
Statistical Machine Learning
https://cvml.ist.ac.at/courses/SML_W20

Christoph Lampert

Fall Semester 2020/2021
Lecture 1

1 / 46

https://cvml.ist.ac.at/courses/SML_W20

Stastical Machine Learning Course – Formalities

Goals:
• learn the principles of (mainly supervised) machine learning
• get an overview of some core techniques
• not:hands-on experience in solving real-world tasks using machine learning

Target Audience:
• anyone interest in machine learning as a research topic.
• not: anyone who wants to apply machine learning to their own problems

Prerequisites:
• mathematics: set notation, linear algebra, multi-dimensional calculus, probabilities
• programming skills: in a language that allows numeric computation, e.g. Python

Caveat:
• rumor is, the course is quite some work for its 3 ECTS

2 / 46

Stastical Machine Learning Course – Formalities

Goals:
• learn the principles of (mainly supervised) machine learning
• get an overview of some core techniques
• not:hands-on experience in solving real-world tasks using machine learning

Target Audience:
• anyone interest in machine learning as a research topic.
• not: anyone who wants to apply machine learning to their own problems

Prerequisites:
• mathematics: set notation, linear algebra, multi-dimensional calculus, probabilities
• programming skills: in a language that allows numeric computation, e.g. Python

Caveat:
• rumor is, the course is quite some work for its 3 ECTS

2 / 46

Stastical Machine Learning Course – Formalities

Evaluation criteria:
• 50% homework, 50% final project

Homework:
• every Monday there is a new homework sheet
• exercises are mainly theoretical/analytical, but also some practicals
• return your answers via email to the TAs before the next Monday lecture
• homeworks must be handed in individually
• group discussion about homeworks is permitted and encouraged
• cut-and-paste solutions are not permitted and will be sanctioned
(1st offence: no points for sheet, 2nd offence: fail course)

Final Team Project:
• starting two weeks before the end of the course (approx. Nov 1)
• teams should have two participants
• you can use any method and software you want
• teams present their approaches during the "exam week" (Nov 13, Nov 15)

3 / 46

Overview (tentative)

Date no. Topic
Oct 05 Mon 1 A Hands-On Introduction
Oct 07 Wed 2 Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 Mon 3 Discriminative Probabilistic Models
Oct 14 Wed 4 Maximum Margin Classifiers, Generalized Linear Models
Oct 19 Mon 5 Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 Wed 6 Bias/Fairness, Domain Adaptation
Oct 26 Mon - no lecture (public holiday)
Oct 28 Wed 7 Learning Theory I
Nov 02 Mon 8 Learning Theory II
Nov 04 Wed 9 Deep Learning I
Nov 09 Mon 10 Deep Learning II
Nov 11 Wed 11 Unsupervised Learning
Nov 16 Mon 12 project presentations
Nov 18 Wed 13 buffer

4 / 46

What is Machine Learning

Definition (Mitchell, 1997)

A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P , if its performance at tasks in T , as measured by P , improves
with experience E.

5 / 46

What is Machine Learning

Definition (Mitchell, 1997)

A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P , if its performance at tasks in T , as measured by P , improves
with experience E.

Example: Backgammon

• T)ask: Play backgammon.
• E)xperience: Games playes against itself
• P)erformance Measure: Games won against human players.

5 / 46

What is Machine Learning

Definition (Mitchell, 1997)

A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P , if its performance at tasks in T , as measured by P , improves
with experience E.

Example: Spam classification

• T)ask: determine if emails are Spam or non-Spam.
• E)xperience: Incoming emails with human classification
• P)erformance Measure: percentage of correct decisions

5 / 46

What is Machine Learning

Definition (Mitchell, 1997)

A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P , if its performance at tasks in T , as measured by P , improves
with experience E.

