Statistical Machine Learning

https://cvml.ist.ac.at/courses/SML_W18

Christoph Lampert

IENTY N AUSTRIA

Institute of Science and Technology

Spring Semester 2018,/2019
Lecture 8

1/38

https://cvml.ist.ac.at/courses/SML_W18

Overview (tentative)

Date no. | Topic
Oct 08 | Mon | 1 | A Hands-On Introduction
Oct 10 | Wed | — | self-study (Christoph traveling)
Oct 15 | Mon | 2 | Bayesian Decision Theory
Generative Probabilistic Models
Oct 17 | Wed | 3 | Discriminative Probabilistic Models
Maximum Margin Classifiers
Oct 22 | Mon | 4 | Generalized Linear Classifiers, Optimization
Oct 24 | Wed | 5 | Evaluating Predictors; Model Selection
Oct 29 | Mon | — | self-study (Christoph traveling)
Oct 31 | Wed | 6 | Overfitting/Underfitting, Regularization
Nov 05 | Mon | 7 | Learning Theory I: classical/Rademacher bounds
Nov 07 | Wed | 8 | Learning Theory Il: miscellaneous
Nov 12 | Mon | 9 | Probabilistic Graphical Models |
Nov 14 | Wed | 10 | Probabilistic Graphical Models Il
Nov 19 | Mon | 11 | Probabilistic Graphical Models Il
Nov 21 | Wed | 12 | Probabilistic Graphical Models IV
until Nov 25 final project 2/38

Beyond complexity measures

3 /38

Algorithm-dependent bounds

Generalization bounds so far: with probability at least 1 — ¢:

VfeH: R(f) <R(f)+ "something"

Observation:
holds simultaneous for all hypotheses in H, we can pick any we like

but: in practice, we have some algorithm that choses the hypothesis
and really only need the result for that

4/38

Algorithm-dependent bounds

Generalization bounds so far: with probability at least 1 — ¢:

VfeH: R(f)<R(f)+ "something"

Observation:
holds simultaneous for all hypotheses in H, we can pick any we like

but: in practice, we have some algorithm that choses the hypothesis
and really only need the result for that

Goal: algorithm-dependent bounds

Instead of

"For which hypothesis sets does learning not overfit?"
ask

"Which learning algorithms do not overfit?"

4/38

Z: input set (typically Z =X x)
‘H: set of hypotheses
L(h, z): loss function of the form L(h,z) = {(y, f(x))

Definition (Learning algorithm)

A learning algorithm, A, is a function that takes as input a finite
subset, D,,, C Z, and outputs a hypothesis A[D] € H.

5 /38

Z: input set (typically Z =X x)
‘H: set of hypotheses
L(h, z): loss function of the form L(h,z) = {(y, f(x))

Definition (Learning algorithm)

A learning algorithm, A, is a function that takes as input a finite
subset, D,,, C Z, and outputs a hypothesis A[D] € H.

Definition (Uniform stability)

For a training set, D = {z1,..., 2}, we call the training set with the
i-th element removed D\ = {21,...,2i 1, Zit1, - Zm }-

A learning algorithm, A, has uniform stability 5 with respect to the loss
¢ if the following holds,

VD, C ZVi€{1,2,...,m} ||L(A[D], -) — L(AD], -)]oo < B

For a uniformly stable algorithm, changing the training set a little has

only a small effect.
5 /38

Theorem (Stable algorithms generalize well [sousquet et ar., 2002])

Let A be a B-uniformly stable learning algorithm. For a training set D

that consists of m i.i.d. samples, denote by f = A[D] be the output of A
onD. Let {(y,y) be bounded by M.

Then, for any 6 > 0, with probability at least 1 — 9,

RAf) < RA(f) + 20+ (4mf + 1)y 1L

Bound is useful, if stability 3 behaves (at least) like L.

