Statistical Machine Learning

https://cvml.ist.ac.at/courses/SML_W18

Christoph Lampert

I ANTMN AUSTRIA

Institute of Science and Technology

Winter Semester 2018/2019
Lecture 11

(lots of material courtesy of S. Nowozin, http://www.nowozin.net)

1/34

https://cvml.ist.ac.at/courses/SML_W18

Overview (tentative)

Date no. | Topic
Oct 08 | Mon | 1 | A Hands-On Introduction
Oct 10 | Wed | — | self-study (Christoph traveling)
Oct 15 | Mon | 2 | Bayesian Decision Theory
Generative Probabilistic Models
Oct 17 | Wed | 3 | Discriminative Probabilistic Models
Maximum Margin Classifiers
Oct 22 | Mon | 4 | Generalized Linear Classifiers, Optimization
Oct 24 | Wed | 5 | Evaluating Predictors; Model Selection
Oct 29 | Mon | — | self-study (Christoph traveling)
Oct 31 | Wed | 6 | Overfitting/Underfitting, Regularization
Nov 05 | Mon | 7 | Learning Theory I: classical/Rademacher bounds
Nov 07 | Wed | 8 | Learning Theory Il: miscellaneous
Nov 12 | Mon | 9 | Probabilistic Graphical Models |
Nov 14 | Wed | 10 | Probabilistic Graphical Models Il
Nov 19 | Mon | 11 | Probabilistic Graphical Models Il
Nov 21 | Wed | 12 | Probabilistic Graphical Models IV
until Nov 25 final project 2/34

Structured Loss Functions

A(y,y)

Loss function

How to judge if a (structured) prediction is good?

Define a loss function
A:YxY =R,

A(y,y) measures the loss incurred by predicting y when ¥ is correct.

The loss function is application dependent

4/34

Example 1: 0/1 loss

Loss is 0 for perfect prediction, 1 otherwise:

0 ify=y
1 otherwise

Aoj1(y,y) =y #yl = {

Every mistake is equally bad. Usually not very useful in structured
prediction.

5/34

Example 2: Hamming loss

Count the number of mislabeled variables:

An(y,y) = Z[[yﬁéyz

ZEV

Used, e.g., for graph labeling tasks

6/34

Example 3: Squared error

If we can add elements in);
(pixel intensities, optical flow vectors, etc.).

Sum of squared errors

Aq(y,y) = leyz vill*.

zEV

Used, e.g., in stereo reconstruction, part-based object detection.

7 /34

Example 4: Task specific losses

Object detection

detection

bounding boxes, or

arbitrarily shaped regions

image

Intersection-over-union loss:

area(y Ny) .
mw) l

Used, e.g., in PASCAL VOC challenges for object detection, because its
scale-invariance (no bias for or against big objects).

Ajou(bary,y) =1 —

8/34

Making Bayes-optimal Predictions

’ Given a distribution p(y|x), what is the best way to predict f: X — V7 ‘

Bayesian decision theory: pick f(z) that causes minimal expected loss:

f(z) = argmin Ra(y)
yey

for Ra(y) = E {A@} =D AW yple)
yeY

For many loss functions not tractable, but some exceptions:
R, (y) =1—plylz), so f(z) = argmax, p(y|z)

Ray(y) =1=Yiey pyilz), so f(z) = (y1,-- -, yn)
for y; = argmax;y, p(y; = k|z)

9/34

Structured Support Vector Machines

ming Eq) Ay, f(2))

Loss-Minimizing Parameter Learning

D ={(z1,y1),---,(xn,yn)} i.i.d. training set
p: X XY — RP be a feature function, like for CRF
A :Y xY — R be a loss function.

Find a weight vector w* that minimizes the expected loss

E Ay, f(x))

(z,y)

for f(z) = argmax,¢y, (w, ¢(7,y)).

11/34

Loss-Minimizing Parameter Learning

D ={(z1,y1),---,(xn,yn)} i.i.d. training set
p: X XY — RP be a feature function, like for CRF
A :Y xY — R be a loss function.

Find a weight vector w* that minimizes the expected loss

E Ay, f(x))

(z,y)

for f(z) = argmax,¢y, (w, ¢(7,y)).