Example: Stock market predictions

• T)ask: predict the price of some shares
• E)xperience: past prices
• P)erformance Measure: money you win or lose

5 / 46

Notation

Task:
• X : input set, set of all possible inputs
• Y: output set, set of all possible outputs
• f : X → Y: prediction function,

I e.g. X = { all possible emails },Y = {spam, ham}
f spam filter: for new email x ∈ X : f(x) = spam or f(x) = ham.

Performance:
• ` : Y × Y → R: loss function

I e.g. `(y, y′) is cost of predicting y′ if y is correct.
I `(y, y′) can be asymmetric: spam→ ham is annoying, but no big deal.
I ham→ spam can cause serious problems.

Experience: task-dependent, many different scenarios
• Supervised learning: a labeled training set examples from X with

outputs provided by an expert, D = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y
I A person goes through his/her n emails and marks each one whether it is spam or not.

6 / 46

What is Machine Learning

Many other variants on how to formalize experience exist:
• Unsupervised Learning: D = {x1, . . . , xn}, only observing, no input
from an expert/teacher
• Semi-supervised Learning: D = {(x1, y1), . . . , (xn, yn)} ∪ {xn+1, . . . , xn+l}: only a
subset of examples has labels

I spam: quite common, nobody wants to label every email in their inbox
• Reinforcement Learning: D = {(x1, r1), . . . , (xn, rn)} with ri ∈ R: actions and
feedback how good the action was

I backgammon: nobody tells you the best move, but eventually you observe a win or loss
• Active Learning: D = {x1, . . . , xn}, but the algorithms may ask for labels

I spam: email program can ask the user, if its not too often
• Zero-Shot Learning: D = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y but only a subset of all
classes actually shows up in the training data.

In this course, we don’t look at these (except a little bit at unsupervised learning).

7 / 46

Supervised Learning

Definition

• A supervised learning system (or learner), L, is a (computable) function
from the set of (finite) training sets to the set of prediction functions:

L : P<∞(X × Y)→ YX

i.e. L : D 7→ f

If presented with a training set D ⊂ X × Y, it provides a decision rule/function
f : X → Y.

Definition
Let L be a learning system.
• The process of computing f = L(D) is called training (phase).
• Applying f to new data is called prediction, or testing (phase).

8 / 46

Machine Learning: A very practical introduction:

We will look at examples of classical learning algorithms, to get a feeling
what problems a learning system faces.
• Decision Trees
• Nearest Neighbor Classifiers
• Perceptron
• Boosting
• Artificial Neural Networks

Caveat: for each of these are there more advanced, often better, variants. Here, we look at
the only as prototypes, not as guideline what to actually use in real life.

9 / 46

Decision Trees – analysis: Breiman 1980s

Task: decide what to do today

yes no

work

yes no

play
tennis

read
book

Classifier has a tree structure:
• each interior node makes a decision: it picks
an attribute within x, branches for each
possible value

• each leaf assigns an (output) label

• to classify a new example, we
I put it into the root node,
I follow the decisions until we reach a leaf.
I use the leaf value as the prediction

Decisions trees (’expert systems’) are popular especially for non-experts:
• efficient, easy to use, and interpretable.

10 / 46

How to automatically build a decision tree

Given: training set D = {(x1, y1), . . . , (xn, yn)}.
Convention:
• each node contains a subset of examples,
• its label is the majority label of the examples in this node (any of the majority labels, if
there’s a tie)

Decision Tree – Training

initialize: put all examples in root node
mark root as active
repeat
pick active node with largest number of misclassified examples
mark the node as inactive
for each attributes, check error rate of splitting along this attribute
keep the split with smallest error, if any, and mark children as active

until no more active nodes.
11 / 46

How to automatically build a decision tree

Decision Tree – Classification

input decision tree, example x
assign x to root node
while x not in leaf node do
move x to child according to the test in node

end while
output label of the leaf that x is in

12 / 46

Decision Trees Example - Training

• We have a personalized dating agency, our only customer is Zoe.
• Task: For new customers registering, predict if Zoe should date them.
• Performance Measure: If Zoe is happy with the decision.
• Experience: We show Zoe a catalog of previous custemers and she tells us whether she
would have like to date them or not.
• Let x ∈ X be a collection of values or properties, x = (x1, . . . , xd).

property possible values
eye color blue/brown/green
handsome yes/no
height short/tall

sex male (M)/female (F)
soccer fan yes/no

13 / 46

Decision Trees Example - Training phase

Preparation: you give Zoe a set of profiles to see whom she would like to date
(none of these people really have to exists...)

