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Date no. | Topic

Oct 05 | Mon | 1 | A Hands-On Introduction

Oct 07 | Wed | 2 | Bayesian Decision Theory, Generative Probabilistic Models
Oct 12 | Mon | 3 | Discriminative Probabilistic Models

Oct 14 | Wed | 4 | Maximum Margin Classifiers, Generalized Linear Models
Oct 19 | Mon | 5 | Estimators; Overfitting/Underfitting, Regularization, Model Selection
Oct 21 | Wed | 6 | Bias/Fairness, Domain Adaptation

Oct 26 | Mon | - | no lecture (public holiday)

Oct 28 | Wed | 7 | Learning Theory I, Concentration of Measure

Nov 02 | Mon | 8 | Learning Theory Il

Nov 04 | Wed | 9 | Deep Learning |

Nov 09 | Mon | 10 | Deep Learning Il

Nov 11 | Wed | 11 | Unsupervised Learning

Nov 16 | Mon | 12 | project presentations

Nov 18 | Wed | 13 | buffer
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The Holy Grail of Statistical Machine Learning

Inferring the test loss

from the training loss




The Holy Grail of Statistical Machine Learning

D ———— —

Inferring the test loss
from the training loss

Generalization Bound
For every f € H it holds:

1 .
o ly. f(x) < —> Lyif(z)) + something
Z,Y .
N p 7
generalization loss training loss




Standard learning setting:
input data X, output set ), data distribution p over X x ),
loss function, £:Y x Y — Ry (with some assumption),
hypothesis set H C {f : X — YV},

Generalization bounds: generic structure

For any § > 0, the following statement holds with probablity at least 1 — & over the (random)
training set D, = {(z!,y"),..., (@",y")} "< p.

For all f € H:
R(f) <R(f) + something

where the "something" typically increases for § — 0 and decreases for n — oc.

Observation: if the inequality holds, it holds uniformly for all f.
— by minimizing the right hand side, we can find the "most promising" f
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Example: SVM radius/margin bound

Let 4(x,y;w) := max{0,1 — y(w, x)} be the hinge loss. Let p be a distribution on R? x
such that Pr{||z|| < R} =1andlet H = {f(z) =w'2z: weRIA|w| < B}.

Then, with prob. at least 1 — § over D,, s p the following inequality holds for all w € H:
2RB 1og
E [(w, x}#y]]<—2€a:,,yl, \F + g (1)

(z,y)~p
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Example: SVM radius/margin bound

Let 4(x,y;w) := max{0,1 — y(w, x)} be the hinge loss. Let p be a distribution on R? x
such that Pr{||z|| < R} =1andlet H = {f(z) =w'2z: weRIA|w| < B}.

Then, with prob. at least 1 — § over D,, s p the following inequality holds for all w € H:

1
“gwmwﬂ<f2mw“ §§+0% M)

This results provides a good justification for using SVMs:

(1) holds uniformly in w, including for the w that minimizes the right hand side
— hinge loss on training set should be small
— we should only consider w with small ||w||, such that B can be chosen small

Reminder: (soft-margin) support vector machine (SVM):

A 1
n Sllul? 4+ — 3 max{0, 1 - yifw, )}
%
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Classical Generalization Bounds

Example: Finite Hypothesis Sets

Setup:

Uy, y) =Ty #y]  (0-1 loss)
finite number of possible classifiers H = {fi,..., fr} C {f: X = YV}

For any § > 0, the following statement holds with probability at least 1 — & over the training
set D= {(z',y')..., (2", y")} b p(z,y):

For all f € H: R(f) < 7%(]“) I \/log|7-[\24;llogl/5.

This is essentially the lemma about uniform approximation we proved in lecture 7.
Bound prob. of undesired outcome, R(f) — ﬁ(f) > ¢, separately for each classifier f
Combine by union bound — factor |H| (but ultimately enters only logarithmically)
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Illustration: union bound

set of "bad" training sets . observation: if classifiers
for a specific classifier \-\.r_urst case Excephuna! set are very similar,
| different for each classifier exceptional sets will overlap

/
%

D
space of
data sets
Hoefiding Inequality Union Bound

Union bound is "worst case": usually overly pessimistic

Image: https://work.caltech.edu/library/ 7 /38



Classical Generalization Bounds

Union bound will only work for finite #, otherwise even logarithm will not save us.

Can we find a better way to characterize hypothesis classes than simply the number
of their elements? Can we benefit from redundancy among hypotheses?

Suggested complexity measures:
covering numbers
growth function
VC dimension

Rademacher complexity

In particular, these work also for infinitely large (continuous) hypothesis sets.
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Covering Numbers
N
Definition (Covering)

Let F be a set of functions. We say F is e-covered by F’ with
respect to a norm || - [|:

VieF feF Nf-fll<e

F'is called an e-cover of F.

&,
Definition (Covering Number)

Let F be a set of functions. The e-covering number, N(e, F, || - ||), is the size of the
smallest e-cover of F with respect to || - ||.

