
Statistical Machine Learning
https://cvml.ist.ac.at/courses/SML_W18

Christoph Lampert

Spring Semester 2018/2019
Lecture 5

1 / 37

https://cvml.ist.ac.at/courses/SML_W18

Overview (tentative)

Date no. Topic
Oct 08 Mon 1 A Hands-On Introduction
Oct 10 Wed – self-study (Christoph traveling)
Oct 15 Mon 2 Bayesian Decision Theory

Generative Probabilistic Models
Oct 17 Wed 3 Discriminative Probabilistic Models

Maximum Margin Classifiers
Oct 22 Mon 4 Generalized Linear Classifiers, Optimization
Oct 24 Wed 5 Evaluating Predictors; Model Selection
Oct 29 Mon – self-study (Christoph traveling)
Oct 31 Wed 6 Overfitting/Underfitting, Regularization
Nov 05 Mon 7 Learning Theory I: classical/Rademacher bounds
Nov 07 Wed 8 Learning Theory II: miscellaneous
Nov 12 Mon 9 Probabilistic Graphical Models I
Nov 14 Wed 10 Probabilistic Graphical Models II
Nov 19 Mon 11 Probabilistic Graphical Models III
Nov 21 Wed 12 Probabilistic Graphical Models IV
until Nov 25 final project 2 / 37

Evaluating Predictors

3 / 37

So, you’ve trained a predictor, f : X → Y. How good is it really?

• The loss on the training set, D = { (x1, y1), . . . , (xn, yn) },

R̂(f) = 1
n

n∑
i=1

`(yi, f(xi))

tells us little about the quality of a learned predictor. Reporting it
would be misleading as best.
• Really, we would care about the expected loss (=generalization loss),

R(f) = E
(x,y)∼p(x,y)

`(y, f(x)).

Unfornately, we cannot compute it, because p(x, y) is unknown.
• In practice, we use a a test set,

Dtst = { (x1, y1), . . . , (xm, ym) },
i.e. examples that were not used for training, and compute

R̂tst(f) = 1
m

m∑
i=1

`(yi, f(xi))

Why?

Let’s look at R̂tst(f) as an estimator of R(f).

4 / 37

So, you’ve trained a predictor, f : X → Y. How good is it really?

• The loss on the training set, D = { (x1, y1), . . . , (xn, yn) },

R̂(f) = 1
n

n∑
i=1

`(yi, f(xi))

tells us little about the quality of a learned predictor. Reporting it
would be misleading as best.
• Really, we would care about the expected loss (=generalization loss),

R(f) = E
(x,y)∼p(x,y)

`(y, f(x)).

Unfornately, we cannot compute it, because p(x, y) is unknown.
• In practice, we use a a test set,

Dtst = { (x1, y1), . . . , (xm, ym) },
i.e. examples that were not used for training, and compute

R̂tst(f) = 1
m

m∑
i=1

`(yi, f(xi))

Why? Let’s look at R̂tst(f) as an estimator of R(f). 4 / 37

Excurse: Estimators

5 / 37

Estimators
An estimator is a rule for calculating an estimate, Ê(S), of a quantity E
based on observed data, S. If S is random, then Ê(S) is also random.

Properties of estimators: bias
Let Ê be an estimator of E. We can compute the expected value of the
estimate, ES [Ê(S)], and define:

bias(Ê) = ES [Ê(S)]− E

Properties of estimators: unbiasedness
If Ê is an estimator of E, we call it unbiased, if

bias(Ê) = 0 (i.e. E
S

[Ê(S)] = E)

If Ê is unbiased, we can think of it as a noisy version of E.
6 / 37

Example: Estimating the mean of a Gaussian
Examples: let S = {z1, z2, . . . , zn} be independent samples from
N (x;µ, σ2). We look at different estimators for µ:

• Ê(S) = 1 has bias 1− µ. bias(Ê) = ES Ê(S)− µ = 1− µ

• Ê(S) = 1
n

∑n
i=1 z

i is unbiased.

ES [Ê(S)] = ES [1
n

∑
i z
i] = 1

n

∑
i ES [zi] = 1

n

∑
i µ = µ

• Ê(S) = z1 is unbiased: ES [Ê(S)] = ES [z1] = µ

• Ê(S) = 1
n + 1

n

∑n
i=1 z

i has bias 1
n

7 / 37

Example: Estimating the mean of a Gaussian
Examples: let S = {z1, z2, . . . , zn} be independent samples from
N (x;µ, σ2). We look at different estimators for µ:

• Ê(S) = 1 has bias 1− µ. bias(Ê) = ES Ê(S)− µ = 1− µ

• Ê(S) = 1
n

∑n
i=1 z

i is unbiased.

