
Statistical Machine Learning
https://cvml.ist.ac.at/courses/SML_W18

Christoph Lampert

Winter Semester 2018/2019
Lecture 11

(lots of material courtesy of S. Nowozin, http://www.nowozin.net)
1 / 34

https://cvml.ist.ac.at/courses/SML_W18

Overview (tentative)

Date no. Topic
Oct 08 Mon 1 A Hands-On Introduction
Oct 10 Wed – self-study (Christoph traveling)
Oct 15 Mon 2 Bayesian Decision Theory

Generative Probabilistic Models
Oct 17 Wed 3 Discriminative Probabilistic Models

Maximum Margin Classifiers
Oct 22 Mon 4 Generalized Linear Classifiers, Optimization
Oct 24 Wed 5 Evaluating Predictors; Model Selection
Oct 29 Mon – self-study (Christoph traveling)
Oct 31 Wed 6 Overfitting/Underfitting, Regularization
Nov 05 Mon 7 Learning Theory I: classical/Rademacher bounds
Nov 07 Wed 8 Learning Theory II: miscellaneous
Nov 12 Mon 9 Probabilistic Graphical Models I
Nov 14 Wed 10 Probabilistic Graphical Models II
Nov 19 Mon 11 Probabilistic Graphical Models III
Nov 21 Wed 12 Probabilistic Graphical Models IV
until Nov 25 final project 2 / 34

Structured Loss Functions

∆(ȳ, y)

Loss function

How to judge if a (structured) prediction is good?

• Define a loss function

∆ : Y × Y → R+,

∆(ȳ, y) measures the loss incurred by predicting y when ȳ is correct.

• The loss function is application dependent

4 / 34

Example 1: 0/1 loss

Loss is 0 for perfect prediction, 1 otherwise:

∆0/1(ȳ, y) = Jȳ 6= yK =
{

0 if ȳ = y
1 otherwise

Every mistake is equally bad. Usually not very useful in structured
prediction.

5 / 34

Example 2: Hamming loss

Count the number of mislabeled variables:

∆H(ȳ, y) = 1
|V |

∑
i∈V

Jȳi 6= yiK

Used, e.g., for graph labeling tasks

6 / 34

Example 3: Squared error

If we can add elements in Yi
(pixel intensities, optical flow vectors, etc.).

Sum of squared errors

∆Q(ȳ, y) = 1
|V |

∑
i∈V
‖ȳi − yi‖2.

Used, e.g., in stereo reconstruction, part-based object detection.

7 / 34

Example 4: Task specific losses

Object detection
• bounding boxes, or
• arbitrarily shaped regions

ground truth

detection

image

Intersection-over-union loss:

∆IoU(bary, y) = 1− area(ȳ ∩ y)
area(ȳ ∪ y) = 1−

Used, e.g., in PASCAL VOC challenges for object detection, because its
scale-invariance (no bias for or against big objects).

8 / 34

Making Bayes-optimal Predictions

Given a distribution p(y|x), what is the best way to predict f : X → Y?

Bayesian decision theory: pick f(x) that causes minimal expected loss:

f(x) = argmin
y∈Y

R∆(y)

for R∆(y) = E
ȳ∼p(y|x)

{∆(ȳ, y)} =
∑
ȳ∈Y

∆(ȳ, y)p(ȳ|x)

For many loss functions not tractable, but some exceptions:

• R∆0/1(y) = 1− p(y|x), so f(x) = argmaxy p(y|x)

• R∆H
(y) = 1−

∑
i∈V p(yi|x), so f(x) = (y1, . . . , yn)

for yi = argmaxk∈Yi
p(yi = k|x)

9 / 34

Structured Support Vector Machines

minf E(x,y) ∆(y, f(x))

Loss-Minimizing Parameter Learning

• D = {(x1, y1), . . . , (xn, yn)} i.i.d. training set
• φ : X × Y → RD be a feature function, like for CRF
• ∆ : Y × Y → R be a loss function.

• Find a weight vector w∗ that minimizes the expected loss

E
(x,y)

∆(y, f(x))

for f(x) = argmaxy∈Y 〈w, φ(x, y)〉.

Advantage:
• We directly optimize for the quantity of interest: expected loss.
• No expensive-to-compute partition function Z will show up.

Disadvantage:
• We need to know the loss function already at training time.
• We can’t use probabilistic reasoning to find w∗.

