Statistical Machine Learning

https://cvml.ist.ac.at/courses/SML_W18

Christoph Lampert

IENTY N AUSTRIA

Institute of Science and Technology

Spring Semester 2018,/2019
Lecture 5

i/ a

https://cvml.ist.ac.at/courses/SML_W18

Overview (tentative)

Date no. | Topic
Oct 08 | Mon | 1 | A Hands-On Introduction
Oct 10 | Wed | — | self-study (Christoph traveling)
Oct 15 | Mon | 2 | Bayesian Decision Theory
Generative Probabilistic Models
Oct 17 | Wed | 3 | Discriminative Probabilistic Models
Maximum Margin Classifiers
Oct 22 | Mon | 4 | Generalized Linear Classifiers, Optimization
Oct 24 | Wed | 5 | Evaluating Predictors; Model Selection
Oct 29 | Mon | — | self-study (Christoph traveling)
Oct 31 | Wed | 6 | Overfitting/Underfitting, Regularization
Nov 05 | Mon | 7 | Learning Theory I: classical/Rademacher bounds
Nov 07 | Wed | 8 | Learning Theory Il: miscellaneous
Nov 12 | Mon | 9 | Probabilistic Graphical Models |
Nov 14 | Wed | 10 | Probabilistic Graphical Models Il
Nov 19 | Mon | 11 | Probabilistic Graphical Models Il
Nov 21 | Wed | 12 | Probabilistic Graphical Models IV
until Nov 25 final project 2/37

Evaluating Predictors

3/37

So, you've trained a predictor, f : X —). How good is it really?

The loss on the training set, D = { (z',3!),..., (2", y")},
A 1 X . .
R() = Uy, £())
i=1
tells us little about the quality of a learned predictor. Reporting it

would be misleading as best.

Really, we would care about the expected loss (=generalization loss),

R(f)= —E Uy f(z))

(z.y)~p(z.y)
Unfornately, we cannot compute it, because p(z,y) is unknown.
In practice, we use a a test set,
1,1
Dtst - {(.T 7y)7' . '7(xm7ym)}7

i.e. examples that were not used for training, and compute

~ 1 & . .
Rist(f) = m Zf(yl» f(z*)
=1
Why?

4/37

So, you've trained a predictor, f : X —). How good is it really?

The loss on the training set, D = { (z',3!),..., (2", y")},
A 1 X . .
R() = Uy, £())
i=1
tells us little about the quality of a learned predictor. Reporting it

would be misleading as best.

Really, we would care about the expected loss (=generalization loss),

R(f)= —E Uy f(z))

(z.y)~p(z.y)
Unfornately, we cannot compute it, because p(z,y) is unknown.

In practice, we use a a test set,
Dtst - { ($17y1)7 sty ($m7ym) }7
i.e. examples that were not used for training, and compute
5 LS, i
Rist(f) = %Zf(y f(z'))
. i=1
Why? Let's look at Rist(f) as an estimator of R(f).

4/37

Excurse: Estimators

5 /37

Estimators

An estimator is a rule for calculating an estimate, £(S), of a quantity E
based on observed data, S. If S is random, then E(S) is also random.

Properties of estimators: bias

Let £ be an estimator of E. We can compute the expected value of the

A

estimate, Eg[E(S)], and define:

bias(E) = Es[E(S)] — E

Properties of estimators: unbiasedness

If £ is an estimator of FE, we call it unbiased, if

bias(E) =0 (i.e. IE[E(S)] = F)

If £ is unbiased, we can think of it as a noisy version of F.

6 /37

Example: Estimating the mean of a Gaussian

Examples: let S = {z',22,..., 2"} be independent samples from
N (x; 1, 02). We look at different estimators for u:

A

E(S) =1 has bias 1 — p. bias(E) =Eg E(S) —p=1— p

7 /37

Example: Estimating the mean of a Gaussian

Examples: let S = {z',22,..., 2"} be independent samples from
N (x; 1, 02). We look at different estimators for u:

A

E(S) =1 has bias 1 — p. bias(E) =Eg E(S) —p=1— p

E(S) =17 | 2% is unbiased.

n 1=

7 /37

Example: Estimating the mean of a Gaussian

Examples: let S = {z',22,..., 2"} be independent samples from
N (x; 1, 02). We look at different estimators for u:

A

E(S) =1 has bias 1 — p. bias(E) =Eg E(S) —p=1— p
E(S) =17 | 2% is unbiased.

n 1=

Es[E(S)) =Es[2 ¥, 2] = LS Eglei] =1 u=1p

7 /37

Example: Estimating the mean of a Gaussian

Examples: let S = {z',22,..., 2"} be independent samples from
N (x; 1, 02). We look at different estimators for u:

E(S) =1 has bias 1 — p. bias(E) =Eg E(S) —p=1— p
E(S) = Ls® | 2% is unbiased.