ES [Ê(S)] = ES [1
n

∑
i z
i] = 1

n

∑
i ES [zi] = 1

n

∑
i µ = µ

• Ê(S) = z1 is unbiased: ES [Ê(S)] = ES [z1] = µ

• Ê(S) = 1
n + 1

n

∑n
i=1 z

i has bias 1
n

7 / 37

Example: Estimating the mean of a Gaussian
Examples: let S = {z1, z2, . . . , zn} be independent samples from
N (x;µ, σ2). We look at different estimators for µ:

• Ê(S) = 1 has bias 1− µ. bias(Ê) = ES Ê(S)− µ = 1− µ

• Ê(S) = 1
n

∑n
i=1 z

i is unbiased.

ES [Ê(S)] = ES [1
n

∑
i z
i] = 1

n

∑
i ES [zi] = 1

n

∑
i µ = µ

• Ê(S) = z1 is unbiased: ES [Ê(S)] = ES [z1] = µ

• Ê(S) = 1
n + 1

n

∑n
i=1 z

i has bias 1
n

7 / 37

Example: Estimating the mean of a Gaussian
Examples: let S = {z1, z2, . . . , zn} be independent samples from
N (x;µ, σ2). We look at different estimators for µ:

• Ê(S) = 1 has bias 1− µ. bias(Ê) = ES Ê(S)− µ = 1− µ

• Ê(S) = 1
n

∑n
i=1 z

i is unbiased.

ES [Ê(S)] = ES [1
n

∑
i z
i] = 1

n

∑
i ES [zi] = 1

n

∑
i µ = µ

• Ê(S) = z1 is unbiased: ES [Ê(S)] = ES [z1] = µ

• Ê(S) = 1
n + 1

n

∑n
i=1 z

i has bias 1
n

7 / 37

Example: Estimating the mean of a Gaussian
Examples: let S = {z1, z2, . . . , zn} be independent samples from
N (x;µ, σ2). We look at different estimators for µ:

• Ê(S) = 1 has bias 1− µ. bias(Ê) = ES Ê(S)− µ = 1− µ

• Ê(S) = 1
n

∑n
i=1 z

i is unbiased.

ES [Ê(S)] = ES [1
n

∑
i z
i] = 1

n

∑
i ES [zi] = 1

n

∑
i µ = µ

• Ê(S) = z1 is unbiased: ES [Ê(S)] = ES [z1] = µ

• Ê(S) = 1
n + 1

n

∑n
i=1 z

i has bias 1
n

7 / 37

Example: Stochastic Gradient Descent
Reminder: we wanted to optimize

f(θ) =
n∑
j=1

fj(θ)

Instead of
v := ∇f(θ)

we use
v̂ := n∇fi(θ) with i

uniformly∼ {1, . . . , n}

Claim: v̂ is an unbiased estimator for v.

E
i
[v̂] =

n∑
i=1

p(i)v̂[i] =
n∑
i=1

1
n
n∇fi(θ) =

n∑
i=1
∇fi(θ) = ∇f(θ)

8 / 37

Example: Stochastic Gradient Descent
Reminder: we wanted to optimize

f(θ) =
n∑
j=1

fj(θ)

Instead of
v := ∇f(θ)

we use
v̂ := n∇fi(θ) with i

uniformly∼ {1, . . . , n}

Claim: v̂ is an unbiased estimator for v.

E
i
[v̂] =

n∑
i=1

p(i)v̂[i] =
n∑
i=1

1
n
n∇fi(θ) =

n∑
i=1
∇fi(θ) = ∇f(θ)

8 / 37

How far is one estimate, Ê(S), from its expected value, ES [Ê(S)] ?

Properties of estimators: variance

Var(Ê) = E
S

[(
Ê(S)− E

S
[Ê(S)]

)2]
If Var(Ê) is large, then the estimate for different S differ a lot.

Examples:
Let S = {z1, z2, . . . , zn} be independent samples from N (x;µ, σ2).
We look at different estimators for µ:

• Ê(S) = 1 has variance 0.
• Ê(S) = 1

n

∑n
i=1 zi has variance σ2

n (exercise)
• Ê(S) = z1 has variance σ2

• Ê(S) = 1
n−1

∑n
i=1 zi has variance ? (exercise)

9 / 37

Bias-Variance Trade-Off

It’s good to have small or no bias, and it’s good to have small variance.