Advantage:
We directly optimize for the quantity of interest: expected loss.
No expensive-to-compute partition function Z will show up.
Disadvantage:

We need to know the loss function already at training time.
We can’t use probabilistic reasoning to find w*.

11/34

Inspiration: multi-class SVM

X anything, Y ={1,2,...,K},
feature map ¢ : X — H (explicit or implicit via kernel)

training data {(x‘la y1)7 R (wna yn)}
goal: learn functions gi(z) = (wg, ¢(x)) for k=1,... K.

Prediction: f(z) = argmax gi(z) = argmax (wy, ¢(z))
k=1,.,K k=

----- 20ty

Enforce a margin between the correct and all incorrect labels:

1 & c&
min - JwP+ =) &
2k:1 ni:l

Wy, WK
subject to, fori =1,...,n,

<wy‘7¢<xl)> > 1+ <wk7¢(xl)> - giv for all k 7& Yi-

Crammer-Singer Multiclass SVM

12 /34

Equivalent parameterization:

X anything, Y ={1,2,...,K},
feature map ¢ : X x Y — RP (explicit or implicit via kernel)

v(z,y) = (ly = 10é(), [y =206(),.., [y = K]

w= (w1,...,wk) € REP
goal: learn a function g(x,y) = (w, ¥ (x,y))

Prediction: f(z) = argmax (w, ¢ (x,y))
k=1,...M

Enforce a margin of 1 between the correct and any incorrect label:
S SR Y
min —[|w —
nin o flwl”+ > ¢
=1
subject to, fori =1,...,n,

(w, (i, yi)) = 1+ (w,Y(xi,9)) — &, for all § # yi.

13 /34

Observation:

for structure outputs, not all "incorrect" labels are equally bad
— margin between y; and y should depend on A(y;,)

Structured (Output) Support Vector Machine
Goal: learn a function g(z,y) = (w, ¥ (z,y))

Prediction: f(z) = argmax (w,v¢(z,y))
k=1,....M

Enforce a margin A(y;,y) between the correct and any incorrect label:

., 1., C&
r?rﬂnsn §||U)H +g;§z

subject to, fori =1,...,n,

<w7¢(l‘z,y1)> > A(ylag) + <w7¢(xlvg)> - giv for all Y€ V.

14 /34

Structured Output Support Vector Machine

Equivalent unconstrained formulation (solve for optimal &1, ...,&,):

A 1<
min ol + 2 3 max [Alws9) + 0, 900) — 0, 9o)

Conditional Random Field

Regularized conditional log-likelihood:

muin %||w||2 aF % Zlog Z exp (<w7¢($17g)> - <w7 QZ)(CC“?/Z»)

i=1 yey

CRFs and SSVMs have more in common than usually assumed.
log -, exp(-) can be interpreted as a soft-max (differentiable)

SSVM training takes loss function into account

CRF is trained without specific loss, loss enters at prediction time
15 /34

Structured Output Support Vector Machine

Equivalent unconstrained formulation (solve for optimal &1, ...,&,):

A 1 &
min 5||w||2+E;r§13yx [A(yi,g)ﬂw,@b(wi,z?» —(wﬂﬁ(fﬂiayi)ﬂ

Conditional Random Field

Regularized conditional log-likelihood:

muin %Hw”2 aF % Zlog Z exp (<w7¢($17g)> - <w7 QZ)(CC“?/Z»)

i=1 yey

CRFs and SSVMs have more in common than usually assumed.
log -, exp(-) can be interpreted as a soft-max (differentiable)

SSVM training takes loss function into account

CRF is trained without specific loss, loss enters at prediction time
15 /34

Example: RNA Secondary Structure Prediction pe Bona et ar., 2007]

AAAAACCCCCCCCAGAGGAGAUUG
GAGAUCAAAGGUGGUUCGGAUGUC —
GAAGUGUACCGAACCCGGGGG

X =X¥* for ¥ = {A,C,G,U} (nucleotide sequence)
Y=A{(,j) i, eN,i<j} (i,5) mean "z; binds with z;"

Y (z,y) domain-specific features: binding energy of z; <+ z;,
prefered patterns (motifs), loop properties, . . .