11 / 34

Loss-Minimizing Parameter Learning

• D = {(x1, y1), . . . , (xn, yn)} i.i.d. training set
• φ : X × Y → RD be a feature function, like for CRF
• ∆ : Y × Y → R be a loss function.

• Find a weight vector w∗ that minimizes the expected loss

E
(x,y)

∆(y, f(x))

for f(x) = argmaxy∈Y 〈w, φ(x, y)〉.

Advantage:
• We directly optimize for the quantity of interest: expected loss.
• No expensive-to-compute partition function Z will show up.

Disadvantage:
• We need to know the loss function already at training time.
• We can’t use probabilistic reasoning to find w∗.

11 / 34

Inspiration: multi-class SVM

• X anything, Y = {1, 2, . . . ,K},
• feature map φ : X → H (explicit or implicit via kernel)
• training data {(x1, y1), . . . , (xn, yn)}
• goal: learn functions gk(x) = 〈wk, φ(x)〉 for k = 1, . . . ,K.

Prediction: f(x) = argmax
k=1,...,K

gk(x) = argmax
k=1,...,K

〈wk, φ(x)〉

Enforce a margin between the correct and all incorrect labels:

min
w1,...,wK ,ξ

1
2

K∑
k=1
‖wk‖2 + C

n

n∑
i=1

ξi

subject to, for i = 1, . . . , n,

〈wyi , φ(xi)〉 ≥ 1 + 〈wk, φ(xi)〉 − ξi, for all k 6= yi.

Crammer-Singer Multiclass SVM
12 / 34

Equivalent parameterization:

• X anything, Y = {1, 2, . . . ,K},
• feature map ψ : X × Y → RD (explicit or implicit via kernel)
• ψ(x, y) =

(
Jy = 1Kφ(x), Jy = 2Kφ(x), . . . , Jy = KK

• w =
(
w1, . . . , wK

)
∈ RKD

• goal: learn a function g(x, y) = 〈w,ψ(x, y)〉

Prediction: f(x) = argmax
k=1,...,M

〈w,ψ(x, y)〉

Enforce a margin of 1 between the correct and any incorrect label:

min
w,ξ

1
2‖w‖

2 + C

n

n∑
i=1

ξi

subject to, for i = 1, . . . , n,

〈w,ψ(xi, yi)〉 ≥ 1 + 〈w,ψ(xi, ȳ)〉 − ξi, for all ȳ 6= yi.

13 / 34

Observation:
• for structure outputs, not all "incorrect" labels are equally bad
→ margin between yi and ȳ should depend on ∆(yi, ȳ)

Structured (Output) Support Vector Machine

Goal: learn a function g(x, y) = 〈w,ψ(x, y)〉

Prediction: f(x) = argmax
k=1,...,M

〈w,ψ(x, y)〉

Enforce a margin ∆(yi, y) between the correct and any incorrect label:

min
w,ξ

1
2‖w‖

2 + C

n

n∑
i=1

ξi

subject to, for i = 1, . . . , n,

〈w,ψ(xi, yi)〉 ≥ ∆(yi, ȳ) + 〈w,ψ(xi, ȳ)〉 − ξi, for all ȳ ∈ Y.

14 / 34

Structured Output Support Vector Machine
Equivalent unconstrained formulation (solve for optimal ξ1, . . . , ξn):

min
w

λ

2 ‖w‖
2 + 1

n

n∑
i=1

max
ȳ∈Y

[
∆(yi, ȳ) + 〈w,ψ(xi, ȳ)〉 − 〈w,ψ(xi, yi)〉

]

Conditional Random Field
Regularized conditional log-likelihood:

min
w

λ

2 ‖w‖
2 + 1

n

n∑
i=1

log
∑
ȳ∈Y

exp
(
〈w,ψ(xi, ȳ)〉 − 〈w, φ(xi, yi)〉

)

CRFs and SSVMs have more in common than usually assumed.
• log

∑
y exp(·) can be interpreted as a soft-max (differentiable)

• SSVM training takes loss function into account
• CRF is trained without specific loss, loss enters at prediction time

15 / 34

Structured Output Support Vector Machine
Equivalent unconstrained formulation (solve for optimal ξ1, . . . , ξn):

min
w

λ

2 ‖w‖
2 + 1

n

n∑
i=1

max
ȳ∈Y

[
∆(yi, ȳ) + 〈w,ψ(xi, ȳ)〉 − 〈w,ψ(xi, yi)〉

]