6/38

Stochastic gradient descent (SGD): minimize a function

1 m
—E; HZZ

Theorem (Stability of Stochastic Gradient Descent [Hardt et ar., 2016])

Let f(-,z) be y-smooth, convex and L-Lipschitz for every z. Suppose
that we run SGD with step sizes o, < 2/~ for T steps. Then, SGD
satisfies uniform stability with

Let f(-,z) be y-smooth and L-Lipschitz, but not necessarily convex.
Assume we run SGD with monotonically non-increasing step sizes
ay < ¢/t for some c. Then, SGD satisfies uniform stability with

ilos L
b < 'yc (2CL2)’YC+1 T"/C+1
~m—1

7 /38

The power of compression

8 /38

Reminder:

Perceptron — Training

input training set D C RY x {—1,+1}
initialize w = (0,...,0) € RY.
repeat
for all (z,y) € D: do
compute a := (w,x) ('activation’)
if ya <0 then
W < W+ Yyr
end if
end for
until w wasn't updated for a complete pass over D

Let's assume D is very large, so we don’'t need multiple passes.
Properties:
sequential training, one pass over data
only those examples matter, where perceptron made a mistake
(only those lead to changes of w)

9/38

Towards Sample Compression Bounds

Take training set as a sequence:
T=((z"y"), (=% y%),. .., (" y"))
algorithm A processes T in order, producting output f := A(T)

What only a subset of examples influence the algorithm output?

for increasing subsequence, I C {1,...,n}, with |I| =1, set
Tr = ((a"y"), (@2,97),... (", y"))

Definition
I is a compression set for T', if A(T) = A(Ty).

Example: I = {set of examples where Perceptron made a mistake}

10/ 38

Towards Sample Compression Bounds

Definition (Compression scheme [Littestone/Warmuth, 1986])

A learning algorithm A is called compression scheme, if there is a pair
of functions: C (called compression function), and L (called
reconstruction function), such that:

C takes as input a finite dataset and outputs a subsequence of

indices

L takes as input a finite dataset and outputs a predictor

A is the result of applying L to the data selected by C

A= L(T}) for I = C(T)

Examples:
Perceptron (I = indices of examples where will be updated)

SVMs (I = set of support vectors)

k-NN (I = set of examples that support the decision boundaries)
11 /38

ﬁ h d . E h
|I|Z v, and Rer(h n—|f|Z v
i€l gl

Theorem (Compression Bound [ittiestone/Warmuth, 1986; Graepel 2005])

Let A be a compression scheme with compression function C'. Let the
loss ¢ be bounded by [0,1]. Then, with probability at least 1 — § over the
random draw of T', we have that:

If Rp(A(T)) = 0:

R(A(T)) < %l((I4+1)logm + log %)

For general R—;(A(T)):

ogm (0] 4
R(AT)) < R (AT)) + ¢ L ks

where I = C(T) and | = |I|.

12 /38

The power of randomization

13 /38

PAC-Bayesian Generalization Bounds

The problem of overfitting emerges mainly because we pick only a single
classifier, h, and just by accident it can have R(h) > R(h).

If we choose many classifiers and combine their decisions, chances of
overfitting should be lower.

Definition (Majority-vote)

Let Y = {£1} (only for convenience of notation). Let hy,...,hp € H be
a set of hypotheses. We define the uniform majority vote classifier as

1
hmajority(x) = s1gn T Z h; (,1,‘)
i=1

14 /38

Definition (Majority-vote)

More generally, for weights «; € [0, 1], >, a; = 1, the a-weighted
majority vote classifier is:

h%ajonty - Slgnzal i = E [h ()]

i~

Weighting make a convenient framework:
we can use a base set of many (even countably infinite) classifier
we assign weights to good classifiers, e.g. based on training data
classical setting is included: for = di=j: I jonity = Py

15 /38

Definition (Majority-vote)

More generally, for weights «; € [0, 1], >, a; = 1, the a-weighted
majority vote classifier is:

h%ajonty - Slgnzal i = E [h ()]

i~

Weighting make a convenient framework:
we can use a base set of many (even countably infinite) classifier
we assign weights to good classifiers, e.g. based on training data
hA
J

. I o
classical setting is included: for & = di=j: A iority =

Unfortunately, majority vote classifiers are not easy to classify:
classical bounds hold equally for any h € H
if h € H, bound no better than for others

majority
if he ¢ H, no bound at all

majority

Trick: analyze stochastic classifiers
15/ 38

Stochastic Classifiers

Standard scenario:
X: input set,)V: output set, p probability distribution over X' x)
H C {X — Y}: hypothesis set, ¢: loss function