A(y,y): number of wrong/missing bindings (Hamming loss)

A 1
min Sl + 23 mase [Ao 6) + (0. ¥(a) - (0,9 0)]

16 /34

Example: Sentence Parsing [taskar et ar., 2004]

3
,——'-'-—_'_'__—__‘_‘—"_‘—‘—-_
NP VP

A ——"/_H‘_"‘*—
DT NN VBD NP

The screen was a sea of red. — ‘ ' ‘ T
The sereen was NP FP

P AN

X = {English sentences}

Y = {parse tree}

¥ (x,y) domain-specific features:

» word properties, e.g. "- starts with capital letter", "- ends in ing"
» grammatical rules: NP — DT+ NN

A(y,y): number of wrong assignments

17 /34

Solving S-SVM Training in Practice

min 2wl + ;gma);c [AWy + (w, (a1, 5)) = (w, (i, 90)]

continuous
unconstrained
convex

non-differentiable

18 /34

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 &
. 2

with €(z;, y;, w) = max, l,(z;, y;, w), and

Ey(fbia yiaw) = A(yz’y) + <w7¢(xl’y)> - <’(U,Q/J(SCZ', yz)>

19 /34

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 &
. 2

with €(z;, y;, w) = max, l,(z;, y;, w), and

Ey(fbia yiaw) = A(yz’y) + <w7¢(xl’y)> - <’(U,Q/J(SCZ', yz)>

Z(w)A

Y=

For each y € Y, ¢,(w) is a linear function of w.

19 /34

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 &
. 2

with €(z;, y;, w) = max, l,(z;, y;, w), and

Ey(fbia yiaw) = A(yz’y) + <w7¢(xl’y)> - <’(U,Q/J(SCZ', yz)>

£(w)A y'

W

/
For each y € Y, ¢,(w) is a linear function of w.

19 /34

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 &
. 2

with €(z;, y;, w) = max, l,(z;, y;, w), and

Ey(fbia yiaw) = A(yz’y) + <w7¢(xl’y)> - <’(U,Q/J(SCZ', yz)>

Z(w)A

W

/ / /
For each y € Y, ¢,(w) is a linear function of w.

19 /34

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:
i —)\H HQ —1 Y Z(m w)
min wl|” + E i Yi
Wt ~ is Uiy

with 4(x;, yi, w) = max, £, (x;, y;, w), and

by(wi, yisw) == Ay, y) + (W, ¥(xi,y)) — (w, (24, 93))

Z(w)A

_—
— -

max over finite)): piece-wise linear

19 /34

Solving S-SVM Training Numerically — Subgradient Method

COmpUting a Subgradient:
i)\H H2 ! En :5()
min w X; iy W
Wt ~ is Yis

with 4(x;, yi, w) = max, £, (x;, y;, w), and

by(wi, yisw) == Ay, y) + (W, ¥(xi,y)) — (w, (24, 93))

Z(w)A

_— ///// /WOl //’/
Subgradient of ¢ at wy:

19 /34

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 &
in O 2 7}: ap
I’I%Ull’l 2||’UJ|| + n E(m’hyl)w)

=1

with 4(x;, y;, w) = max, ¢, (z;, y;, w), and

Ey(‘fia yiaw) = A(yz’y) + <w7¢(xl’y)> - <’(U,Q/J(SCZ', y1)>

£(w)A

Subgradient of ¢ at wy: find maximal (active) y.

19 /34

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 &
. 2

with €(z;, y;, w) = max, l,(z;, y;, w), and

Ey(fbia yiaw) = A(yz’y) + <w7¢(xl’y)> - <’(U,Q/J(SCZ', yz)>

Z(w)A

.
/
/
7
/ /
/
/
/
/
/
/
/
/

Wo / / /
Subgradient of ¢ at wy: find maximal (active) y, use v = V£, (wp).