Conditional Random Field
Regularized conditional log-likelihood:

min
w

λ

2 ‖w‖
2 + 1

n

n∑
i=1

log
∑
ȳ∈Y

exp
(
〈w,ψ(xi, ȳ)〉 − 〈w, φ(xi, yi)〉

)

CRFs and SSVMs have more in common than usually assumed.
• log

∑
y exp(·) can be interpreted as a soft-max (differentiable)

• SSVM training takes loss function into account
• CRF is trained without specific loss, loss enters at prediction time

15 / 34

Example: RNA Secondary Structure Prediction De Bona et al ., 2007]

AAAAACCCCCCCCAGAGGAGAUUG
GAGAUCAAAGGUGGUUCGGAUGUC
GAAGUGUACCGAACCCGGGGG

→

• X = Σ∗ for Σ = {A, C, G, U} (nucleotide sequence)
• Y = {(i, j) : i, j ∈ N, i < j} (i, j) mean "xi binds with xj"
• ψ(x, y) domain-specific features: binding energy of xi ↔ xj ,

prefered patterns (motifs), loop properties, . . .
• ∆(ȳ, y): number of wrong/missing bindings (Hamming loss)

min
w

λ

2 ‖w‖
2 + 1

n

n∑
i=1

max
ȳ∈Y

[
∆(yi, ȳ) + 〈w,ψ(xi, ȳ)〉 − 〈w,ψ(xi, yi)〉

]
16 / 34

Example: Sentence Parsing [Taskar et al ., 2004]

The screen was a sea of red. →

• X = {English sentences}

• Y = {parse tree}

• ψ(x, y) domain-specific features:
I word properties, e.g. "· starts with capital letter", "· ends in ing"
I grammatical rules: NP→ DT + NN

• ∆(ȳ, y): number of wrong assignments

17 / 34

Solving S-SVM Training in Practice

min
w

λ

2 ‖w‖
2 + 1

n

n∑
i=1

max
ȳ∈Y

[
∆(yi, ȳ) + 〈w,ψ(xi, ȳ)〉 − 〈w,ψ(xi, yi)〉

]

• continuous
• unconstrained
• convex
• non-differentiable

18 / 34

Solving S-SVM Training Numerically – Subgradient Method

Computing a subgradient:

min
w

λ

2 ‖w‖
2 + 1

n

n∑
i=1

`(xi, yi, w)

with `(xi, yi, w) = maxy `y(xi, yi, w), and

`y(xi, yi, w) := ∆(yi, y) + 〈w,ψ(xi, y)〉 − 〈w,ψ(xi, yi)〉

ℓ(w)

w

y

For each y ∈ Y, `y(w) is a linear function of w.

19 / 34

Solving S-SVM Training Numerically – Subgradient Method

Computing a subgradient:

min
w

λ

2 ‖w‖
2 + 1

n

n∑
i=1

`(xi, yi, w)

with `(xi, yi, w) = maxy `y(xi, yi, w), and

`y(xi, yi, w) := ∆(yi, y) + 〈w,ψ(xi, y)〉 − 〈w,ψ(xi, yi)〉

ℓ(w)

w

y

For each y ∈ Y, `y(w) is a linear function of w.
19 / 34

Solving S-SVM Training Numerically – Subgradient Method

Computing a subgradient:

min
w

λ

2 ‖w‖
2 + 1

n

n∑
i=1

`(xi, yi, w)

with `(xi, yi, w) = maxy `y(xi, yi, w), and

`y(xi, yi, w) := ∆(yi, y) + 〈w,ψ(xi, y)〉 − 〈w,ψ(xi, yi)〉

ℓ(w)

w

y'