D={(z4y") ..., (=", y")} i~ p(z,y): training set

16 /38

Stochastic Classifiers

Standard scenario:
X input set,)V: output set, p probability distribution over X x)
H C {X — Y}: hypothesis set, ¢: loss function

D={(z4y") ..., (=", y")} i~ p(z,y): training set

New:
@ probability distribution over H

Definition (Gibbs classifier)

For a distribution @ over H C {h : X —)}, the Gibss classifier, h, is
defined by the procedure:

input: x € X
sample h ~ @Q
output: h(x)

The Gibbs classifier is a stochastic classifier, its output is a random
variable (wrt Q). 1638

Stochastic Classifiers

Definition (Gibbs classifier)

For a distribution @ over H C {h : X —)}, the Gibbs classifier, h¢, is
defined by the procedure:

input: x € X
sample h ~ @
output: h(x)
Because the classifier output is random, so are the risks:
R(hq) = & Uy, ha(x)) Rlhg) =D Uy' ho(a"))

(z.y)~p =

We can study their expected value:

R@Q) = E R(M)=E E (yh@) RQ=E > h)

X input set, Y. output set, p probability distribution over X x)
H C {X — YV}: hypothesis set, £: loss function

What's the analog of deterministic learning?

i.4.d.
~Y

Given a training set, D = {(z',y')..., (2", y")} p(z,y), identify a
distribution @ (arbitrary, or from a parametric family), such that R(Q) is
as small as possible.

What would a generalization bound look like?

R(Q) < R(Q) + "something"

18 /38

Gibbs classifier vs. majority vote

Majority vote classifier: (now calling weights @ instead of «)
evaluate all classifiers, h(x) for h € H
combine their outputs according to their weights, Ej,q h(x)
make one decision based on the result, signEj,q h(z)

evaluate the loss of this decision, {(y,sign E,q h(x))

Gibbs classifier:
evaluate all classifiers, h(x) for h € H
evaluate the loss of all their decisions, ¢(y, h(x)) for h € H
combine their losses according to their weights, Ejq ¢(y, h(x))

How are the two situations related?

19 /38

7—\>/majority(c2) < 2RGibbs(Q)

Observation:

if more than 50% (probability mass)

1 .
+ of the individual classifiers say +1

Q — —
hmajority(x) = sign hfIE;Q h(.CU) -

—1 otherwise

(Y, hmajority (7)) =1 = hfllé{ﬁ(y,h(x)) =1}>05
(Y, hmajority () =1 = 2h@NEQ[€(y, h(z))] > 1
2 h,I\E:Q[E(ya h($))] > E(y, hmajority(l'))
2,RGibbS(Q) > Rmajority(Q)

Generalization bounds for Rgipps also hold for Rmajority (up to factor 2).
20/ 38

Example: Generalization bound for Gibbs classifier

Theorem (PAC-Bayesian generalization bound (mcaiester, 199])

Let the loss, ¢, be a bounded in [0,1]. Let P be a "prior" distribution of

‘H, chosen independently of D. With prob 1 — over D G p®™, it holds
for all "posterior" distributions Q:

R(Q) < R(Q) + —=(KLQIIP) + § + 1oz ;)

Called PAC-Bayesian, because it makes a PAC-style statement
(different between finite sample and expect error), but for
Bayesian-style objects (distributions over classifiers/parameters)

prior and posterior are in quotation marks, because the posterior is
not the result of applying Bayes' rule.

The prior is only a technical tool and shows up in the KL term. We
don’t have to "believe" in it or anything.

21 /38

Towards a proof:

Theorem (Change of Measure Inequality)

For any distributions P, Q) over H and function ¢ : H — R:

2)] =)\<KL(QHP)+log E_oM0)
with — KL(Q|IP) = E, [10g gxg}

We shift from an expectation over P to an expectation over ().

Very useful, e.g.
P will be a typically a simple, data-independent, distribution
Q will depend on a training set — "trained classifier"

we "pay" for this: Eg(:) turnsinto logEpexp(:)

22 /38

Proof sketch, pretending P and () have densities.