Ys

19 /34

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 &
. 2

with €(z;, y;, w) = max, l,(z;, y;, w), and

Ey(fbia yiaw) = A(yz’y) + <w7¢(xl’y)> - <’(U,Q/J(SCZ', yz)>

Z(w)A

/Wo // / /
Not necessarily unique, but v = V¢, (wq) works for any maximal y

19 /34

Solving S-SVM Training Numerically — Subgradient Method

Subgradient Method S-SVM Training

input training pairs {(z!,y'),..., (2", y")} C X x),
input feature map ¢(z,y), loss function A(y, '), regularizer A,
input number of iterations 7', stepsizes 1y fort =1,...,T

10w < 6

2: for t=1,...,T do
3: fori=1,...,ndo
4 § « argmax, .y A(y",y) + (w,¢(z",y)) — (w,o(z" y"))
5 V" ¢($n7 g) - ¢($n’ yn)

6: end for

7 W w— nt(- N Zn)

8: end for

output prediction function f(z) = argmax,cy(w, ¢(z,y)).

Obs: each update of w needs N argmax-prediction (one per example).
Obs: computing the argmax is (loss augmented) energy minimizatign,,

Example: Image Segmenatation

X images,) = { binary segmentation masks }.

(

Ay, y) = Zplyp # ol - (Hamming loss)

Training example(s): (2", y") =

21/34

Example: Image Segmenatation

X images, Y = { binary segmentation masks }.

Training example(s): (2", y") =

Ay, y) = Zp[[yp # Up) (Hammi IS

t=1. w=0,
§= argmax [(w,9(z",y)) + A(y",y)]
“=% argmax A(y™,y) = "the opposite of y™"
y

21/34

Example: Image Segmenatation

X images, Y = { binary segmentation masks }.

Training example(s): (2",y") = (=)

Ay, y) = Zp[[yp # Upl (Hammin IOS -

o(y™) — #(9): black +, white 4, green —, blue —, gray —

21/34

Example: Image Segmenatation

X images, Y = { binary segmentation masks }.

Training example(s): (2",y") = (=)

Ay, y) = Zp[[yp # Upl (Hammin IOS -

t=1: ?j = o(y™) — #(9): black +, white 4, green —, blue —, gray —
t=2: @ = o(y™) — &(§): black +, white +, green =, blue =, gray —

21/34

Example: Image Segmenatation

X images, Y = { binary segmentation masks }.

Training example(s): (a”, ") = (2

Ay, y) = > plyp # yp]l (Hamming loss)
o(y™) — #(9): black +, white +, green —, blue —, gray —
F 0 o(y™) — ¢(9): black +, white +, green =, blue =, gray —

| o(y™) — ¢(§): black =, white =, green —, blue —, gray —

21/34

Example: Image Segmenatation

X images, Y = { binary segmentation masks }.

Training example(s): (z",y") = i

Ay, y) = Zp[[yp # yp] (Hamming IOS -

t=1: ?j = o(y™) — #(9): black +, white 4, green —, blue —, gray —
t=2: @ o(y™) — &(§): black +, white +, green =, blue =, gray —

H.
Il
o2
<

d(y™) — &(9): black =, white =, green —, blue —, gray —

~
Il

>

<y

d(y™) — ¢(9): black =, white =, green —, blue =, gray =

21/34

Example: Image Segmenatation

X images, Y = { binary segmentation masks }.

A.5) = 5, lup # 5] (Hamming loss)

Training example(s): (z",y") = (

t=1.9 (y™) — $(9): black 4, white 4, green —, blue —, gray —
t=2.9 d(y™) — (9): black 4, white 4, green =, blue =, gray —
t=39 é(y™) — ¢(9): black =, white =, green —, blue —, gray —
t=4: 79 d(y™) — ¢(9): black =, white =, green —, blue =, gray =
t=59 d(y™) — (9): black =, white =, green =, blue =, gray =
t=6,...: n moe changes.

Images: [Carreira, Li, Sminchisescu, "Object Recognition by Sequential Figure-Ground Ranking", IJCV 2010]
21/34

Solving S-SVM Training Numerically — Subgradient Method
Same trick as for CRFs: stochastic updates:

Stochastic Subgradient Method S-SVM Training

input training pairs {(z*,y'),..., (2", y")} C X x),
input feature map ¢(z,y), loss function A(y,y’), regularizer A,

input number of iterations 7', stepsizes n; fort =1,...,T
1w 6
2: for t=1,...,T do
3: (2™,y™) < randomly chosen training example pair
4§« argmax,cy A(y",y) + (w, (a",y)) — (w, o(z",y"))
5w w—n(dw— x[o(z",g) — a", y")))
6: end for

output prediction function f(z) = argmax,cy(w, ¢(z,y)).