For each y ∈ Y, `y(w) is a linear function of w.
19 / 34

Solving S-SVM Training Numerically – Subgradient Method

Computing a subgradient:

min
w

λ

2 ‖w‖
2 + 1

n

n∑
i=1

`(xi, yi, w)

with `(xi, yi, w) = maxy `y(xi, yi, w), and

`y(xi, yi, w) := ∆(yi, y) + 〈w,ψ(xi, y)〉 − 〈w,ψ(xi, yi)〉

ℓ(w)

w

For each y ∈ Y, `y(w) is a linear function of w.
19 / 34

Solving S-SVM Training Numerically – Subgradient Method

Computing a subgradient:

min
w

λ

2 ‖w‖
2 + 1

n

n∑
i=1

`(xi, yi, w)

with `(xi, yi, w) = maxy `y(xi, yi, w), and

`y(xi, yi, w) := ∆(yi, y) + 〈w,ψ(xi, y)〉 − 〈w,ψ(xi, yi)〉

ℓ(w)

w

max over finite Y: piece-wise linear
19 / 34

Solving S-SVM Training Numerically – Subgradient Method

Computing a subgradient:

min
w

λ

2 ‖w‖
2 + 1

n

n∑
i=1

`(xi, yi, w)

with `(xi, yi, w) = maxy `y(xi, yi, w), and

`y(xi, yi, w) := ∆(yi, y) + 〈w,ψ(xi, y)〉 − 〈w,ψ(xi, yi)〉

ℓ(w)

w
w0

Subgradient of ` at w0:
19 / 34

Solving S-SVM Training Numerically – Subgradient Method

Computing a subgradient:

min
w

λ

2 ‖w‖
2 + 1

n

n∑
i=1

`(xi, yi, w)

with `(xi, yi, w) = maxy `y(xi, yi, w), and

`y(xi, yi, w) := ∆(yi, y) + 〈w,ψ(xi, y)〉 − 〈w,ψ(xi, yi)〉

ℓ(w)

w
w0

Subgradient of ` at w0: find maximal (active) y.
19 / 34

Solving S-SVM Training Numerically – Subgradient Method

Computing a subgradient:

min
w

λ

2 ‖w‖
2 + 1

n

n∑
i=1

`(xi, yi, w)

with `(xi, yi, w) = maxy `y(xi, yi, w), and

`y(xi, yi, w) := ∆(yi, y) + 〈w,ψ(xi, y)〉 − 〈w,ψ(xi, yi)〉

ℓ(w)

w
w0

Subgradient of ` at w0: find maximal (active) y, use v = ∇`y(w0).
19 / 34

Solving S-SVM Training Numerically – Subgradient Method

Computing a subgradient:

min
w

λ

2 ‖w‖
2 + 1

n

n∑
i=1

`(xi, yi, w)

with `(xi, yi, w) = maxy `y(xi, yi, w), and

`y(xi, yi, w) := ∆(yi, y) + 〈w,ψ(xi, y)〉 − 〈w,ψ(xi, yi)〉

Not necessarily unique, but v = ∇`y(w0) works for any maximal y
19 / 34

Solving S-SVM Training Numerically – Subgradient Method

Subgradient Method S-SVM Training

input training pairs {(x1, y1), . . . , (xn, yn)} ⊂ X × Y,
input feature map φ(x, y), loss function ∆(y, y′), regularizer λ,
input number of iterations T , stepsizes ηt for t = 1, . . . , T

1: w ← ~0
2: for t=1,. . . ,T do
3: for i=1,. . . ,n do
4: ŷ ← argmaxy∈Y ∆(yn, y) + 〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉
5: vn ← φ(xn, ŷ)− φ(xn, yn)
6: end for
7: w ← w − ηt(λw − 1

N

∑
n v

n)
8: end for

output prediction function f(x) = argmaxy∈Y〈w, φ(x, y)〉.

Obs: each update of w needs N argmax-prediction (one per example).
Obs: computing the argmax is (loss augmented) energy minimization20 / 34

Example: Image Segmenatation

• X images, Y = { binary segmentation masks }.

• Training example(s): (xn, yn) =
(

,
)

• ∆(y, ȳ) =
∑
pJyp 6= ȳpK (Hamming loss)

t = 1: ŷ = φ(yn)− φ(ŷ): black +, white +, green −, blue −, gray −

t = 2: ŷ = φ(yn)− φ(ŷ): black +, white +, green =, blue =, gray −

t = 3: ŷ = φ(yn)− φ(ŷ): black =, white =, green −, blue −, gray −

t = 4: ŷ = φ(yn)− φ(ŷ): black =, white =, green −, blue =, gray =

t = 5: ŷ = φ(yn)− φ(ŷ): black =, white =, green =, blue =, gray =

t = 6, . . . : no more changes.