Es[E(S)] = Es[L 3,2 = L 5, Esl2'] = 2 3 =
E(S) = 2! is unbiased: Eg[E(S)] = Eg[z!] = p

7 /37

Example: Estimating the mean of a Gaussian

Examples: let S = {z',22,..., 2"} be independent samples from
N (x; 1, 02). We look at different estimators for u:

A

E(S) =1 has bias 1 — p. bias(E) =Eg E(S) —p=1— p
E(S)= 13", 2 is unbiased.

Es[E(S)) =Es[2 ¥, 2] = LS Eglei] =1 u=1p

(S) = 2! is unbiased: Eg[E(S)] = Eg[z!] =

=

E(S) = 14 15 2% has bias 1

7 /37

Example: Stochastic Gradient Descent

Reminder: we wanted to optimize
F(0) =3 £(0)
j=1
Instead of
v:=Vf(0)
we use

0:=nV[f;i(#) with i T {1,...,n}

Claim: © is an unbiased estimator for v.

8 /37

Example: Stochastic Gradient Descent

Reminder: we wanted to optimize
1(6) =2 £3(6)
=1

Instead of
v:=Vf(0)
we use o
b:=nVfi(0) with ¢ " {1,...,n}

Claim: © is an unbiased estimator for v.

n n

B[o] = D" p(@)olil = 3 - nV£i(0) = . VAi(6) = V/(6)
=1

! i—1 i—1

8 /37

How far is one estimate, £(S), from its expected value, Eg[F(S)] ?

Properties of estimators: variance

~ ~ ~ 2

Var(E) = E | (E(S) - E[E(S)])’]
If Var(E) is large, then the estimate for different S differ a lot.
Examples:

Let S = {z!,22,...,2"} be independent samples from N(z; u, o?).
We look at different estimators for p:

E(S) = 1 has variance 0.

E(S) = 13" | 2% has variance %2 (exercise)
E(S) = 2 has variance o2

E(S) = —L_S™" | 2 has variance ? (exercise)

9/37

Bias-Variance Trade-Off

It's good to have small or no bias, and it's good to have small variance.

High Variance

Low Variance

00

If you can't have both at the same time, look for a reasonable trade-off.

Low Bias

High Bias

Image: adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html
10/ 37

What if we get more and more data, S, = {z1,...,2,} for n — c0?

Properties of estimators: consistency

An estimator F is called consistent, if

E(S,) = E for n — oo.

Convergence is "in probability", i.e. it means,

nliﬁng(}Pr{ |E(Sp) — E| > €} =0.

Any estimator E with bias(£) "= 0 and Var(E) "= 0 is consistent.

Proof... follows from later observations

11/37

Back to learning...

Is

a good estimator of

Yes, if we use the right data:

Test error as an unbiased estimator

If Dest = { (2!, 9Y),..., (2™, ™)} are sampled independently from the
distribution p(x,y), and f was chosen independently of them.
Then Ryt is an unbiased and consistent estimator of R

Otherwise? Things might go wrong...

12 /37

Proof: unbiased
D is a set of random variables, (X1, Y1), ... (X™ Y™) € X x).
All (X1, YY), ..., (X™,Y™) are independent with distribution p.
For fixed functions f, ¥, chosen independently of D
QYN FXY), o (Y™ F(X™)

are independent (real-valued) random variables.

DNIEW Rese(D) = (X1, (X"L ym Npazg (Y, £(X)
*Z KLy By (Y F(XT))
*Z i Y'F(XY))
*Z x i, (Y (X))
Z(X’@)Np (Y, f(X)) =R(f) 0

13 /37

Excurse: Concentration of Measure |

14 /37

Concentration of Measure Inequalities

Z random variables, taking values z € Z C R.
p(Z = z) probability distribution

» n=E[Z] mean

» Var[z] = E[(Z — u)?] variance

Lemma (Law of Large Numbers)

Let Zy,Zs, ..., be i.i.d. random variables with mean E[Z] < oo, then

1 m
— Z z; ™% E[Z] with probability 1.