Here’s her answers, which we’ll use as training data:
X Y

person eyes handsome height sex soccer date?
Apu blue yes tall M no yes
Bernice brown yes short F no no
Carl blue no tall M no yes
Doris green yes short F no no
Edna brown no short F yes no
Prof. Frink brown yes tall M yes no
Gil blue no tall M yes no
Homer green yes short M no yes
Itchy brown no short M yes yes

(this table is also on the exercise sheet)
14 / 46

Decision Trees Example - Training phase

Step 1: put all all training examples into the root node

root = { (A,y),(B,n),(C,y),(D,n),(E,n),(F,n),(G,n),(H,y),(I,y) }

For each feature, check the classification accuracy of this single feature:

eyes

green (D,n)
(H,y)

majority
vote: y

accuracy:
1/2

brown

(B,n)
(E,n)
(F,n)
(I,y)

majority
vote: n

accuracy:
3/4

blue
(A,y)
(C,y)
(G,n)

majority
vote: y

accuracy:
2/3

Total accuracy eyes: 6/9

15 / 46

Decision Trees Example - Training phase

Step 1: put all all training examples into the root node

root = { (A,y),(B,n),(C,y),(D,n),(E,n),(F,n),(G,n),(H,y),(I,y) }

For each feature, check the classification accuracy of this single feature:

handsome

no
(C,y)
(E,n)
(G,n)
(I,y)

majority
vote: y

accuracy:
2/4

yes

(A,y)
(B,n)
(D,n)
(F,n)
(H,y)

majority
vote: n

accuracy:
3/5

Total accuracy handsome: 5/9

16 / 46

Decision Trees Example - Training phase

Step 1: put all all training examples into the root node

root = { (A,y),(B,n),(C,y),(D,n),(E,n),(F,n),(G,n),(H,y),(I,y) }

For each feature, check the classification accuracy of this single feature:
feature accuracies → total
eyes blue: (2/3), brown: (3/4), green: (1/2) → total: (6/9)

handsome yes: (3/5), no: (2/4) → total: (5/9)
height tall: (2/4), short: (3/5) → total: (5/9)

sex male: (4/6), female: (3/3) → total: (7/9)
soccer yes: (3/4), no: (3/6) → total: (6/9)

Best feature: sex.

17 / 46

Decision Trees Example - Training phase

Step 1 result: first split ist along sex feature
sex

m/ \f
(A,y),(C,y),(F,n),(G,n),(H,y),(I,y) (B,n), (D,n), (E,n)

Right node: no mistakes, no more splits
Left node: run checks again for remaining data

18 / 46

Step 2:

person eyes handsome height sex soccer date?
Apu blue yes tall male no yes
Carl blue no tall male no yes
Frink brown yes tall male yes no
Gil blue no tall male yes no

Homer green yes short male no yes
Itchy brown no short male yes yes

feature accuracies → total
eyes blue: (2/3), brown: (1/2), green: (1/1) → total: (4/6)

handsome yes: (2/3), no: (2/3) → total: (4/6)
height tall: (2/4), short: (2/2) → total: (4/6)

sex male: (4/6) → total: (4/6)
soccer yes: (2/3), no: (3/3) → total: (5/6)

Best feature: soccer.
19 / 46

Decision Trees Example - Training phase

Step 2 result: second split ist along soccer feature

sex
m/ \f

soccer (B,n), (D,n), (E,n)
n/ \y

(A,y),(C,y),(H,y) (F,n),(G,n),(I,y)