If you can’t have both at the same time, look for a reasonable trade-off.
Image: adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html

10 / 37

What if we get more and more data, Sn = {z1, . . . , zn} for n→∞?

Properties of estimators: consistency
An estimator Ê is called consistent, if

Ê(Sn)→ E for n→∞.

Convergence is "in probability", i.e. it means,

lim
n→∞

Pr{ |Ê(Sn)− E| > ε } = 0.

Any estimator Ê with bias(Ê) n→∞→ 0 and Var(Ê) n→∞→ 0 is consistent.

Proof... follows from later observations

11 / 37

Back to learning...

Is
R̂tst(f) = 1

n

n∑
i=1

`(yi, f(xi))

a good estimator of

R(f) = E
(x,y)∼p(x,y)

`(y, f(x))

Yes, if we use the right data:

Test error as an unbiased estimator
If Dtst = { (x1, y1), . . . , (xm, ym) } are sampled independently from the
distribution p(x, y), and f was chosen independently of them.
Then R̂tst is an unbiased and consistent estimator of R:

Otherwise? Things might go wrong...
12 / 37

Proof: unbiased
• D is a set of random variables, (X1, Y 1), . . . , (Xm, Y m) ∈ X × Y.
• All (X1, Y 1), . . . , (Xm, Y m) are independent with distribution p.
• For fixed functions f, `, chosen independently of D

`(Y 1, f(X1)), . . . , `(Y m, f(Xm))
are independent (real-valued) random variables.

E
D∼p⊗m

R̂tst(D) = E
(X1,Y 1),...,(Xm,Y m)∼p

1
m

m∑
i=1

`(Y i, f(Xi))

= 1
m

m∑
i=1

E
(X1,Y 1),...,(Xm,Y m)∼p

`(Y i, f(Xi))

= 1
m

m∑
i=1

E
(Xi,Y i)∼p

`(Y i, f(Xi))

= 1
m

m∑
i=1

E
(X,Y)∼p

`(Y, f(X))

= E
(X,Y)∼p

`(Y, f(X)) = R(f) 2

13 / 37

Excurse: Concentration of Measure I

14 / 37

Concentration of Measure Inequalities

• Z random variables, taking values z ∈ Z ⊆ R.
• p(Z = z) probability distribution

I µ = E[Z] mean
I Var[z] = E[(Z − µ)2] variance

Lemma (Law of Large Numbers)

Let Z1, Z2, . . . , be i.i.d. random variables with mean E[Z] <∞, then

1
m

m∑
i=1

Zi
m→∞−→ E[Z] with probability 1.

In machine learning, we have finite data, so m→∞ is less important.
Concentration of measure inequalities quantify the deviation between
average and expectation for finite m.

15 / 37

Assumption: Z ⊆ R+, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

∀a > 0 : P[Z ≥ a] ≤ E[Z]
a

.

Proof. Step 1) We can write

E[Z] =
∫ ∞
x=0

P[Z ≥ x] dx

Step 2) Since P[Z ≥ x] is non-increasing in x, we have for any a ≥ 0:

E[Z] ≥
∫ a

x=0
P[Z ≥ x] dx ≥

∫ a

x=0
P[Z ≥ a] dx = aP[Z ≥ a]

16 / 37

Proof sketch of Step 1 inequality (ignoring questions of measurability
and exchange of limit processes and writing the expression as if Z had a
density p(z))

P[Z ≥ x] =
∫ ∞
z=x

p(z)dz =
∫ ∞
z=0

Jz ≥ xK p(z) dz

∫ ∞
x=0

P[Z ≥ x] dx =
∫ ∞
x=0

∫ ∞
z=0

Jz ≥ xK p(z)dz dx

=
∫ ∞
z=0

∫ ∞
x=0

Jz ≥ xK dx︸ ︷︷ ︸
=z

p(z)dz

=
∫ ∞
z=0

∫ z

x=0
dx p(z)dz

=
∫ ∞
z=0

z p(z)dz

= E[Z]

17 / 37

Assumption: Z ⊆ R+, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

∀a ≥ 0 : P[Z ≥ a] ≤ E[Z]
a

.