21 / 34

Example: Image Segmenatation

• X images, Y = { binary segmentation masks }.

• Training example(s): (xn, yn) =
(

,
)

• ∆(y, ȳ) =
∑
pJyp 6= ȳpK (Hamming loss)

t = 1: w = 0,

ŷ = argmax
y

[
〈w, φ(xn, y)〉+ ∆(yn, y)

]
w=0= argmax

y
∆(yn, y) = "the opposite of yn"

t = 1: ŷ = φ(yn)− φ(ŷ): black +, white +, green −, blue −, gray −

t = 2: ŷ = φ(yn)− φ(ŷ): black +, white +, green =, blue =, gray −

t = 3: ŷ = φ(yn)− φ(ŷ): black =, white =, green −, blue −, gray −

t = 4: ŷ = φ(yn)− φ(ŷ): black =, white =, green −, blue =, gray =

t = 5: ŷ = φ(yn)− φ(ŷ): black =, white =, green =, blue =, gray =

t = 6, . . . : no more changes.

21 / 34

Example: Image Segmenatation

• X images, Y = { binary segmentation masks }.

• Training example(s): (xn, yn) =
(

,
)

• ∆(y, ȳ) =
∑
pJyp 6= ȳpK (Hamming loss)

t = 1: ŷ = φ(yn)− φ(ŷ): black +, white +, green −, blue −, gray −

t = 2: ŷ = φ(yn)− φ(ŷ): black +, white +, green =, blue =, gray −

t = 3: ŷ = φ(yn)− φ(ŷ): black =, white =, green −, blue −, gray −

t = 4: ŷ = φ(yn)− φ(ŷ): black =, white =, green −, blue =, gray =

t = 5: ŷ = φ(yn)− φ(ŷ): black =, white =, green =, blue =, gray =

t = 6, . . . : no more changes.

Images: [Carreira, Li, Sminchisescu, "Object Recognition by Sequential Figure-Ground Ranking", IJCV 2010]

21 / 34

Example: Image Segmenatation

• X images, Y = { binary segmentation masks }.

• Training example(s): (xn, yn) =
(

,
)

• ∆(y, ȳ) =
∑
pJyp 6= ȳpK (Hamming loss)

t = 1: ŷ = φ(yn)− φ(ŷ): black +, white +, green −, blue −, gray −

t = 2: ŷ = φ(yn)− φ(ŷ): black +, white +, green =, blue =, gray −

t = 3: ŷ = φ(yn)− φ(ŷ): black =, white =, green −, blue −, gray −

t = 4: ŷ = φ(yn)− φ(ŷ): black =, white =, green −, blue =, gray =

t = 5: ŷ = φ(yn)− φ(ŷ): black =, white =, green =, blue =, gray =

t = 6, . . . : no more changes.

Images: [Carreira, Li, Sminchisescu, "Object Recognition by Sequential Figure-Ground Ranking", IJCV 2010]

21 / 34

Example: Image Segmenatation

• X images, Y = { binary segmentation masks }.

• Training example(s): (xn, yn) =
(

,
)

• ∆(y, ȳ) =
∑
pJyp 6= ȳpK (Hamming loss)

t = 1: ŷ = φ(yn)− φ(ŷ): black +, white +, green −, blue −, gray −

t = 2: ŷ = φ(yn)− φ(ŷ): black +, white +, green =, blue =, gray −

t = 3: ŷ = φ(yn)− φ(ŷ): black =, white =, green −, blue −, gray −

t = 4: ŷ = φ(yn)− φ(ŷ): black =, white =, green −, blue =, gray =

t = 5: ŷ = φ(yn)− φ(ŷ): black =, white =, green =, blue =, gray =

t = 6, . . . : no more changes.

Images: [Carreira, Li, Sminchisescu, "Object Recognition by Sequential Figure-Ground Ranking", IJCV 2010]

21 / 34

Example: Image Segmenatation

• X images, Y = { binary segmentation masks }.

• Training example(s): (xn, yn) =
(

,
)

• ∆(y, ȳ) =
∑
pJyp 6= ȳpK (Hamming loss)

t = 1: ŷ = φ(yn)− φ(ŷ): black +, white +, green −, blue −, gray −

t = 2: ŷ = φ(yn)− φ(ŷ): black +, white +, green =, blue =, gray −

t = 3: ŷ = φ(yn)− φ(ŷ): black =, white =, green −, blue −, gray −

t = 4: ŷ = φ(yn)− φ(ŷ): black =, white =, green −, blue =, gray =

t = 5: ŷ = φ(yn)− φ(ŷ): black =, white =, green =, blue =, gray =

t = 6, . . . : no more changes.