Observation: each update of w needs only 1 argmax-prediction

(but we'll need many iterations until convergence) ,
22 /34

Solving S-SVM Training Numerically

Structured Support Vector Machine:

. /\ 2 1 al A n n no,n
min 7w +N;I£e%3{[(y"y) + (w, ¢(z", y)) — (w, p(z",y)))}

Subgradient method converges slowly. Can we do better?

23 /34

Solving S-SVM Training Numerically

Structured Support Vector Machine:

. /\ 2 1 al A n n no,n
min 7w +N;I£e%3{[(y"y) + (w, ¢(z", y)) — (w, p(z",y)))}

Subgradient method converges slowly. Can we do better?

We can use inequalities and slack variables to reformulate the
optimization.

23 /34

Solving S-SVM Training Numerically

Structured SVM (equivalent formulation):

Idea: slack variables

i Aule L3 e
min — _—
w,& 2 v]V-nzl

subject to, forn=1,..., N,

max (A" y) + (w, (2", 9)) — (w, 62", y™)] < &

Note: £ > 0 automatic, because left hand side is non-negative.

‘ Differentiable objective, convex, N non-linear contraints,

24 /34

Solving S-SVM Training Numerically

Structured SVM (also equivalent formulation):

Idea: expand max term into individual constraints

A 1 g

. n 2 - n

min 7 lw] +N§1£
subject to, forn=1,..., N,

A(y",y) + (w, oz, y)) — (w, o(z",y")) <", forallyec)

Differentiable objective, convex, N|)| linear constraints

25 /34

Solving S-SVM Training Numerically

Solve an S-SVM like a linear Support Vector Machine:

i Dl LS e
min —|lw —
weRD geRn 2 N =

subject to, fori =1,...n,
(w, (2", y"))—(w, o(a",y)) > A(y",y) — £", forallye .
Introduce feature vectors 0o (z", y",y) := ¢(z™,y") — dp(z™, y).

26 /34

Solving S-SVM Training Numerically

Solve

. A
min —

2 1 o
w||* + = "
R D Ot

subject to, fori=1,...n,forally e},

Same structure as an ordinary SVM!
quadratic objective ©
linear constraints ©

27 /34

Solving S-SVM Training Numerically

Solve

. A
min —

1 N
2 n

wl> + =D
weRD £€RT 2” H Nn 1€

subject to, fori=1,...n,forally e},

Same structure as an ordinary SVM!
quadratic objective ©
linear constraints ©

Question: Can we use an ordinary SVM/QP solver?

27 /34

Solving S-SVM Training Numerically

Solve

i Nt + L3
min —|lw —
weRP £eR? 2 N =

Same structure as an ordinary SVM!
quadratic objective ®
linear constraints ©

Question: Can we use an ordinary SVM/QP solver?

Answer: Almost! We could, if there weren't _

E.g. 100 binary 16 x 16 images: 107 constraints

27 /34

Solving S-SVM Training Numerically — Working Set

Solution: working set training
It's enough if we enforce the active constraints.

The others will be fulfilled automatically.
We don’t know which ones are active for the optimal solution.
But it's likely to be only a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

28 /34

Solving S-SVM Training Numerically — Working Set

Solution: working set training
It's enough if we enforce the active constraints.
The others will be fulfilled automatically.
We don’t know which ones are active for the optimal solution.
But it's likely to be only a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Solving S-SVM Training Numerically — Working Set

Start with working set S =((no contraints)

Repeat until convergence:
» Solve S-SVM training problem with constraints from S
» Check, if solution violates any of the full constraint set

> if no: we found the optimal solution, terminate.
> if yes: add most violated constraints to S, iterate.