General observation:

P(h)
E)= [Pty san= [h=E, [0]

P(h)

Ap(h)] — Ag(h) Z 1 °)

log h@P[e | =log hLEQ e Q(h)]
Jensen's ineq. A6(R) P(h)

2 B e g

_ Q(h)
= hg]:]Q {Ag{)(h) —log P(h)}

= A, E [6(h)] = KL(QIP)

rearrange, -+

Y LE e < +(1og B[] + KL(Q||P)))

23 /38

Theorem (Change of Measure Inequality)

For any distributions P, Q) over H and function ¢ : H — R:

1
JE [0(0)] < 5 (KL@QIIP) +log E)

Theorem (PAC-Bayesian generalization bound [mcatester, 1999])

¢ bounded in [0,1]. P independent of D.
With prob 1 — ¢ over D g p®™, it holds for all distributions Q:

R(Q) < R(Q) + —=(KLQIIP) + é +log 1)

1
NG)

24 /38

PAC-Bayesian generalization bound

Proof sketch.

Change of measure inequality:

1
JE[8(0)] < 5 (KLQIIP) +log B ™)

A

apply with prior P, posterior Q and ¢(h) = R(h) — R(h):
R 1 AR(W)=R(b)
R(Q) ~R(Q) < 1 (KL(QIIP) +log E e)

P and ¢ are independent (in contrast to)), so with prob. > 1 — 46

Hoeffing's lemma, Markov ineq.)\Qn
<

A[R(h)~R(h) 27+ log(1/0)

log E
Ogthe -

theorem follows by setting A = %

25 /38

Example: reproving a bound for finite hypothesis sets

H ={hi,...,hp} finite
P(h) = (#,..., =) uniform distribution
Q(h) = Op=p, (h) indicator on one hypothesis

26 /38

Example: reproving a bound for finite hypothesis sets

H ={hi,...,hp} finite
P(h) = (#,..., =) uniform distribution
Q(h) = Op=p, (h) indicator on one hypothesis

The PAC-Bayesian statement for Gibbs classifiers:

\}H(KL(QHP) + é +log 1)

For every dist. Q: R(Q) < ﬁ(Q) + S

translates into a bound for a ordinary (deterministic) classifiers:

For every h € H: R(h) < R(h) +

1 1 1
\/ﬁ<logT+ 3 —Hogg)
which is similar to the previous bound for finite hypotheses sets.

26 /38

Example: weighted finite hypothesis set bound

New: we can freely chose the prior, it does not have to be uniform.
H = {hi,...,hr} finite (or countable infinite)
P(h) = (m1,...,m) arbitrary prior distribution (fix before seeing D)
Q(h) = Op=p, (h) indicator on one hypothesis

KL(QI|IP) = 3, Q(t) log F = log -

For every hy € H:
A 1 1 1 1
< —(log — + = + log -
R(hr) < R(hy) + \/ﬁ(og gt og ;)

Better bound, if well-working hypotheses are (a priori) more likely.

27 /38

Example: justifying L’-regularization

H = {hy(z) : ¥ - Y, w € R} parameterized by w € R?
P(w) x e 2wl prior: Gaussian around 0

Q(w) ox e~ Mw=vl? posterior: Gaussian around v
KL(Q|P) = Al|v|f?

A 1 1 1
R(Q) < R(Q) + %(AHUHQ 5 +log 5)

most promising classifier: minimize right hand side w.r.t v
— "regularizer" ||v||? appears naturally in the objective

28 /38

Example: justifying L’-regularization

Caveat: || -

H = {hy(z) : ¥ - Y, w € R} parameterized by w € R?
P(w) x e 2wl prior: Gaussian around 0

Q(w) ox e~ Mw=vl? posterior: Gaussian around v
KL(Q|P) = Al|v|f?

A 1 1 1
R(Q) < R(Q) + %(AHUHQ 5 +log 5)

most promising classifier: minimize right hand side w.r.t v
— "regularizer" ||v||? appears naturally in the objective

|?> appears because we put it into the exponents of P and Q.

Other distributions (which are our choice) yield other bounds/regularizers.

"PAC-Bayes is a bound-generation machine."