Corollary

∀a ≥ 0 : P[Z ≥ aE[Z]] ≤ 1
a
.

Example
Is it possible that more than half of the population have a salary more
than twice the mean salary?

No, by corrolary with a = 2.

Example
Is it possible that more than 90% of the population have a salary less
than one tenth of the mean? Easily: p($1) = 0.99, p($100000) = 0.01.

18 / 37

Assumption: Z ⊆ R+, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

∀a ≥ 0 : P[Z ≥ a] ≤ E[Z]
a

.

Corollary

∀a ≥ 0 : P[Z ≥ aE[Z]] ≤ 1
a
.

Example
Is it possible that more than half of the population have a salary more
than twice the mean salary? No, by corrolary with a = 2.

Example
Is it possible that more than 90% of the population have a salary less
than one tenth of the mean? Easily: p($1) = 0.99, p($100000) = 0.01.

18 / 37

Assumption: Z ⊆ R+, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

∀a ≥ 0 : P[Z ≥ a] ≤ E[Z]
a

.

Corollary

∀a ≥ 0 : P[Z ≥ aE[Z]] ≤ 1
a
.

Example
Is it possible that more than half of the population have a salary more
than twice the mean salary? No, by corrolary with a = 2.

Example
Is it possible that more than 90% of the population have a salary less
than one tenth of the mean?

Easily: p($1) = 0.99, p($100000) = 0.01.

18 / 37

Assumption: Z ⊆ R+, i.e. Z takes only non-negative values.

Lemma (Markov’s inequality)

∀a ≥ 0 : P[Z ≥ a] ≤ E[Z]
a

.

Corollary

∀a ≥ 0 : P[Z ≥ aE[Z]] ≤ 1
a
.

Example
Is it possible that more than half of the population have a salary more
than twice the mean salary? No, by corrolary with a = 2.

Example
Is it possible that more than 90% of the population have a salary less
than one tenth of the mean? Easily: p($1) = 0.99, p($100000) = 0.01.

18 / 37

Lemma (Chebyshev’s inequality)

∀a ≥ 0 : P[|Z − E[Z]| ≥ a] ≤ Var[Z]
a2

Proof. Apply Markov’s Inequality to the random variable (Z − E[Z])2.

For any a ≥ 0:

P[|Z−E[Z]| ≥ a] = P[(Z−E[Z])2 ≥ a2]
Markov
≤ E[(Z − E[Z])2]

a2 = Var[Z]
a2 .

Remark: Chebyshev ineq. has similar role as "σ-rules" for Gaussians:
• 68% of probability mass of a Gaussian lie within µ± σ,
• 95% of probability mass of a Gaussian lie within µ± 2σ,
• 99.7% of probability mass of a Gaussian lie within µ± 3σ,

Chebyshev holds for arbitrary probability distributions, not just Gaussians.

19 / 37

Lemma (Chebyshev’s inequality)

∀a ≥ 0 : P[|Z − E[Z]| ≥ a] ≤ Var[Z]
a2

Proof. Apply Markov’s Inequality to the random variable (Z − E[Z])2.

For any a ≥ 0:

P[|Z−E[Z]| ≥ a] = P[(Z−E[Z])2 ≥ a2]
Markov
≤ E[(Z − E[Z])2]

a2 = Var[Z]
a2 .

Remark: Chebyshev ineq. has similar role as "σ-rules" for Gaussians:
• 68% of probability mass of a Gaussian lie within µ± σ,
• 95% of probability mass of a Gaussian lie within µ± 2σ,
• 99.7% of probability mass of a Gaussian lie within µ± 3σ,

Chebyshev holds for arbitrary probability distributions, not just Gaussians.

19 / 37

Lemma (Chebyshev’s inequality)

∀a ≥ 0 : P[|Z − E[Z]| ≥ a] ≤ Var[Z]
a2

Proof. Apply Markov’s Inequality to the random variable (Z − E[Z])2.

For any a ≥ 0:

P[|Z−E[Z]| ≥ a] = P[(Z−E[Z])2 ≥ a2]
Markov
≤ E[(Z − E[Z])2]

a2 = Var[Z]
a2 .