Left node: no mistakes, no more splits
Right node: run checks again for remaining data

20 / 46

Step 3:

person eyes handsome height sex soccer date?
Frink brown yes tall male yes no
Gil blue no tall male yes no
Itchy brown no short male yes yes

feature accuracies → total
eyes blue: (1/1), brown: (1/2), green: (0/0) → total: (2/3)

handsome yes: (1/1), no: (1/2) → total: (2/3)
height tall: (2/2), short: (1/1) → total: (3/3)

sex male: (2/3) → total: (2/3)
soccer yes: (2/3) → total: (2/3)

Best feature: height.

21 / 46

Decision Trees Example - Training phase

Step 3 result: third split ist along height feature

sex
m/ \f

soccer (B,n), (D,n), (E,n)
n/ \y

(A,y),(C,y),(H,y) height
short/ \tall
(I,y) (F,n),(G,n)

Left node: no mistakes, no more splits
Right node: no mistakes, no more splits

→ Decision tree learning complete.

22 / 46

Decision Trees Example - Training phase

Step 3 result: third split ist along height feature

sex
m/ \f

soccer label: no
n/ \y

label: yes height
short/ \tall

label: yes label: no

Left node: no mistakes, no more splits
Right node: no mistakes, no more splits

→ Decision tree learning complete.

22 / 46

Decision Trees Example - How good is this classifier?

Training example 1: correct
person eyes handsome height sex soccer date?
Apu blue yes tall male no yes

sex
m/ \f

soccer label: no
n/ \y

label: yes height
short/ \tall

label: yes label: no

23 / 46

Decision Trees Example - How good is this classifier?

Training example 2: correct
person eyes handsome height sex soccer date?
Bernice brown yes short F no no

sex
m/ \f

soccer label: no
n/ \y

label: yes height
short/ \tall

label: yes label: no

24 / 46

Decision Trees Example - How good is this classifier?

Training example 3: correct
person eyes handsome height sex soccer date?
Carl blue no tall M no yes

sex
m/ \f

soccer label: no
n/ \y

label: yes height
short/ \tall

label: yes label: no

25 / 46

Decision Trees Example - How good is this classifier?

• All training examples are classified correctly!

Not overly surprising... that’s how we constructed the tree.

26 / 46

Decision Trees Example - How good is this classifier?

• All training examples are classified correctly!

Not overly surprising... that’s how we constructed the tree.

26 / 46

Decision Trees Example - How good is this classifier?

What if we check on new data of the same kind?

person eyes handsome height sex soccer date?

tree

Jimbo blue no tall M no yes

yes

Krusty green yes short M yes no

yes

Lisa blue yes tall F no no

no

Moe brown no short M no no

yes

Ned brown yes short M no yes

yes

Quimby blue no tall M no yes

yes

2 mistakes in 6, hm...

Observation
Zoe won’t care if our tree classifier worked perfectly on the training data. What really
matters is how it works on future data: ability to generalize

27 / 46

Decision Trees Example - How good is this classifier?

What if we check on new data of the same kind?

person eyes handsome height sex soccer date? tree
Jimbo blue no tall M no yes yes
Krusty green yes short M yes no yes
Lisa blue yes tall F no no no
Moe brown no short M no no yes
Ned brown yes short M no yes yes
Quimby blue no tall M no yes yes

2 mistakes in 6, hm...

Observation
Zoe won’t care if our tree classifier worked perfectly on the training data. What really
matters is how it works on future data: ability to generalize

27 / 46

Decision Trees Example - How good is this classifier?

Observation
There is a relation between accuracy during training and accuracy at test time, but it isn’t a
simple one. Perfect performance on the training set does not guarantee perfect
performance on future data!

Why did the tree make a mistake?
Maybe it took the training data too seriously?
Would Zoe really decide that male soccer fans are only datable, if they are short, but not if
they are tall?
Let’s see what happens in we simplify the tree?