28 /38

Example: SVM bound

H = {h(z) = sign(w, z), w € R4} linear classifiers

P(w) o e~ Al prior: Gaussian around 0
Q(w) o e~ Mw=vl? posterior: Gaussian around v
A A
Q
p\ij
prior: uniform w.r.t. direction posterior: non-uniform

29 /38

Example: SVM bound

H = {h(z) = sign{w, z), w € R4} linear classifiers
P(w) x e~ AMwl? prior: Gaussian around 0

Q(w) ox e Mw—vl? posterior shifted by v (non-uniform)

A 1 1 1
R(Q) < R(Q) + %(AHUHQ 5 +log 5)

30 /38

Example: SVM bound

H = {h(z) = sign{w, z), w € R4} linear classifiers

P(w) o« e~ Al prior: Gaussian around 0
Q(w) ox e Mw—vl? posterior shifted by v (non-uniform)
, 1 , 1 1
R(Q) < RIQ) + = (Mol + § +log 5)

When £ is 0-1 loss:
deterministic classifier sign(v,) is identical to majority vote of Q
we can relate R(Q) to R(v):

if: Yo, Ty o Bty = 2(1—erf(—))

]

Together:

P || zH

J\o
\
M:

3

30 /38

Example: Transfer bound

H = {hy(z) : X = Y, w € R} parameterized by w € R?
P(w) o« e~ Mlw=wol? prior: Gaussian around vy

Q(w) o e~ Mw—vl? posterior: Gaussian around v
KL(QI|P) = Allv = vol®

R(Q) < R(Q)+ —= (o — vl + 5 +log 5)

S

Typical situation for fine-tuning:
inititalize classifier parameters as v

train on D using (stochastic) gradient descent

Good generalization, if parameters don’t move far from initialization.

31 /38

"A PAC-Bayesian Tutorial with A Dropout Bound"' [mcaiester, 2013]

"dropout rate" « € [0, 1]
set of posterior distributions: Qg 4:

0 with prob. «

for each weight: w; =
0; +¢; otherwise, for ¢; ~ N(0,1)

prior distribution: P = Qo «
KL(QIIP) = 152 [0|I?

. . . l1—a.
Zero-ing out weights reduces complexity by factor <5<:

R(QO,&) < ﬁ(QG,a) + \}ﬁ(

Training: optimize 7%(@9,&) + ... via SGD — "dropout training"

l-«a 1 1
0> + = +log -
51017 + 5 +log)

Prediction: majority vote over many stochastic networks
32/38

Bounds for Deep Learning?

""Understanding deep learning requires rethinking generalization'

[Zhang, Bengio, Hardt, Recht, Vinyals, ICLR 2017]

Observation:
Deep Neural Networks can have 100s of millions parameters.
We train them with less than 1 million examples.
Yet, they don’t seem to overfit.
Could it be that their capacity is much smaller than one would
expect from the number of parameters?

34 /38

""Understanding deep learning requires rethinking generalization'

[Zhang, Bengio, Hardt, Recht, Vinyals, ICLR 2017]

Observation:
Deep Neural Networks can have 100s of millions parameters.
We train them with less than 1 million examples.
Yet, they don’t seem to overfit.
Could it be that their capacity is much smaller than one would
expect from the number of parameters?

Empirical study:
let’s explore their empirical Rademacher complexity
train network with real input data, but random +1 labels

34 /38

""Understanding deep learning requires rethinking generalization'

[Zhang, Bengio, Hardt, Recht, Vinyals, ICLR 2017]

Observation:
Deep Neural Networks can have 100s of millions parameters.
We train them with less than 1 million examples.
Yet, they don’t seem to overfit.
Could it be that their capacity is much smaller than one would
expect from the number of parameters?

Empirical study:
let’s explore their empirical Rademacher complexity
train network with real input data, but random +1 labels
result: networks can learn random labels (R — 0)

34 /38

""Understanding deep learning requires rethinking generalization'

[Zhang, Bengio, Hardt, Recht, Vinyals, ICLR 2017]

Observation:
Deep Neural Networks can have 100s of millions parameters.
We train them with less than 1 million examples.
Yet, they don’t seem to overfit.
Could it be that their capacity is much smaller than one would
expect from the number of parameters?

Empirical study:
let’s explore their empirical Rademacher complexity
train network with real input data, but random +1 labels
result: networks can learn random labels (R — 0)

Conclusion:
we still don’t know why deep networks don't overfit

Rademacher-style learning theory does not explain it
34 /38

"'Stronger generalization bounds for deep nets via a compression approach"

[Arora, Ge, Neyshabur, Zhang. ICML 2018]

f X — Y: trained network with many parameters

G: a set of (smaller) neural networks parametrized by ¢ parameters,
each of which can take r different values.