Images: [Carreira, Li, Sminchisescu, "Object Recognition by Sequential Figure-Ground Ranking", IJCV 2010]

21 / 34

Example: Image Segmenatation

• X images, Y = { binary segmentation masks }.

• Training example(s): (xn, yn) =
(

,
)

• ∆(y, ȳ) =
∑
pJyp 6= ȳpK (Hamming loss)

t = 1: ŷ = φ(yn)− φ(ŷ): black +, white +, green −, blue −, gray −

t = 2: ŷ = φ(yn)− φ(ŷ): black +, white +, green =, blue =, gray −

t = 3: ŷ = φ(yn)− φ(ŷ): black =, white =, green −, blue −, gray −

t = 4: ŷ = φ(yn)− φ(ŷ): black =, white =, green −, blue =, gray =

t = 5: ŷ = φ(yn)− φ(ŷ): black =, white =, green =, blue =, gray =

t = 6, . . . : no more changes.

Images: [Carreira, Li, Sminchisescu, "Object Recognition by Sequential Figure-Ground Ranking", IJCV 2010]
21 / 34

Solving S-SVM Training Numerically – Subgradient Method

Same trick as for CRFs: stochastic updates:

Stochastic Subgradient Method S-SVM Training

input training pairs {(x1, y1), . . . , (xn, yn)} ⊂ X × Y,
input feature map φ(x, y), loss function ∆(y, y′), regularizer λ,
input number of iterations T , stepsizes ηt for t = 1, . . . , T

1: w ← ~0
2: for t=1,. . . ,T do
3: (xn, yn) ← randomly chosen training example pair
4: ŷ ← argmaxy∈Y ∆(yn, y) + 〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉
5: w ← w − ηt(λw − 1

N [φ(xn, ŷ)− φ(xn, yn)])
6: end for

output prediction function f(x) = argmaxy∈Y〈w, φ(x, y)〉.

Observation: each update of w needs only 1 argmax-prediction
(but we’ll need many iterations until convergence)

22 / 34

Solving S-SVM Training Numerically

Structured Support Vector Machine:

min
w

λ

2 ‖w‖
2 + 1

N

N∑
n=1

max
y∈Y

[
∆(yn, y) + 〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉

)]

Subgradient method converges slowly. Can we do better?

We can use inequalities and slack variables to reformulate the
optimization.

23 / 34

Solving S-SVM Training Numerically

Structured Support Vector Machine:

min
w

λ

2 ‖w‖
2 + 1

N

N∑
n=1

max
y∈Y

[
∆(yn, y) + 〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉

)]

Subgradient method converges slowly. Can we do better?

We can use inequalities and slack variables to reformulate the
optimization.

23 / 34

Solving S-SVM Training Numerically

Structured SVM (equivalent formulation):

Idea: slack variables

min
w,ξ

λ

2 ‖w‖
2 + 1

N

N∑
n=1

ξn

subject to, for n = 1, . . . , N ,

max
y∈Y

[
∆(yn, y) + 〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉

]
≤ ξn

Note: ξn ≥ 0 automatic, because left hand side is non-negative.

Differentiable objective, convex, N non-linear contraints,

24 / 34

Solving S-SVM Training Numerically

Structured SVM (also equivalent formulation):

Idea: expand max term into individual constraints

min
w,ξ

λ

2 ‖w‖
2 + 1

N

N∑
n=1

ξn

subject to, for n = 1, . . . , N ,

∆(yn, y) + 〈w, φ(xn, y)〉 − 〈w, φ(xn, yn)〉 ≤ ξn, for all y ∈ Y

Differentiable objective, convex, N |Y| linear constraints

25 / 34

Solving S-SVM Training Numerically

Solve an S-SVM like a linear Support Vector Machine:

min
w∈RD,ξ∈Rn

λ

2 ‖w‖
2 + 1

N

N∑
n=1

ξn

subject to, for i = 1, . . . n,

〈w, φ(xn, yn)〉−〈w, φ(xn, y)〉 ≥ ∆(yn, y) − ξn, for all y ∈ Y.