Main idea: NV (e, F,|| - ||) can be small (finite), even if F is large (infinite). We can use the
cover F' for everything, yet still only make a small error.

Image: Lee Wee Sun. https://slideplayer.com/slide/7277867/
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Growth function

Definition (Growth function)

Let H C {f: X — {£1}} be a set of binary-valued hypotheses. The growth function
Iy : N — N of H is defined as:

[Iy(n) = max ‘{(h(a:l)?...,h(a;n)) the H}‘

L1, €EX

For any n € N, II(n) is the largest number of different labelings that can be produced with
functions in H.
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Examples: Growth function

Growth function: IIy(n) = max N ‘{(h(wl), sy h(xy)) the ’H}’

Examples: growth function
H={fs,f-}, where fi(z) =+1and f_(x) = —1 (for all z € X)
— Hy(n)=2foralln>1
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Examples: Growth function

Growth function: IIy(n) = max ‘{(h(wl), sy h(xy)) the ’H}’

L1, Tn €X

Examples: growth function
H={fs,f-}, where fi(z) =+1and f_(x) = —1 (for all z € X)
— Hy(n)=2foralln>1

H=A{f, .-, [r} - IIy¢(n) < min{2", [#|}
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Examples: Growth function

Growth function: IIy(n) = max ‘{(h(wl), sy h(xy)) the ’H}’

L1, Tn €X

Examples: growth function
H={fs,f-}, where fi(z) =+1and f_(x) = —1 (for all z € X)
— Hy(n)=2foralln>1
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Examples: Growth function

Growth function: IIy(n) = max N ‘{(h(wl), sy h(xy)) the ’H}’

Examples: growth function
H={fs,f-}, where fi(z) =+1and f_(x) = —1 (for all z € X)
— Hy(n)=2foralln>1

H={f1,..., fr} — Iy (n) < min{2", |H|}
H={f:X — {£1}} (all binary values functions) and |X| = oo — Iy(n) =27

X =R?4 H = {sign((w,z) +b) : w € R b € R} all linear classifiers
— Iy(n) =2" forn <d+1, butIly(n)<2™forn>d+1.
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Examples: Growth function

Growth function: IIy(n) = max N ‘{(h(wl), sy h(xy)) the ’H}’

Examples: growth function
H={fs,f-}, where fi(z) =+1and f_(x) = —1 (for all z € X)
— Hy(n)=2foralln>1

H={f1,..., fr} — Iy (n) < min{2", |H|}
H={f:X — {£1}} (all binary values functions) and |X| = oo — Iy(n) =27

X =R?4 H = {sign((w,z) +b) : w € R b € R} all linear classifiers
— Iy(n) =2" forn <d+1, butIly(n)<2™forn>d+1.

X =10,1], H = {sign(sin(wz)), weR} — Iy (n) =2"
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Classical Generalization Bounds

Growth Function Generalization Bound

Setup:

Uy, y) =y # 9l (0-1 loss)
HC{f: X —={£1}}

For any § > 0, the following statement holds with probability at least 1 — § over the training

set D= {(z,y1)..., (2",y")} "% p(x,y):
For all f € H:
R(f) < ﬁ(f) N \/QIOiHH N \/log2;ll/5
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Classical Generalization Bounds

Growth Function Generalization Bound

Setup:

Uy, y) =y # 9l (0-1 loss)
HC{f: X —={£1}}

For any § > 0, the following statement holds with probability at least 1 — § over the training

set D= {(z,y1)..., (2",y")} "% p(x,y):

For all f € H:

n 2n

R(f)Sﬁ(f)—l—\/QlOgHH%—\/lOgl/é

for |H| < oo, we (almost) recover the bound for finite hypothesis sets

bound is vacuous for Iy (n) = 2™, but interesting for Iy (n) < 2"
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Problem: growth function (for all n € N) can be hard to determine precisely
Easier: at what value does it change from IIy(n) = 2" to Iy (n) < 2" ?

Definition (VC Dimension)

The VC dimension of a hypothesis class H, denoted VCdim(7#), is the maximal value n, for
which IIy(n) = 2". If no such value exists, we say that VCdim(H) = oc.
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Problem: growth function (for all n € N) can be hard to determine precisely
Easier: at what value does it change from IIy(n) = 2" to Iy (n) < 2" ?

Definition (VC Dimension)

The VC dimension of a hypothesis class H, denoted VCdim(7#), is the maximal value n, for
which IIy(n) = 2". If no such value exists, we say that VCdim(H) = oc.

Examples:
H=A{f+, f-} for fr(x)=4+1and f_(z)=—-1. — VCdim(H) =1

H=A{f1,--, fr} — VCdim(H) < [log, [H|]

H={f:X — {£1}} (all binary values functions) and |X| = o0
—  VCdim(H) = oo

X =R?4 H = {sign((w,z) +b) : w € R* bc R} (linear classifiers)
—  VCim(H) =d+1

X =R, H = {sign(sin(wz)), welR} — VCdim(H) = o0
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Reminder:
VCdim(#) is the maximal value n, for which Iy (n) = 2", or co if no such n exists.