28 / 46

Decision Trees Example - How good is this classifier?

Original four-level tree: 2 mistakes in 6.
sex

m/ \f
soccer label: no

n/ \y
label: yes height

short/ \tall
label: yes label: no

person eyes handsome height sex soccer date? tree
Jimbo blue no tall M no yes yes
Krusty green yes short M yes no yes
Lisa blue yes tall F no no no
Moe brown no short M no no yes
Ned brown yes short M no yes yes
Quimby blue no tall M no yes yes

29 / 46

Decision Trees Example - How good is this classifier?

Tree with three levels: 1 mistake in 6.
sex

m/ \f
soccer label: no

n/ \y
label: yes label: no

person eyes handsome height sex soccer date? tree
Jimbo blue no tall M no yes yes
Krusty green yes short M yes no no
Lisa blue yes tall F no no no
Moe brown no short M no no yes
Ned brown yes short M no yes yes
Quimby blue no tall M no yes yes

30 / 46

Decision Trees Example - How good is this classifier?

Tree with two levels: 2 mistakes in 6.
sex

m/ \f
label: yes label: no

person eyes handsome height sex soccer date? tree
Jimbo blue no tall M no yes yes
Krusty green yes short M yes no yes
Lisa blue yes tall F no no no
Moe brown no short M no no yes
Ned brown yes short M no yes yes
Quimby blue no tall M no yes yes

31 / 46

Decision Trees Example - How good is this classifier?

Tree with one level: 3 mistakes in 6.

label: no

person eyes handsome height sex soccer date? tree
Jimbo blue no tall M no yes no
Krusty green yes short M yes no no
Lisa blue yes tall F no no no
Moe brown no short M no no no
Ned brown yes short M no yes no
Quimby blue no tall M no yes no

32 / 46

Decision Trees Example - How good is this classifier?

Error analysis:

size training error test error
height 1 4/9 3/6
height 2 2/9 2/6
height 3 1/9 1/6

height 4 (full) 0/9 2/6

Typical behaviour of classical machine learning systems:

model complexity

e
rr

o
r

training error

test error

33 / 46

Decision Trees Example - How good is this classifier?

Error analysis:

size training error test error
height 1 4/9 3/6
height 2 2/9 2/6
height 3 1/9 1/6

height 4 (full) 0/9 2/6

Typical behaviour of classical machine learning systems:

model complexity

e
rr

o
r

training error

test error

33 / 46

Decision Tree Example - Lessons learned

Classifiers can have different complexity:
• Complexity has impact on both: training error and testing error.
• Training error: usually decreases with increasing complexity
• Test error: first decreases, then might go up again.

Test error behavior is so common that it has its own name:
• too simple models: high test error due to underfitting

I the model cannot absorb the information from the training data
• too complex models: high test error due to overfitting

I the model tries to reproduce idiosyncracies of the training data that future data will not
have

Optimal classifier has a complexity somewhere inbetween, but:
• we cannot tell from either training error or test error alone if we underfit, overfit or
neither
• seeing the complete curve will tell us!

34 / 46

Decision Trees - Conclusion

• Categorial data can often be handled nicely by a tree.

• For continuous data, X = Rd, one typically uses splits by comparing any coordinate by a
threshold: Jxi ≥ θK?

• Finding a split consists of checking all i = 1, . . . , d and all (reasonable) thresholds, e.g.
all x1

i , . . . , x
n
i

• If d is large, and all dimension are roughly of equal importance (e.g. time series), this is
tedious, and the resulting tree might not be good.

Caveat: single decision trees are rarely used for real-world systems these days. But related
techniques are, in particular random forests.

35 / 46

Nearest Neighbor – analysis: Cover&Thomas, 1967

Nearest Neighbor – Training

input dataset D = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × Y
store all examples (x1, y1), . . . , (xn, yn).