Remark: Chebyshev ineq. has similar role as "σ-rules" for Gaussians:
• 68% of probability mass of a Gaussian lie within µ± σ,
• 95% of probability mass of a Gaussian lie within µ± 2σ,
• 99.7% of probability mass of a Gaussian lie within µ± 3σ,

Chebyshev holds for arbitrary probability distributions, not just Gaussians.
19 / 37

Chebyshev’s Inequality

Example (Soccer Match Statistics)

• z = −1 for loss, z = 0 for draw, z = 1 for win.
• p(−1) = 1

10 , p(1) = 1
10 , p(0) = 4

5 .
• E[Z] = 0.
• Var[Z] = E[(Z)2] = 1

10(−1)2 + 4
502 + 1

10(1)2 = 1
5

What if we pretended Z is Gaussian?
• µ = 0, σ =

√
1
5 ≈ 0.45,

• we expect ≤ 5% prob.mass outside of the 2σ-interval [−0.9, 0.9]
• but really, its 20%!

With Chebyshev:
• P[|Z| ≥ 0.9] ≤ 1

5/(0.9)2 ≈ 0.247, so bound is correct

20 / 37

Applying Chebyshev’s Inequality

Lemma (Quantitative Version of the Law of Large Numbers)

Set Z1, . . . , Zm be i.i.d. random variables with E[Zi] = µ and
Var[Zi] ≤ C. Then, for any δ ∈ (0, 1), the following inequality holds with
probability at least 1− δ:∣∣∣∣∣ 1

m

m∑
i=1

Zi − µ
∣∣∣∣∣ <

√
C

δm
.

Equivalent formulations:

Pr

∣∣∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣∣∣ <

√
C

δm

 ≥ 1− δ.

Pr

∣∣∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣∣∣ ≥

√
C

δm

 ≤ δ.
21 / 37

Applying Chebyshev’s Inequality

Lemma (Quantitative Version of the Law of Large Numbers)

Set Z1, . . . , Zm be i.i.d. random variables with E[Zi] = µ and
Var[Zi] ≤ C. Then, for any δ ∈ (0, 1),

Pr

∣∣∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣∣∣ ≥

√
C

δm

 ≤ δ.

Proof. The Zi are indep., so Var
[

1
m

∑m
i=1 Zi

]
= 1

m2
∑m
i=1 Var[Zi] ≤ C

m .

2) Chebyshev’s inequality gives us for any a ≥ 0:

P
[∣∣∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣∣∣ ≥ a

]
≤

Var
[

1
m

∑m
i=1 Zi

]
a2 ≤ C

ma2 .

Setting δ = C
ma2 and solving for a yields a =

√
C
δm .

22 / 37

Applying Chebyshev’s Inequality

Lemma (Quantitative Version of the Law of Large Numbers)

Set Z1, . . . , Zm be i.i.d. random variables with E[Zi] = µ and
Var[Zi] ≤ C. Then, for any δ ∈ (0, 1),

Pr

∣∣∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣∣∣ ≥

√
C

δm

 ≤ δ.

Proof. The Zi are indep., so Var
[

1
m

∑m
i=1 Zi

]
= 1

m2
∑m
i=1 Var[Zi] ≤ C

m .

2) Chebyshev’s inequality gives us for any a ≥ 0:

P
[∣∣∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣∣∣ ≥ a

]
≤

Var
[

1
m

∑m
i=1 Zi

]
a2 ≤ C

ma2 .

Setting δ = C
ma2 and solving for a yields a =

√
C
δm .

22 / 37

Sanity check: How large should my test set be?

P

∣∣∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣∣∣ ≤

√
C

δm

 ≥ 1− δ.

Setup: fixed classifier g : X → Y, 0/1-loss: `(ȳ, y) = Jȳ 6= yK
• test set D = {(x1, y1) . . . , (xm, ym)} i.i.d.∼ p(x, y),
• random variables Zi = Jg(xi) 6= yiK ∈ {0, 1},
• E[Zi] = E{Jg(xi) 6= yiK} = µ (generalization error of g)
• Var[Zi] = E{(Zi−µ)2} = µ(1−µ)2 + (1−µ)µ2 = µ(1−µ) ≤ 1

4 =: C

Setup: fixed confidence, e.g. δ = 0.1,
√

C
δm =

√
0.25
0.1m =

√
2.5
m

P
[∣∣∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣∣∣ ≤

√
2.5
m

]
≥ 0.9

To be 90%-certain that the error is within ±0.05, use m ≥ 1, 000.

To be 99%-certain that the error is within ±0.05, use m ≥ 10, 000.
To be 90%-certain that the error is within ±0.005, use m ≥ 100, 000.
(for this case, tighter bounds are possible: later...)