Theorem

Let S = {(z,yY),...,(z™,y™)} be a training set with m samples.
For A > 0, if f can be approximated by a network g € G in the sense
that |f(2) — g(2)| < v fori =1,...,m, then (with high probability),

)< fZ[[y flat) <1+ 0 (1 L)

quantize real-valued network parameter to a few (e.g. r = 4) bits

low-rank decomposition of weight matrices to reduce number of
coefficients

Examples:

35 /38

"'Stronger generalization bounds for deep nets via a compression approach"

[Arora, Ge, Neyshabur, Zhang. ICML 2018]

f X — Y: trained network with many parameters
G: a set of (smaller) neural networks parametrized by ¢ parameters,
each of which can take r different values.

Theorem

Let S = {(z',y'),..., (™, y™)} be a training set with m samples.
For A > 0, if f can be approx:mated by a network g € G in the sense
that |f(z) — g(2)| < v fori=1,...,m, then (with high probability),

) < *Z[[y @) <v1+0(y qlffr)

theorem bounds quality of g, not f.
the bound itself follows immediately from finite hypothesis set:

> R(g) < R(g) + / 2l8H0e /3 54 10g |G| = logr? = glogr

> R(g) =237 [yig(a’) <0] < L3577 [y f(a?) <]

Problem:

36 /38

""Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural

Networks with Many More Parameters than Training Data"' [Dziugaite, Roy. UAI 2016]

Observation:
deep networks trained by SGD work well

Hypothesis:
solution found by SGD are "shallow" minima of the objective, so it is
robust against small perturbations of the network parameters

Approach:
PAC-Bayesian bound:
» prior: Gaussian around weight initialization wq
» posterior: Gaussian around learned parameters

variance of Gaussians learned from bound itself (needs union bound)
several approximations to approximate empirical risk

37 /38

""Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural

Networks with Many More Parameters than Training Data"' [Dziugaite, Roy. UAI 2016]

Observation:

deep networks trained by SGD work well
Hypothesis:

solution found by SGD are "shallow" minima of the objective, so it is
robust against small perturbations of the network parameters
Approach:

PAC-Bayesian bound:

» prior: Gaussian around weight initialization wq

> posterior: Gaussian around learned parameters
variance of Gaussians learned from bound itself (needs union bound)
several approximations to approximate empirical risk

Experiment (MNIsT) T-600 T-1200 T-3002 T-6002 T-12002 T-600° R-600
Test error 0.018 0018 0.015 0016 0015 0013 0508
SN test error 0.034 0.035 0034 0.033 0035 0032 0.503
PAC-Bayesbound 0.161 0.179 0.170 0.186 0.223 0201 1.352
VC dimension 26m 56m 26m 66m 187m 121m 26m

37 /38

"'Spectrally-normalized margin bounds for neural networks"
[Bartlett, Foster Telgarsky, NIPS 2017]

Theorem 1.1. Let nonlinearities (o4, ..., ,or) and reference matrices (M, ..., Mg) be given as above
(i.e., 0; is p;-Lipschitz and 0;(0) = 0). Then for (z,y), (x1,y1), - - -, (Tn, Yn) drawn id from any probability
distribution over R? x {1,..., k}, with probability at least 1 — 6 over ((z4,y:))jy, every margin vy > 0
and network F 4 : R — R* with weight matrices A = (Ay,...,AL) satisfy

Pr {arg]maxFA(m)] # y} < 7%«,(17,4) +0 (HXJL%RA In(W) +4/ M))

where Ry (F) < 0™V 51 [F(w0)y, < 3+ max; e, f@0);] and [X[z = /S, [T

"A PAC-Bayesian approach to spectrally-normalized margin

bounds for neural netWorkS" [Neyshabur, Bhojanapalli, Srebro, ICML 2018]

Theorem 1 (Generalization Bound). For any B,d,h > 0, let fw : Xpn — R* be a d-layer
feedforward network with ReLU activations. Then, for any 6,~ > 0, with probability > 1 — § over
a training set of size m, for any w, we have:

B2a2hIn(dR)IIE W2 00, IWelk | 1y dm

=1 ||W; Hz

Lo(fw) < Ly(fw) + O J

¥2m

38 /38

