9*<,
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Relevant Component Analysis (RCA) [Bar-Hille et al., 2003]

Given group X' = {x1,...,zL,}, ..., XX = {zf, ... 25}
(e.g. X¥ = {z;: y; = k} all example of each label). Solve

K nk
min d%,(xF. mF) subject to det M > 1.
min 323k ) sub >

i k
with mF = nik Sy b,

pull examples of same class together

but prevent overall volume from shrinking to 0

Disadvantages:
optimizing over all positive definite matrices is hard
enforces low average distance, but outliers might exist that hurt
k-NN performance
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Large Margin Neal’est Neighbor (LMNN) [Weinberger et al., 2006]
Given data {(z1,v1), (z2,92), -, (Tn,yn)} C X X Y, solve

min Z a3, ( Wil = Z&;l

M=0,6>0
¢ 5,J=1 7,5l

subject to, for all 4, j,1 with y; = y; # yi,

A (@i, 1) — dip(@s, 5) > 1 — &ijie

pull examples together,
but enforce examples of different classes to have larger distance
from each other than examples of same class

convex optimization problem

Disadvantages:

optimizing over all positive definite matrices is still hard
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Distance Learning, Alternative Views

Minimizing a function over the set of all positive definite matrices:

difficult, since matrix entries must fulfill many constraints of high
order (e.g. det M > 0)

but: set is convex, so no danger of getting stuck in local optima
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order (e.g. det M > 0)

but: set is convex, so no danger of getting stuck in local optima

Alternative: parameterize M = L' L with L € R™*"
simpler, since M automatically positive definite for any L
enforcing a low rank on M is easy, since rank(M) < m

but: non-convex objective, only local optimum might be found
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Distance Learning, Alternative Views

Minimizing a function over the set of all positive definite matrices:

difficult, since matrix entries must fulfill many constraints of high
order (e.g. det M > 0)

but: set is convex, so no danger of getting stuck in local optima

Alternative: parameterize M = L' L with L € R™*"
simpler, since M automatically positive definite for any L
enforcing a low rank on M is easy, since rank(M) < m

but: non-convex objective, only local optimum might be found

Other interpretation: learn a representation, x — Lx, because

3z, 8)=(x—-2) Mx-2)=(x—-2) L"L(x — )
= (Lz — Lz) " (Lz — L) = d%,(Lz, LT)
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Representation Learning: Sparse Coding

Common problem in signal processing:

Let D = {dy,...,dn} C R? be a dictionary, e.g. of typical signals.
Given z € R?, find coefficients ay, . .. am, such that

m
r = j{: ajdg
=1
Typical Cases:
no constraints on a:
m
. 2
min,, ||z — Z a;d;|
j=1
— linear algebra, project z to span(dy,...,dy)
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Representation Learning: Sparse Coding

Typical Cases:

enforce sparsity in «

m m
min Z o subject to ||z — Z a;d;|| <e
j=1 j=1
or
m m
min [z = adil|* + Aoyl
j=1 J=1

called Sparse Coding,

popular, e.g., in Neuroscience

> «; are neuron firing rates,
> sparsity expresses that at every time only a few neurons fire
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Representation Learning: Sparse Coding

What, if we don't know D = {dy,...,d,,} C R? ? Learn it from data!

Dictionary Learning

Given x1, ..., xy:

n m

m
min - llei =3 ajdil® + A ol

’ i=1 j=1 J=1

Solve by alternating optimization

initialize D (e.g. random elements x;)
repeat

» solve for o with fixed D
» solve for D with fixed a

until convergence

Convergences to local optimum, multiple restarts for better results
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Example: Dictionary Learning

For z1,...,x, image patches.

Learned dictionary:

human visual system has similar representation)




Example: Dictionary Learning

For x1,...,x, images of faces.

Learned dictionary:

(used, e.g., in face recognition systems)




Deep Learning
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"Artificial Neural Network' aka ''Deep Learning"

Artificial Neural Network have been proposed as promising models to
achieve artificial intelligence since the 1950s.

Main idea:

stack layers of simple
elements ("neurons"

(part of) one layer's
output is the next
layer’s input.