Introduce feature vectors δφ(xn, yn, y) := φ(xn, yn)− φ(xn, y).

26 / 34

Solving S-SVM Training Numerically

Solve

min
w∈RD,ξ∈Rn

+

λ

2 ‖w‖
2 + 1

N

N∑
n=1

ξn

subject to, for i = 1, . . . n, for all y ∈ Y ,

〈w, δφ(xn, yn, y)〉 ≥ ∆(yn, y) − ξn.

Same structure as an ordinary SVM!
• quadratic objective ,
• linear constraints ,

Question: Can we use an ordinary SVM/QP solver?

Answer: Almost! We could, if there weren’t N |Y| constraints .
• E.g. 100 binary 16× 16 images: 1079 constraints

27 / 34

Solving S-SVM Training Numerically

Solve

min
w∈RD,ξ∈Rn

+

λ

2 ‖w‖
2 + 1

N

N∑
n=1

ξn

subject to, for i = 1, . . . n, for all y ∈ Y ,

〈w, δφ(xn, yn, y)〉 ≥ ∆(yn, y) − ξn.

Same structure as an ordinary SVM!
• quadratic objective ,
• linear constraints ,

Question: Can we use an ordinary SVM/QP solver?

Answer: Almost! We could, if there weren’t N |Y| constraints .
• E.g. 100 binary 16× 16 images: 1079 constraints

27 / 34

Solving S-SVM Training Numerically

Solve

min
w∈RD,ξ∈Rn

+

λ

2 ‖w‖
2 + 1

N

N∑
n=1

ξn

subject to, for i = 1, . . . n, for all y ∈ Y ,

〈w, δφ(xn, yn, y)〉 ≥ ∆(yn, y) − ξn.

Same structure as an ordinary SVM!
• quadratic objective ,
• linear constraints ,

Question: Can we use an ordinary SVM/QP solver?

Answer: Almost! We could, if there weren’t N |Y| constraints .
• E.g. 100 binary 16× 16 images: 1079 constraints

27 / 34

Solving S-SVM Training Numerically – Working Set

Solution: working set training
• It’s enough if we enforce the active constraints.

The others will be fulfilled automatically.
• We don’t know which ones are active for the optimal solution.
• But it’s likely to be only a small number ← can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Solving S-SVM Training Numerically – Working Set
• Start with working set S = ∅ (no contraints)
• Repeat until convergence:

I Solve S-SVM training problem with constraints from S
I Check, if solution violates any of the full constraint set

I if no: we found the optimal solution, terminate.
I if yes: add most violated constraints to S, iterate.

Good practical performance and theoretic guarantees:
• polynomial time convergence ε-close to the global optimum

28 / 34

Solving S-SVM Training Numerically – Working Set

Solution: working set training
• It’s enough if we enforce the active constraints.

The others will be fulfilled automatically.
• We don’t know which ones are active for the optimal solution.
• But it’s likely to be only a small number ← can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:
Solving S-SVM Training Numerically – Working Set
• Start with working set S = ∅ (no contraints)
• Repeat until convergence:

I Solve S-SVM training problem with constraints from S
I Check, if solution violates any of the full constraint set

I if no: we found the optimal solution, terminate.
I if yes: add most violated constraints to S, iterate.

Good practical performance and theoretic guarantees:
• polynomial time convergence ε-close to the global optimum

28 / 34

Solving S-SVM Training Numerically – Working Set

Solution: working set training
• It’s enough if we enforce the active constraints.

The others will be fulfilled automatically.
• We don’t know which ones are active for the optimal solution.
• But it’s likely to be only a small number ← can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:
Solving S-SVM Training Numerically – Working Set
• Start with working set S = ∅ (no contraints)
• Repeat until convergence:

I Solve S-SVM training problem with constraints from S
I Check, if solution violates any of the full constraint set

I if no: we found the optimal solution, terminate.
I if yes: add most violated constraints to S, iterate.