In machine learning, we have finite data, so m — oo is less important.
Concentration of measure inequalities quantify the deviation between

average and expectation for finite m.
15 /37

Assumption: Z C R, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

_ElZ]

Va>0: P[Z>aq]

a

Proof. Step 1) We can write
E(Z] :/ PlZ > 1] do

=0 -

Step 2) Since P[Z > z] is non-increasing in x, we have for any a > 0:

E[Z] > /:zop[zzx] dx > /xiop[zza] dx = aP[Z > q]

16 /37

Proof sketch of Step 1 inequality (ignoring questions of measurability
and exchange of limit processes and writing the expression as if Z had a

density p(z))

[e.9]

PZ > z] = /z_xp(z)dz = /Z:OO[[,Z >z p(z) dz

/;O P[Z > x] dz = /ﬂ;oo /Z:OO[[Z > z] p(z)dz dx

=0
:/ [z > x] dx p(z)dz
z=0 Jx=0

= / dx p(z)dz
z=0 Jz=0

= /:o z p(z)dz

=0
E[Z]

17 /37

Assumption: Z C R, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

_ElZ]

Ya>0: P[Z>d]
a

Example

Is it possible that more than half of the population have a salary more
than twice the mean salary?

18 /37

Assumption: Z C R, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

Ya>0: P[Z>d]

a
Corollary

Example

Is it possible that more than half of the population have a salary more
than twice the mean salary? No, by corrolary with a = 2.

18 /37

Assumption: Z C R, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

_ElZ]

Ya>0: P[Z>d]

a
Corollary

Example

Is it possible that more than half of the population have a salary more
than twice the mean salary? No, by corrolary with a = 2.

Example

Is it possible that more than 90% of the population have a salary less
than one tenth of the mean?

18 /37

Assumption: Z C R, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

_ElZ]

B a
Corollary

Example

Is it possible that more than half of the population have a salary more
than twice the mean salary? No, by corrolary with a = 2.

Example

Is it possible that more than 90% of the population have a salary less
than one tenth of the mean? Easily: p($1) = 0.99, p($100000) = 0.01.

18 /37

Lemma (Chebyshev’s inequality)

Var|Z]

Va20: PZ-E[Z]2d <

Proof. Apply Markov's Inequality to the random variable (Z — E[Z])2.

19 /37

Lemma (Chebyshev’s inequality)

Var|Z]

Va20: PZ-E[Z]2d <

Proof. Apply Markov's Inequality to the random variable (Z — E[Z])2.

For any a > 0:

P[|Z—E[Z]| > a] = P[(Z-E[2])’ > &’ "< -

19 /37

Lemma (Chebyshev’s inequality)

Va>0: P||Z-E[Z]|>ad <

Proof. Apply Markov's Inequality to the random variable (Z — E[Z])2.

For any a > 0:

P(|IZ-E(Z]| > o] = Pl(Z-E[Z])? > o?) "Z" ELZZEIZV)_ VarlZ]

Remark: Chebyshev ineq. has similar role as "o-rules" for Gaussians:
68% of probability mass of a Gaussian lie within p + o,
95% of probability mass of a Gaussian lie within £ 20,
99.7% of probability mass of a Gaussian lie within p + 30,

Chebyshev holds for arbitrary probability distributions, not just Gaussians.
19 /37

Chebyshev’s Inequality

Example (Soccer Match Statistics)

z = —1 for loss, z = 0 for draw, z = 1 for win.
p(—1) = 15, p(1) = 15, p(0) = 3.
E[Z] = 0.

Var(Z] = B[(2)?] = %5(~1)” + 40 + (1> = }

What if we pretended Z is Gaussian?

M:QUZVEzQ%,

we expect < 5% prob.mass outside of the 20-interval [—0.9,0.9]
but really, its 20%!