23 / 37

Sanity check: How large should my test set be?

P

∣∣∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣∣∣ ≤

√
C

δm

 ≥ 1− δ.

Setup: fixed classifier g : X → Y, 0/1-loss: `(ȳ, y) = Jȳ 6= yK
• test set D = {(x1, y1) . . . , (xm, ym)} i.i.d.∼ p(x, y),
• random variables Zi = Jg(xi) 6= yiK ∈ {0, 1},
• E[Zi] = E{Jg(xi) 6= yiK} = µ (generalization error of g)
• Var[Zi] = E{(Zi−µ)2} = µ(1−µ)2 + (1−µ)µ2 = µ(1−µ) ≤ 1

4 =: C

Setup: fixed confidence, e.g. δ = 0.1,
√

C
δm =

√
0.25
0.1m =

√
2.5
m

P
[∣∣∣∣∣ 1
m

m∑
i=1

Zi − µ
∣∣∣∣∣ ≤

√
2.5
m

]
≥ 0.9

To be 90%-certain that the error is within ±0.05, use m ≥ 1, 000.
To be 99%-certain that the error is within ±0.05, use m ≥ 10, 000.
To be 90%-certain that the error is within ±0.005, use m ≥ 100, 000.
(for this case, tighter bounds are possible: later...) 23 / 37

Back to machine learning

24 / 37

Predictor Training (idealized)

input training data Dtrn
input learning procedure A
g ← A[D] (apply A with D as training set)

output resulting predictor g : X → Y

Predictor Evaluation

input trained predictor g : X → Y
input test data Dtst
apply g to Dtst and measure performance Rtst

output performance estimate Rtst

Remark: In commercial applications, this is realistic:
• given some training set one builds a single system,
• one deploys it to the customers,
• the customers use it on their own data, and complain if disappointed

In research, one typically has no customer, but only a fixed amount of
data to work with, so one simulates the above protocol.

25 / 37

Predictor Training (idealized)

input training data Dtrn
input learning procedure A
g ← A[D] (apply A with D as training set)

output resulting predictor g : X → Y

Predictor Evaluation

input trained predictor g : X → Y
input test data Dtst
apply g to Dtst and measure performance Rtst

output performance estimate Rtst

Remark: In commercial applications, this is realistic:
• given some training set one builds a single system,
• one deploys it to the customers,
• the customers use it on their own data, and complain if disappointed

In research, one typically has no customer, but only a fixed amount of
data to work with, so one simulates the above protocol.

25 / 37

Classifier Training and Evaluation

input data D
input learning method A
split D = Dtrn ∪̇ Dtst disjointly
set aside Dtst to a safe place // do not look at it
g ← A[Dtrn] // learn a predictor from Dtrn
apply g to Dtst and measure performance Rtst

output performance estimate Rtst

Remark. Dtst should be as small as possible, to keep Dtrn as big as
possible, but large enough to be convincing.
• sometimes: 50%/50% for small datasets
• more often: 80% training data, 20% test data
• for large datasets: 90% training, 10% test data.

Dtst is "use once": it cannot be used for any decisions in building
the predictor, only to evaluate it at the very end.

26 / 37

Classifier Training and Evaluation

input data D
input learning method A
split D = Dtrn ∪̇ Dtst disjointly
set aside Dtst to a safe place // do not look at it
g ← A[Dtrn] // learn a predictor from Dtrn
apply g to Dtst and measure performance Rtst

output performance estimate Rtst

Remark. Dtst should be as small as possible, to keep Dtrn as big as
possible, but large enough to be convincing.
• sometimes: 50%/50% for small datasets
• more often: 80% training data, 20% test data
• for large datasets: 90% training, 10% test data.

Dtst is "use once": it cannot be used for any decisions in building
the predictor, only to evaluate it at the very end.

26 / 37

Classifier Training and Evaluation

input data D
input learning method A
split D = Dtrn ∪̇ Dtst disjointly
set aside Dtst to a safe place // do not look at it
g ← A[Dtrn] // learn a predictor from Dtrn
apply g to Dtst and measure performance Rtst

output performance estimate Rtst

Remark. Dtst should be as small as possible, to keep Dtrn as big as
possible, but large enough to be convincing.
• sometimes: 50%/50% for small datasets
• more often: 80% training data, 20% test data
• for large datasets: 90% training, 10% test data.

Dtst is "use once": it cannot be used for any decisions in building
the predictor, only to evaluate it at the very end.