Nearest Neighbor – Prediction

input new example x ∈ Rd

for each training example (xi, yi)
compute disti(x) = ‖x− xi‖ (Euclidean distance)

output yj for j = argminj disti(x)

(if argmin is not unique, pick between possible examples)

36 / 46

Nearest Neighbor – Illustration

Definition (Decision Boundary)

Let f : X → Y be a classifier with discrete Y = {1, . . . ,M}. The points
where f is discontinuous are called decision boundary.

37 / 46

Nearest Neighbor – Illustration

Definition (Decision Boundary)

Let f : X → Y be a classifier with discrete Y = {1, . . . ,M}. The points
where f is discontinuous are called decision boundary.

37 / 46

Nearest Neighbor – Illustration

Definition (Decision Boundary)

Let f : X → Y be a classifier with discrete Y = {1, . . . ,M}. The points
where f is discontinuous are called decision boundary.

37 / 46

Nearest Neighbor – Illustration

Definition (Decision Boundary)

Let f : X → Y be a classifier with discrete Y = {1, . . . ,M}. The points
where f is discontinuous are called decision boundary.

37 / 46

Nearest Neighbor – Illustration

Definition (Decision Boundary)

Let f : X → Y be a classifier with discrete Y = {1, . . . ,M}. The points
where f is discontinuous are called decision boundary.

37 / 46

Nearest Neighbor – Illustration

Definition (Decision Boundary)

Let f : X → Y be a classifier with discrete Y = {1, . . . ,M}. The points
where f is discontinuous are called decision boundary.

37 / 46

Nearest Neighbor – Illustration

Definition (Decision Boundary)

Let f : X → Y be a classifier with discrete Y = {1, . . . ,M}. The points
where f is discontinuous are called decision boundary.

37 / 46

Nearest Neighbor – Illustration

Definition (Decision Boundary)

Let f : X → Y be a classifier with discrete Y = {1, . . . ,M}. The points
where f is discontinuous are called decision boundary.

37 / 46

Nearest Neighbor – Illustration

Definition (Decision Boundary)

Let f : X → Y be a classifier with discrete Y = {1, . . . ,M}. The points
where f is discontinuous are called decision boundary.

37 / 46

Nearest Neighbor – Illustration

Definition (Decision Boundary)

Let f : X → Y be a classifier with discrete Y = {1, . . . ,M}. The points
where f is discontinuous are called decision boundary.

37 / 46

Nearest Neighbor

Nearest Neighbor prediction in the real world:
• very natural and intuitive
• we apply it without even considering it "learning" or "prediction"
• very popular in industry under a variety of names, e.g. ’case based reasoning’,
Example: helpdesk "Similar problems have similar solutions".

From a machine learning point of view:
• consider data as points in a (potentially high-dim.) vector space
• distance between two points tells us their similarity
• Similar points tend to have the same label.

We can also use NN for categorical labels: embed values into Rd, e.g.

xApu = (1︸︷︷︸
blue

, 0︸︷︷︸
brown

, 0︸︷︷︸
green

, 1︸︷︷︸
handsome

, 0︸︷︷︸
not handsome

, 1︸︷︷︸
tall

, 0︸︷︷︸
short

, 1︸︷︷︸
male

, 0︸︷︷︸
female

, 1︸︷︷︸
soccer

, 0︸︷︷︸
not soccer

)

38 / 46

k-Nearest Neighbor

More general than nearest neighbor:

k-Nearest Neighbor – Training

input dataset D = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × Y
store all examples (x1, y1), . . . , (xn, yn).

k-Nearest Neighbor – Classification

input new example x
for each training example (xi, yi) compute di(x) = ‖x− xi‖ (Euclidean distance)
sort di in increasing order

output majority vote among yis within the k smallest di

39 / 46

k-Nearest Neighbor

k = 1:
• original nearest neighbor rule
• any "outlier" influences the
decision boundary

Observation: k controls the complexity of the model:
• k = 1, decisions based on a single (most similar) example at a time,
this might have an unreliable label (overfitting).
• k = n, all new points are classified with the label (underfitting).
• as before: there’s a sweet spot inbetween.