With Chebyshev:
P[|Z] > 0.9] < £/(0.9)? ~ 0.247, so bound is correct

20/37

Applying Chebyshev’s Inequality

Lemma (Quantitative Version of the Law of Large Numbers)

Set Zy,...,Zy be iid. random variables with E[Z;] = u and
Var[Z;] < C. Then, for any ¢ € (0,1), the following inequality holds with
probability at least 1 — §:

1 & C
— Y Z;— —.
m 22::1 < om
Equivalent formulations:
_ o - ;
P — Z; — — | >1-0.
' m ; o< om | —
- | - :
P — Z; — >ql— | <9
' m Z:ZI o= om | —

21 /37

Applying Chebyshev’s Inequality

Lemma (Quantitative Version of the Law of Large Numbers)

Set Zy,...,Zy be i.i.d. random variables with E[Z;] = n and

Var|Z;] < C. Then, for any 6 € (0,1),
C
> —_— < 0.
- \/ om] =0

y

1 m
E;Zi—ﬂ

22 /37

Applying Chebyshev’s Inequality

Lemma (Quantitative Version of the Law of Large Numbers)

.y Zm be ii.d. random variables with E[Z;] = v and

Set 71, ..
Var|Z;] < C. Then, for any 6 € (0,1),
1 & | C
Pr||—) Zi—pul >4/— | <6.
g [m ; i H =\ m] -
Proof. The Z; are indep., so Var [% iy Zl} = # Yoimq Var[Z;] < %
2) Chebyshev's inequality gives us for any a > 0:
1 Var [% oy ZZ} C
Pll—) Z;—pu|l>al < < :
Hm; iTH=a = a? ~ ma?
Setting § = % and solving for a yields a = %
22 /37

Sanity check: How large should my test set be?
1 & | C
P||l— Z; — <q/— | >1-06.

Setup: fixed classifier g : X —), 0/1-loss: £(y,y) = [y #]
test set D = {(z1, 1) ..., (@™ y™)} X p(z,y),
random variables Z; = [g(z*) # y'] € {0,1},
E[Z"] = E{[g(z") # ']} = 1 (generalization error of g)
Var[Z)] = E{(Z'—p)*} = p(1—p)* + (A—p)p® = p(l—p) < 3 = C

Setup: fixed confidence, e.g. 6 = 0.1, % = ,/% = ,/%5
1 & 2.5
PI=S"2Z —pul <=2
[m; Y .

To be 90%-certain that the error is within £0.05, use m > 1, 000.

> 0.9

23 /37

Sanity check: How large should my test set be?
1 & | C
P||l— Z; — <q/— | >1-06.

Setup: fixed classifier g : X —), 0/1-loss: £(y,y) = [y #]
test set D = {(z1, 1) ..., (@™ y™)} X p(z,y),
random variables Z; = [g(z*) # y'] € {0,1},
E[Z"] = E{[g(z") # ']} = 1 (generalization error of g)
Var[Z)] = E{(Z'—p)*} = p(1—p)* + (A—p)p® = p(l—p) < 3 = C

Setup: fixed confidence, e.g. 6 = 0.1, % = ,/% = ,/%5
1 & 2.5
PI=S"2Z —pul <=2
[m; i <y

To be 90%-certain that the error is within £0.05, use m > 1, 000.
To be 99%-certain that the error is within £0.05, use m > 10, 000.
To be 90%-certain that the error is within £0.005, use m > 100, 000.

> 0.9

(for this case, tighter bounds are possible: later...) 23 /37

Back to machine learning

24 /37

Predictor Training (idealized)

input training data Dy,
input learning procedure A

g < A[D] (apply A with D as training set)
output resulting predictor g : X — Y

Predictor Evaluation

input trained predictor g : X — Y
input test data Dyt

apply g to Dist and measure performance Rist
output performance estimate Ris:

25 /37

Predictor Training (idealized)

input training data Dy,
input learning procedure A

g < A[D] (apply A with D as training set)
output resulting predictor g : X — Y

Predictor Evaluation

input trained predictor g : X — Y
input test data Dyt

apply g to Dist and measure performance Rist
output performance estimate Ris:

Remark: In commercial applications, this is realistic:
given some training set one builds a single system,
one deploys it to the customers,
the customers use it on their own data, and complain if disappointed

In research, one typically has no customer, but only a fixed amount of

data to work with, so one simulates the above protocol.
25 /37

Classifier Training and Evaluation

input data D
input learning method A
split D = Dyyn U Dyt disjointly
set aside Dy to a safe place // do not look at it
g < A[Dyp] // learn a predictor from Dy,
apply g to Dist and measure performance Ryt
output performance estimate Ry

26 /37

Classifier Training and Evaluation

input data D
input learning method A
split D = Dyyn U Dyt disjointly
set aside Dy to a safe place // do not look at it
g < A[Dyp] // learn a predictor from Dy,
apply g to Dist and measure performance Ryt
output performance estimate Ry

Remark. Dy should be as small as possible, to keep Dy, as big as
possible, but large enough to be convincing.

sometimes: 50%/50% for small datasets
more often: 80% training data, 20% test data
for large datasets: 90% training, 10% test data.