26 / 37

Classifier Training and Evaluation

input data D
input learning method A
split D = Dtrn ∪̇ Dtst disjointly
set aside Dtst to a safe place // do not look at it
g ← A[Dtrn] // learn a predictor from Dtrn
apply g to Dtst and measure performance Rtst

output performance estimate Rtst

In practice we often want more: not just train a classifier and evaluate it,
but
• select the best algorithm out of multiple ones,
• select the best (hyper)parameters for a training algorithm.

We simulate the classifier evaluation step during the training procedure.
This needs (at least) one additional data split:

27 / 37

Training and Selecting between Multiple Models

input data D
input set of method A = {A1, . . . , AK}
split D = Dtrnval ∪̇ Dtst disjointly
set aside Dtst to a safe place (do not look at it)

split Dtrnval = Dtrn ∪̇ Dval disjointly
for all models Ai ∈ A do
gi ← Ai[Dtrn]
apply gi to Dval and measure performance Eval(Ai)

end for
pick best performing Ai
(optional) gi ← Ai[Dtrnval] // retrain best method on larger dataset
apply gi to Dtst and measure performance Rtst

output performance estimate Rtst

How to split? For example 1
3 : 1

3 : 1
3 or 70% : 10% : 20%.

28 / 37

Discussion.

• Each algorithm is trained on Dtrn and evaluated on disjoint Dval !

• You select a predictor based on Rval (its performance on Dval), only
afterwards Dtst is used. !

• Dtst is used to evaluate the final predictor and nothing else. !

Problems.
• small Dval is bad: Rval could be bad estimate of gA’s true
performance, and we might pick a suboptimal method.

• large Dval is bad: Dtrn is much smaller than Dtrnval, so the classifier
learned on Dtrn might be much worse than necessary.

• retraining the best model on Dtrnval might overcome that, but it
comes at a risk: just because a model worked well when trained on
Dtrn, this does not mean it’ll also work well when trained on Dtrnval.

29 / 37

Discussion.

• Each algorithm is trained on Dtrn and evaluated on disjoint Dval !

• You select a predictor based on Rval (its performance on Dval), only
afterwards Dtst is used. !

• Dtst is used to evaluate the final predictor and nothing else. !

Problems.
• small Dval is bad: Rval could be bad estimate of gA’s true
performance, and we might pick a suboptimal method.

• large Dval is bad: Dtrn is much smaller than Dtrnval, so the classifier
learned on Dtrn might be much worse than necessary.

• retraining the best model on Dtrnval might overcome that, but it
comes at a risk: just because a model worked well when trained on
Dtrn, this does not mean it’ll also work well when trained on Dtrnval.

29 / 37

Leave-one-out Evaluation (for a single model/algorithm)

input algorithm A
input loss function `
input data D (trnval part only: test part set aside earlier)
for all (xi, yi) ∈ D do
g¬i ← A[D \ {(xi, yi)}] // Dtrn is D with i-th example removed
ri ← `(yi, g¬i(xi)) // Dval = {(xi, yi)}, disjoint to Dtrn

end for
output Rloo = 1

n

∑n
i=1 r

i (average leave-one-out risk)

Properties.
• Each ri is a unbiased (but high variance) estimate of the risk R(g¬i)
• D \ {(xi, yi)} is almost the same as D, so we can hope that each
g¬i is almost the same as g = A[D].
• Therefore, Rloo can be expected a good estimate of R(g)

Problem: slow, trains n times on n− 1 examples instead of once on n
30 / 37

Compromise: use fixed number of small Dval

K-fold Cross Validation (CV)

input algorithm A, loss function `, data D (trnval part)
split D =

⋃̇K
k=1Dk into K equal sized disjoint parts

for k = 1, . . . ,K do
g¬k ← A[D \ Dk]
rk ← 1

|Dk|
∑

(x,y)∈Dk
`(yi, g¬k(x))

end for
output RK-CV = 1

K

∑n
k=1 r

k (K-fold cross-validation risk)

Observation.
• for K = |D| same as leave-one-out error.
• approximately k times increase in runtime.
• most common: k = 10 or k = 5.