40 / 46

k-Nearest Neighbor

k = 1:
• original nearest neighbor rule
• any "outlier" influences the
decision boundary

Observation: k controls the complexity of the model:
• k = 1, decisions based on a single (most similar) example at a time,
this might have an unreliable label (overfitting).
• k = n, all new points are classified with the label (underfitting).
• as before: there’s a sweet spot inbetween.

40 / 46

k-Nearest Neighbor

k = 1:
• original nearest neighbor rule
• any "outlier" influences the
decision boundary

Observation: k controls the complexity of the model:
• k = 1, decisions based on a single (most similar) example at a time,
this might have an unreliable label (overfitting).
• k = n, all new points are classified with the label (underfitting).
• as before: there’s a sweet spot inbetween.

40 / 46

k-Nearest Neighbor

k = 1:
• original nearest neighbor rule
• any "outlier" influences the
decision boundary

Observation: k controls the complexity of the model:
• k = 1, decisions based on a single (most similar) example at a time,
this might have an unreliable label (overfitting).
• k = n, all new points are classified with the label (underfitting).
• as before: there’s a sweet spot inbetween.

40 / 46

k-Nearest Neighbor

k = 3:
• isolated outliers are ignored
• decision boundary becomes
smoother

Observation: k controls the complexity of the model:
• k = 1, decisions based on a single (most similar) example at a time,
this might have an unreliable label (overfitting).
• k = n, all new points are classified with the label (underfitting).
• as before: there’s a sweet spot inbetween.

40 / 46

k-Nearest Neighbor

k = 3:
• isolated outliers are ignored
• decision boundary becomes
smoother

Observation: k controls the complexity of the model:
• k = 1, decisions based on a single (most similar) example at a time,
this might have an unreliable label (overfitting).
• k = n, all new points are classified with the label (underfitting).
• as before: there’s a sweet spot inbetween.

40 / 46

k-Nearest Neighbor

k = 3:
• isolated outliers are ignored
• decision boundary becomes
smoother

Observation: k controls the complexity of the model:
• k = 1, decisions based on a single (most similar) example at a time,
this might have an unreliable label (overfitting).
• k = n, all new points are classified with the label (underfitting).
• as before: there’s a sweet spot inbetween.

40 / 46

k-Nearest Neighbor

k = 3:
• isolated outliers are ignored
• decision boundary becomes
smoother

Observation: k controls the complexity of the model:
• k = 1, decisions based on a single (most similar) example at a time,
this might have an unreliable label (overfitting).
• k = n, all new points are classified with the label (underfitting).
• as before: there’s a sweet spot inbetween.

40 / 46

Perceptron – Rosenblatt, 1957

So far we’ve seen two classifiers:
• decision tree: picks a few important features to base decision on
• k-NN: all features contribute equally (to Euclidean distance)

Often, neither is optimal:
• we have many features, we want to make use of them.
• but some features are more useful or reliable than others.

Idea: learn how important each feature, xj , is by a weight, wj

Perceptron algorithm: inspired by (early) neuroscience:
• neurons form a weighted sum of their inputs x = (x1, . . . , xd)
• they output a spike if the result exceeds a threshold, θ

h(x) =
{

+1 if
∑

j wjxj ≥ θ
−1 otherwise

= sign (〈w, x〉 − θ).

41 / 46

Perceptron – Training (for θ = 0)

input training set D ⊂ Rd × {−1,+1}
initialize w = (0, . . . , 0) ∈ Rd.
repeat
for all (x, y) ∈ D: do

compute a := 〈w, x〉 (’activation’)
if ya ≤ 0 then
w ← w + yx

end if
end for

until w wasn’t updated for a complete pass over D

Perceptron – Classification (for θ = 0)

input new example x
output f(x) = sign〈w, x〉 by convention, sign(0) = −1

42 / 46

Perceptron – Example

D: (x1, y1) = (
(

3
1

)
,+1), (x2, y2) = (

(
1
1

)
,+1), (x3, y3) = (

(
1
4

)
,−1).