26 /37

Classifier Training and Evaluation

input data D
input learning method A
split D = Dyyn U Dyt disjointly
set aside Dy to a safe place // do not look at it
g < A[Dyp] // learn a predictor from Dy,
apply g to Dist and measure performance Ryt
output performance estimate Ry

Remark. Dy should be as small as possible, to keep Dy, as big as
possible, but large enough to be convincing.

sometimes: 50%/50% for small datasets

more often: 80% training data, 20% test data

for large datasets: 90% training, 10% test data.

Dyst is "use once': it cannot be used for any decisions in building

the predictor, only to evaluate it at the very end.
26 /37

Classifier Training and Evaluation

input data D
input learning method A
split D = Dy U Dyt disjointly
set aside Dy to a safe place // do not look at it
g < A[Dyp) // learn a predictor from Dy,
apply g to Dist and measure performance Ryst
output performance estimate Ry

In practice we often want more: not just train a classifier and evaluate it,
but

select the best algorithm out of multiple ones,

select the best (hyper)parameters for a training algorithm.

We simulate the classifier evaluation step during the training procedure.
This needs (at least) one additional data split:

27 /37

Training and Selecting between Multiple Models

input data D
input set of method A = {A4,..., Ax}
split D = Diynval U Dist disjointly
set aside Dy to a safe place (do not look at it)

split Dirnval = Din U Dya) disjointly
for all models A4; € A do
9i < A; [Dtrn]
apply g; to Dy, and measure performance E, 4 (A4;)
end for
pick best performing A;

(optional) g; <= Ai[Dinval] // retrain best method on larger dataset
apply g; to Dist and measure performance Rist
output performance estimate Ry

How to split? For example % : % : % or 70% : 10% : 20%.

28 /37

Discussion.

Each algorithm is trained on Dy, and evaluated on disjoint Dy, v

You select a predictor based on R, (its performance on D,,), only
afterwards Dy is used. v

Dyt is used to evaluate the final predictor and nothing else. v

29 /37

Discussion.

Each algorithm is trained on Dy, and evaluated on disjoint Dy, v

You select a predictor based on R, (its performance on D,,), only
afterwards Dy is used. v

Dyt is used to evaluate the final predictor and nothing else. v

Problems.

small Dy, is bad: Ry could be bad estimate of g4's true
performance, and we might pick a suboptimal method.

large Dya is bad: Dy, is much smaller than Dyypyal, so the classifier
learned on Dy, might be much worse than necessary.

retraining the best model on Dynyal Mmight overcome that, but it
comes at a risk: just because a model worked well when trained on
Dirn, this does not mean it'll also work well when trained on Dynyal-

29 /37

Leave-one-out Evaluation (for a single model/algorithm)

input algorithm A
input loss function ¢
input data D (trnval part only: test part set aside earlier)
for all (z¢,y') € D do
g+ A[D\{(z",4)}] // Dumn is D with i-th example removed
Ti — é(yiagﬂi(xi)) // Dval = {($z’yz)}v diSJOint to Dirm
end for
output Rjoo = % m ,r’ (average leave-one-out risk)

Properties.
Each 7% is a unbiased (but high variance) estimate of the risk R(g ™)
D\ {(z%,y")} is almost the same as D, so we can hope that each
i

g " is almost the same as g = A[D].
Therefore, Rjoo can be expected a good estimate of R(g)

Problem: slow, trains n times on n — 1 examples instead of once on n

30 /37

Compromise: use fixed number of small Dy,

K-fold Cross Validation (CV)

input algorithm A, loss function ¢, data D (trnval part)
split D = Uf:ﬂ)k into K equal sized disjoint parts
fork=1,...,K do
9" + A[D\ Dy]

* — g Legen, L' 97" (@)

end for
output Rx.cyv = %> p_ " (K-fold cross-validation risk)

Observation.
for K = |D| same as leave-one-out error.
approximately k times increase in runtime.

most common: k = 10 or kK = 5.