Problem: training sets overlap, so the error estimates are correlated.
Exception: K = 2

31 / 37

5× 2 Cross Validation (5× 2-CV)

input algorithm A, loss function `, data D (trnval part)
for k = 1, . . . , 5 do
Split D = D1 ∪̇ D2
g1 ← A[D1],
rk1 ← evaluate g1 on D2
g2 ← A[D2],
rk2 ← evaluate g2 on D1
rk ← 1

2(r1
k + r2

k)
end for

output R5×2 = 1
5
∑5
k=1 r

k

Observation.
• 5× 2-CV is really the average of 5 runs of 2-fold CV
• very easy to implement: shuffle the data and split into halfs
• within each run the training sets are disjoint and the classifiers g1
and g2 are independent

Problem: training sets are smaller than in 5- or 10-fold CV.
32 / 37

Classification with Imbalanced Classes

If classes are imbalanced accuracy might not tell us much:
• p(y = −1) = 0.99, p(y = +1) = 0.01 → "always no" is 99% correct
• there might not be a better non-constant classifier

Three "solutions":
• balancing

I use only subset of the majority class to balance data (5:1, or 1:1)
• reweighting

I multiple loss in optimization with class-dependent constant Cyi
,

1
|D+|

n∑
(xi,yi)∈D+

`(yi, f(xi)) + 1
|D−|

n∑
(xi,yi)∈D−

`(yi, f(xi)) + Ω(f)

• treat as a retrieval problem instead of classification

33 / 37

Classifiers for Information Retrieval Tasks

Some classification tasks are really rather retrieval tasks, e.g.
• database lookup: is an entry x relevant (y = 1) or not (y = −1)?

A typical property:
• prediction is performed on a fixed database
• we have access to all elements of the test set at the same time
• positives (y = 1) are important, negative (y = −1) are a nuisanse
• we don’t need all decisions, a few correct positives is enough

For a classifier g(x) = sign f(x) with f(x) : X → R (e.g.,
f(x) = 〈w, x〉), we interpret f(x) as its confidence.

To produce K positives we return the test samples of highest confidence.

Equivalently, we decide by gθ(x) = sign(f(x)− θ), for the right θ.

34 / 37

Evaluating Retrieval Systems

Retrieval quality is often measure in terms of precision and recall :

Definition (Precision, Recall, F-Score)

For Y = {±1}, let g : X → Y a decision function and
D = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y be a database.

Then we define

precision(g) = number of test samples with g(xj) = 1 and yj = 1
number of test samples with g(xj) = 1

recall(g) = number of test samples with g(xj) = 1 and yj = 1
number of test samples with yj = 1

F -score(g) = 2 precision(g) · recall(g)
precision(g) + recall(g)

35 / 37

For different thresholds, θ, we obtain different precision and recall values.

They are summarized by a precision-recall curve:

p
re

ci
si

o
n

recall

• If pressured, summarize into one number: average precision.
• Curve/value depends on class ratio: higher values for more positives

36 / 37

For different thresholds, θ, we obtain different precision and recall values.

They are summarized by a precision-recall curve:

AP = 0.64

p
re

ci
si

o
n

recall

• If pressured, summarize into one number: average precision.
• Curve/value depends on class ratio: higher values for more positives

36 / 37

A similar role in different context:
Receiver Operating Characteristic (ROC) Curve

true-positive-rate(g) = number of samples with g(xj) = 1 and yj = 1
number of samples with yj = 1

false-positive-rate(g) = number of samples with g(xj) = 1 and yj = −1
number of samples with yj = −1

false positive rate

tr
u
e
 p

o
si

ti
v
e
 r

a
te

Summarize into: area under ROC curve (AUC).

37 / 37

A similar role in different context:
Receiver Operating Characteristic (ROC) Curve

true-positive-rate(g) = number of samples with g(xj) = 1 and yj = 1
number of samples with yj = 1

false-positive-rate(g) = number of samples with g(xj) = 1 and yj = −1
number of samples with yj = −1

false positive rate

tr
u
e
 p

o
si

ti
v
e
 r

a
te

AUC = 0.72

Summarize into: area under ROC curve (AUC). 37 / 37

A similar role in different context:
Receiver Operating Characteristic (ROC) Curve

true-positive-rate(g) = number of samples with g(xj) = 1 and yj = 1
number of samples with yj = 1

false-positive-rate(g) = number of samples with g(xj) = 1 and yj = −1
number of samples with yj = −1

false positive rate

tr
u
e
 p

o
si

ti
v
e
 r

a
te

ra
ndom

 cl
ass

ifie
r

Random classifier: AUC = 0.5, regardless of class proportions. 37 / 37