Round 1:

• w =
(

0
0

)
, i = 1: 〈w, x1〉 = 0, 1 · 0 = 0 ≤ 0 → update

wnew = wold + 1 ·
(

3
1

)
=
(

3
1

)

• w =
(

3
1

)
, i = 2: 〈w, x2〉 = 4 1 · 4 = 4 6≤ 0 → no change

• w =
(

3
1

)
, i = 3: 〈w, x3〉 = 7, (−1) · 7 = −7 ≤ 0 → update

wnew = wold + (−1)
(

1
4

)
=
(

2
−3

)
43 / 46

Perceptron – Example

D: (x1, y1) = (
(

3
1

)
,+1), (x2, y2) = (

(
1
1

)
,+1), (x3, y3) = (

(
1
4

)
,−1).

Round 2:

• w =
(

2
−3

)
, i = 1: 〈w, x1〉 = 3, 1 · 3 = 3 6≤ 0 → no change

• w =
(

2
−3

)
, i = 2: 〈w, x2〉 = −1, 1 · (−1) = −1 ≤ 0

→ wnew = wold + 1
(

1
1

)
=
(

3
−2

)

• w =
(

3
−2

)
, i = 3: 〈w, x3〉 = −5, (−1) · (−5) = 5 6≤ 0

→ no change

44 / 46

Perceptron – Example

D: (x1, y1) = (
(

3
1

)
,+1), (x2, y2) = (

(
1
1

)
,+1), (x3, y3) = (

(
1
4

)
,−1).

Round 3:

• w =
(

3
−2

)
, i = 1: 〈w, x1〉 = 7, 1 · 7 = 7 6≤ 0

• w =
(

3
−2

)
, i = 2: 〈w, x2〉 = 1, 1 · 1 = 1 6≤ 0

• w =
(

3
−2

)
, i = 3: 〈w, x3〉 = −5, (−5) · (−1) = 5 6≤ 0

nothing changed for 1 complete round: converged

Final classifier: f(x) = sign
(
3 · x1 − 2 · x2

)
Limitation: always has a linear decision boundary, might not converge

45 / 46

Perceptron – Example

D: (x1, y1) = (
(

3
1

)
,+1), (x2, y2) = (

(
1
1

)
,+1), (x3, y3) = (

(
1
4

)
,−1).

Round 3:

• w =
(

3
−2

)
, i = 1: 〈w, x1〉 = 7, 1 · 7 = 7 6≤ 0

• w =
(

3
−2

)
, i = 2: 〈w, x2〉 = 1, 1 · 1 = 1 6≤ 0

• w =
(

3
−2

)
, i = 3: 〈w, x3〉 = −5, (−5) · (−1) = 5 6≤ 0

nothing changed for 1 complete round: converged

Final classifier: f(x) = sign
(
3 · x1 − 2 · x2

)
Limitation: always has a linear decision boundary, might not converge

45 / 46

Summary

Learning algorithms come in all kind of forms and flavors:
• tree structured, "expert systems"
• similarity-based, geometric
• linear thresholding function
• weighted combinations of simpler units (→ next lecture)
• iterated/stacked combinations of simpler units (→ next lecture)

Machine learning research
• studies their properties
• provides tools for choosing between different methods
• allows constructing new ones (with better properties)

46 / 46

Summary

Learning algorithms come in all kind of forms and flavors:
• tree structured, "expert systems"
• similarity-based, geometric
• linear thresholding function
• weighted combinations of simpler units (→ next lecture)
• iterated/stacked combinations of simpler units (→ next lecture)

Machine learning research
• studies their properties
• provides tools for choosing between different methods
• allows constructing new ones (with better properties)

46 / 46