Problem: training sets overlap, so the error estimates are correlated.
Exception: K =2

31 /37

5 x 2 Cross Validation (5 x 2-CV)

input algorithm A, loss function ¢, data D (trnval part)
fork=1,...,5do
Splﬁ D 222)1L31)2
g1<——14U31L
r’f < evaluate g1 on Dy
g2 < A[Dy],
7’5 < evaluate g2 on D;
rk %(r,}; + 1)
end for
output Rs5x2 = %22:1 rk

Observation.
5 x 2-CV is really the average of 5 runs of 2-fold CV
very easy to implement: shuffle the data and split into halfs
within each run the training sets are disjoint and the classifiers g
and g are independent

Problem: training sets are smaller than in 5- or 10-fold CV.
32 /37

Classification with Imbalanced Classes

If classes are imbalanced accuracy might not tell us much:
ply =—1) =0.99, p(y = +1) = 0.01 — "always no" is 99% correct

there might not be a better non-constant classifier

Three "solutions":
balancing
» use only subset of the majority class to balance data (5:1, or 1:1)
reweighting
» multiple loss in optimization with class-dependent constant Cy,,

1 . 1 -
Dy Z é(%ﬁf(%‘))*‘ﬁ Z yi, (i) +Q(f)
@iy eny = (@i w)eD-

treat as a retrieval problem instead of classification

33 /37

Classifiers for Information Retrieval Tasks

Some classification tasks are really rather retrieval tasks, e.g.

database lookup: is an entry z relevant (y = 1) or not (y = —1)7
A typical property:

prediction is performed on a fixed database

we have access to all elements of the test set at the same time

positives (y = 1) are important, negative (y = —1) are a nuisanse

we don't need all decisions, a few correct positives is enough

For a classifier g(x) = sign f(x) with f(z): X — R (e.g.,
f(z) = (w,x)), we interpret f(x) as its confidence.

To produce K positives we return the test samples of highest confidence.

Equivalently, we decide by gg(z) = sign(f(x) — @), for the right 6.

34 /37

Evaluating Retrieval Systems

Retrieval quality is often measure in terms of precision and recall:

Definition (Precision, Recall, F-Score)

For Y = {1}, let g : X —) a decision function and
D= {(z',y'),...,(a",y")} C X x Y be a database.

Then we define

number of test samples with g(z7) =1 and 3/ = 1

recision(g) = -
P (9) number of test samples with g(z?) = 1
recall(g) = number of test samples with g(:vj.) =1 and y =1
number of test samples with 3/ = 1

precision(g) - recall(g)
precision(g) + recall(g)

F-score(g) =2

35 /37

For different thresholds, 8, we obtain different precision and recall values.

They are summarized by a precision-recall curve:
1

0.8

0.6

0.4

precision

0.2

0 0.2 0.4 0.6 0.8 1
recall

36 /37

For different thresholds, 8, we obtain different precision and recall values.

They are summarized by a precision-recall curve:
1

0.8

0.6

precision

0.4 0.6
recall

If pressured, summarize into one number: average precision.

Curve/value depends on class ratio: higher values for more positives

36 /37

A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

number of samples with g(x7) =1 and 3/ = 1

true-positive-rate(g) = ,
2 (9) number of samples with yJ = 1

- number of samples with g(x’) =1 and y/ = —1
false-positive-rate(g) = number of samples with ¢/ = —1
1,
v
—
C os
v
2
B
B 0.6
o
o
L o4
2
-+
0.2
0 0.2 0.4 0.6 0.8 1

false positive rate

37 /37

A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

number of samples with g(x7) =1 and 3/ = 1

true-positive-rate(g) = ,
2 (9) number of samples with yJ = 1

number of samples with g(x’) =1 and y/ = —1

false-positive-rate(g) = number of samples with ¢/ = —1

true positive rate

0.2 0.4 0.6 0.8
false positive rate

Summarize into: area under ROC curve (AUC). a7 /37

A similar role in different context:

Receiver Operating Characteristic (ROC) Curve

number of samples with g(x7) =1 and 3/ = 1

true-positive-rate(g) = ,
2 (9) number of samples with yJ = 1

" number of samples with g(x?) =1 and y/ = —1
false-positive-rate(g) = A
number of samples with 3/ = —1
1 .
[0}
+J L
O os e
o e
2 P
= QR
— 0.6 L0
o
O 04 L
>
o L
+J L
0.2,
0 0.2 0.4 0.6 0.8 1

false positive rate

Random classifier: AUC = 0.5, regardless of class proportions. a7 /87