Models differ in:

network topology (number of layers and neurons, connectivity)
neuron output (binary or real-valued)
parameterization of each neuron
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"Artificial Neural Network' aka ''Deep Learning"

Main step: end-to-end training across L layers

f(x)=hpogr---ohjog(x)

where
each g1 :Réu-1 5 R4 s linear, i.e. gl((l:) = Wz for W, € R *xdi—1
each h; : R% — R% is non-linear but acts componentwise, e.g.

hi(z) = (o (z[1]),...,a(=[l]))

for o(t) = tanh(t) or o(t) = max{0,t} or o(t) = ﬁ

Trained end-to-end by minimizing a loss function:

n
min (y;, f(x;
WiV ; (yz f( z))
typically: stochastic gradient descent (with mini-batches).

organize computations efficiently: backpropagation algorithmic
14 /26



Example 1: Deep Autoencoder Networks [Hinton et a1, 2006]

target: reconstru ction

Deep Autoencoder

feature space

gradient descent

hfgh- dimensional low-dimensional

input: vector of pixel values

Image: http://wiki.ldv.ei.tum.de
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Example 1: Deep Autoencoder Networks [Hinton et a1, 2006]

Given: data {z!,..., 2"} C R?

Goal: learn a new data representation, ¢ : R? — R?
symmetric topology, (2K + 1) layers,
layer k and 2K + 2 — k are mirrored copies of each other
layers are fully connected to each other
number of neuron per layer decreases from outer to inner layers
each neuron i is a stochastic binary function, f;, of its input z:

1
=1lr)= ——— i id (logistic functi
p(fi |z) T+ exp(—al) sigmoid (logistic function)
with  a;(z) = E ;Wi + b, "activation"

objective is reconstruction error, >, ||[#! — F(z")||* (non-convex)

» first, train each layer as separate auto-encoder

> then, train jointly by gradient descent

» also possible: binary-valued outputs ("restricted Boltzman machine")
after training, middle layer is new data representation
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Demo:
http://dpkingma.com/sgvb_mnist_demo/demo.html
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http://dpkingma.com/sgvb_mnist_demo/demo.html

Example 2: Convolutional Neural Networks (CNNS) [ecun et al, 19805]

Y
158 204 2048 \dense
\
L
dense densel
1000
128 Max Jo7 L
Max 128 Max pooling 2048
pooling pooling

3 48

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150.528-dimensional, and

the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896—43.264—
4096-4096-1000.

[Krizhevsky et al, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012]
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Example 2: Convolutional Neural Networks (CNNS) [ecun et al, 19805]
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Example 2: Convolutional Neural Networks (CNNS) [iecun et al, 19805]

Given: training set {(x',y'),..., (2", y")} CRY x Y
Goal: learn a classifier, G : RY — Y
each neuron i is a real-valued function, f;, of its input x:

Fi(xz) = max{0, a;} Rectified Linear Unit (ReLU)
with  a;(z) = Zj wi;T; + bj activation

first layers convolutions,

» shared weights w;;, acting on different subwindows of the layer's input
last few layers fully connected

» individual weights for every neuron-neuron connection
last layer: one neuron output, F}, per target class

objective is squared or log-loss
> non-convex optimization w.r.t. most parameters
» train jointly by gradient descent, often with GPU support
» additional tricks: weight decay, momentum term, dropout, batch
normalization,. . .

after training, G(z) = argmax,, Fy,(z)
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Demo:
http://cs.stanford.edu/people/karpathy/convnetjs/demo/
cifar10.html
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http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Example 3: word2vec [Mikolov et al, ICLR 2013]

Softmax classifier |@@ @ @ | -
2
=)
=}
[]
QO
S
<

Hidden layer S.
o
£

> g(embeddings

Projection layer | the cat sits on thelmatl

1 J \ J
T T
context/history h target w,

For every (e.g. English) word, learn a vector w; € R, such that it is
"easy" to predict the next word of a text from a short history.

Image: https://www.tensorflow.org/versions/r0.8/tutorials/word2vec/index.html 22 /26



Demo:
http://deeplearner.fz-qqq.net/
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http://deeplearner.fz-qqq.net/

Example 4: Long-Short Term Memory Networks (LSTM) Hochreiter,

Schmidthuber, 1997]

Each "neuron" has a memory cell that can keep its value indefinitely.
Access controlled by additional inputs: store or erase a value.

network handles sequential inputs/outputs with 'long-term’ memory
internal weights can be used as representation for a sequence

Image: Wikipedia (BiObserver, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=43992484)
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Demo:
http://karpathy.github.io/2016/05/21/rnn-effectiveness/
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Summary — Representation Learning

Representation Learning is a recent trend in Machine Learning:

Metric learning is well understood

» for linear (Mahalanobis), convex formulations exist

» can vastly improve quality, e.g., of nearest neigbhor classifiers,

» less impact on linear classifiers that learn per-coordinate weights, e.g.
linear SVMs

Dictionary learning is popular in some application areas, e.g.

» face recognition (explains one face as mixture of others)
» computational neuroscience (dictionary elements = neurons), etc.

recent trend: Deep Network

learn data representation and classifiers jointly, end-to-end

very impressive results in Computer Vision, Speech, Language, ...
results have become more reproducible in the last few years,

but, still a lot of engineering required to get good results

vV vy VvYyy
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