Good practical performance and theoretic guarantees:
• polynomial time convergence ε-close to the global optimum

28 / 34

Working Set S-SVM Training

input training pairs {(x1, y1), . . . , (xn, yn)} ⊂ X × Y,
input feature map φ(x, y), loss function ∆(y, y′), regularizer λ

1: w ← 0, S ← ∅
2: repeat
3: (w, ξ)← solution to QP only with constraints from S
4: for i=1,. . . ,n do
5: ŷ ← argmaxy∈Y ∆(yn, y) + 〈w, φ(xn, y)〉
6: if ŷ 6= yn then
7: S ← S ∪ {(xn, ŷ)}
8: end if
9: end for

10: until S doesn’t change anymore.

output prediction function f(x) = argmaxy∈Y〈w, φ(x, y)〉.

Obs: each update of w needs N argmax-predictions (one per example),
but we solve globally for next w, not by local steps.

29 / 34

Example: Object Localization

• X images, Y = { object bounding box } ⊂ R4.

• Training examples:

• Goal: f : X → Y

7→

• Loss function: area overlap ∆(y, y′) = 1− area(y∩y′)
area(y∪y′)

[Blaschko, Lampert: "Learning to Localize Objects with Structured Output Regression", ECCV 2008]

30 / 34

Example: Object Localization

Structured SVM:
• φ(x, y) := "bag-of-words histogram of region y in image x"

min
w∈RD,ξ∈Rn

λ

2 ‖w‖
2 + 1

N

N∑
n=1

ξn

subject to, for i = 1, . . . n,

〈w, φ(xn, yn)〉−〈w, φ(xn, y)〉 ≥ ∆(yn, y) − ξn, for all y ∈ Y.

Interpretation:
• For every image, the correct bounding box, yn, should have a higher

score than any wrong bounding box.
• Less overlap between the boxes → bigger difference in score

31 / 34

Example: Object Localization

Working set training – Step 1:

• w ← 0.

For every example:
• ŷ ← argmaxy∈Y ∆(yn, y) + 〈w, φ(xn, y)〉︸ ︷︷ ︸

=0

maximal ∆-loss ≡ minimal overlap with yn ≡ ŷ ∩ yn = ∅

• add constraint

〈w, φ(xn, yn)〉 − 〈w, φ(xn, ŷ)〉 ≥ 1 − ξn

Note: similar to binary SVM training for object detection:
• positive examples: ground truth bounding boxes
• negative examples: random boxes from ’image background’

32 / 34

Example: Object Localization

Working set training – Later Steps:

For every example:
• ŷ ← argmaxy∈Y ∆(yn, y)︸ ︷︷ ︸

bias towards ’wrong’ regions

+ 〈w, φ(xn, y)〉︸ ︷︷ ︸
object detection score

• if ŷ = yn: do nothing,
else: add constraint

〈w, φ(xn, yn)〉 − 〈w, φ(xn, ŷ)〉 ≥ ∆(yn, ŷ) − ξn

enforces ŷ to have lower score after re-training.

Note: similar to hard negative mining for object detection:
• perform detection on training image
• if detected region is far from ground truth, add as negative example

Difference: S-SVM handles regions that overlap with ground truth.
33 / 34

Dual S-SVM

We can also dualize the S-SVM optimization:

max
α∈RN|Y|

− 1
2
∑
y,ȳ∈Y

n,n̄=1,...,N

αnyαn̄ȳ
〈
φ(xn, y), φ(xn̄, ȳ)

〉
+

∑
n=1,...,N
y∈Y

αny∆(yn, y)

subject to, for n = 1, . . . , N ,

αny ≥ 0, and
∑
y∈Y

αny ≤
2
λN

.

Quadratic (convex) objective, linear constraints, N |Y| unknowns

Recover weight vector from dual coefficients:
w =

∑
n,α

αnyφ(xn, y)

State-of-the-art: solve dual with Frank-Wolfe algorithm.

34 / 34

Dual S-SVM

We can also dualize the S-SVM optimization:

max
α∈RN|Y|

− 1
2
∑
y,ȳ∈Y

n,n̄=1,...,N

αnyαn̄ȳ
〈
φ(xn, y), φ(xn̄, ȳ)

〉
+

∑
n=1,...,N
y∈Y

αny∆(yn, y)

subject to, for n = 1, . . . , N ,

αny ≥ 0, and
∑
y∈Y

αny ≤
2
λN

.

Quadratic (convex) objective, linear constraints, N |Y| unknowns

Recover weight vector from dual coefficients:
w =

∑
n,α

αnyφ(xn, y)

State-of-the-art: solve dual with Frank-Wolfe algorithm.
34 / 34