28 /34

Solving S-SVM Training Numerically — Working Set

Solution: working set training
It's enough if we enforce the active constraints.
The others will be fulfilled automatically.
We don’t know which ones are active for the optimal solution.
But it's likely to be only a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Solving S-SVM Training Numerically — Working Set

Start with working set S =((no contraints)

Repeat until convergence:
» Solve S-SVM training problem with constraints from S
» Check, if solution violates any of the full constraint set

> if no: we found the optimal solution, terminate.
> if yes: add most violated constraints to S, iterate.

Good practical performance and theoretic guarantees:

polynomial time convergence e-close to the global optimum
28 /34

Working Set S-SVM Training

input training pairs {(z!,y'),..., (2", y")} C X x),
input feature map ¢(z,y), loss function A(y,y’), regularizer A

1. w+0,9+0
2: repeat

3 (w,§) < solution to QP only with constraints from S
4. for i=1,...,n do

5: g — argmaxyey A(yn’ y) + <wv ¢($n7 y)>

6: if § # y" then

7 S+ Su{(z",9)}

8: end if

9: end for
10: until S doesn’t change anymore.

output prediction function f(z) = argmax,cy(w, ¢(z,y)).
Obs: each update of w needs N argmax-predictions (one per example),

but we solve globally for next w, not by local steps.

29 /34

Example: Object Localizatio

X images,) = { object bounding box } C R*.

Training examples:

Goal: f: X =Y

Loss function: area overlap A(y,y) =1 — area(yny) %

area(yUy’)

[Blaschko, Lampert: "Learning to Localize Objects with Structured Output Regression", ECCV 2008]

30 /34

Example: Object Localization

Structured SVM:

o(x,y) := "bag-of-words histogram of region y in image x"

i el LS e
min —|lw —
weRD geRn 2 N =

subject to, fori =1,...n,

<w7¢($n7yn)>_<w’ ¢(xn’y)> > A(yn’y) - £n7 for all Yy e y

Interpretation:

For every image, the correct bounding box, y”, should have a higher
score than any wrong bounding box.

Less overlap between the boxes — bigger difference in score

31 /34

Example: Object Localization

Working set training — Step 1:
w < 0.

For every example:
:’3 — argmaxyey A(yn’ y) + <U), gb(aj‘n’ y))
—_————
=0

maximal A-loss = minimal overlap with 4y = JnNy" =10

add constraint
(w, p(z",y")) — (w, p(z",9)) > 1 — &"

Note: similar to binary SVM training for object detection:
positive examples: ground truth bounding boxes
negative examples: random boxes from 'image background’

32 /34

Example: Object Localization

Working set training — Later Steps:

For every example:
§ < argmax,cy Aly",y) + (w,9(z",y))
——— —_———
bias towards 'wrong’ regions object detection score
if = 4™ do nothing,

else: add constraint

<w7¢(xn’yn)> - <w’¢(xn’g)> > A(yn7g) - é‘n
enforces ¢ to have lower score after re-training.
Note: similar to hard negative mining for object detection:

perform detection on training image

if detected region is far from ground truth, add as negative example

Difference: S-SVM handles regions that overlap with ground truth.

33 /34

Dual S-SVM

We can also dualize the S-SVM optimization:

1 a—
max 5 Z anyaﬁ§<¢(xn7 y)a d)(xnv y)> + Z OényA(yn7 y)
a€cRNWI 2 £ _
y,y€Y n=1,....N
n,n=1,...,N yey

subject to, forn=1,..., N,

2
Qny > O7 and Z Ay < W
yey

Quadratic (convex) objective, linear constraints, N|)| unknowns

34 /34

Dual S-SVM

We can also dualize the S-SVM optimization:

1 a—
max 5 Z anyaﬁg<¢(x", y)a (Z)(xnv y)> + Z OényA(yn7 y)
a€cRNWI 2 £ _
y,y€Y n=1,....N
n,n=1,...,N yey

subject to, forn=1,..., N,

2
Qny > 07 and Z Ay < W
yey

Quadratic (convex) objective, linear constraints, N|)| unknowns

Recover weight vector from dual coefficients:

w=> anyd(x",y)

State-of-the-art: solve dual with Frank-Wolfe algorithm.

34 /34