Lemma (Sauer’s Lemma)

|

VCdim(H)
For any H with VCdim(H) < oo, for any m: Ty (n) < Z (k)
k=0

Consequence:
up to n = VCdim(H), growth function grows exponentially
for n > VCdim(H)+1, growth function grows only polynomially:

Iy (n) < (en/d)* = O(n?). (proof: textbook)

for n > VCdim(#), complexity term 210%”(") starts decreasing like O(y/ 10%)
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Classical Generalization Bounds

VC-Dimension Generalization Bound

Setup: inputs X, outputs YV = {£1}, {(y,y) = [y #yl. HC {f: X = V}.

For any § > 0, the following statement holds with probability at least 1 — § over the training

set D = {(z',y1)..., (2",y")} "% p(x,y):

A 2dlog &
For all f € H: R(f) <R(f)+ \/ (;g 4 4 \/loii/(s where d = VCdim(H)

Observations:
Dimension of X plays no role, only d = VCdim(H)

Crucial quantity: %. Non-trivial bound only for n > d.
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More examples: VC dimension (from the literature)

1) polynomial classifiers,
H = {h(z) = sign f(x),for f any polynomial of degree k in R}.

VCdim(H) = ﬁ (*H
=0
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More examples: VC dimension (from the literature)

1) polynomial classifiers,
H = {h(z) = sign f(x),for f any polynomial of degree k in R}.
k
VCdim(H) = > (“Th)
i=0
2) boosting: base set, F, of weak classifiers with VCdim D.

T
H:{f(x):;atgt(:c), for g1,...,97 € F and aq,...,ar € ]R}

VCdim(H) <T(D+1)-(3log(T(D +1)) + 2)
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More examples: VC dimension (from the literature)

1) polynomial classifiers,
H = {h(z) = sign f(x),for f any polynomial of degree k in R}.
k
VCdim(H) = > (“Th)
i=0
2) boosting: base set, F, of weak classifiers with VCdim D.

T
H:{f(x):;atgt(:c), for g1,...,97 € F and aq,...,ar € ]R}

VCdim(#) < T(D + 1) - (3log(T(D + 1)) + 2)

3) neural networks with threshold activation functions,
VCdim(H) < O(W log W) where W is number of network weights

4) neural networks with ReLU activation functions,
VCdim(H) < O(W Llog W) where L is the number of network layers
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From classical to modern generalization bounds
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Towards Modern Generalization Bounds

Generalization bounds so far: with probability at least 1 — §:

VieH: R(f) <R(f)+B(H,n,0)

Observation:
B(H,n,9) is data-independent
data distribution does not show up anywhere
— holds for "easy" as well as "hard" learning problems
minimizing right hand side is just ERM

More interesting: data-dependent or distribution-dependent bounds
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Z: input set (later: Z2 =X or Z = X x ))), p(z): probability distribution over Z
F C{f:Z — R}: set of real-valued functions

Definition (Empirical Rademacher Complexity)

Let F = {f : Z — R} be a set of real-valued functions and D,,, = {z1,..., 2} a finite set.
The empirical Rademacher complexity of F with respect to D,, is defined as

Rp, (F) = lsup( Zolf % )]

feF

where o1, ...,0,, are independent binary random variables with p(+1) = p(—1) = % (called
Rademacher variables).

Intuition: think of o; as random noise. The sup measures how well functions in F can
correlate to arbitrary values (=memorize random noise).

Note: Efipm is data-dependent, it depends on D,,.
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Example

Let 7 = {f} (a single function). Then, for any m,

Rp,, (F ( Zal zl>_;§

Example

Let F = {f : Z — [-B, B]} all bounded functions. Then, when there are no duplicates in D,

Rp, (F) = Esup( Zazfz,>f(z"):3” lZB: EB =B

9 feF

(same argument would work also, e.g., for piecewise linear functions)
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Example

Let F ={f1,..., fx} with f; : X — [-B,B] fori =1,..., K (finitely many bounded
functions). Then

2 2log K
Rp, (F) < By —=
m
Proof: textbook
Example
Let F = {f =w'z:R?— R} with ||w|| < B all linear functions with bounded slope. If
m > d, then z1,..., 2, are linearly dependent and sup can't fit all possible signs —

Rp,, (F) will decrease with m.

(we'll prove a more rigorous statement later)
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Definition

The Rademacher complexity of F is defined as

Rn(F)=_ E_ [Rp,(F)]

Dm ~p®’m

Note: R,, is a distribution-dependent quantity (w.r.t. p).

In some cases, more convenient to compute than the empirical one.
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Slightly more general notation than before:
hypothesis set H C {X — R} (can be real-valued)
loss £: X x Y xH — R, eg. l(z,y,h) =max{0,1—yh(x)},

R(h) = E(gyyup Uy, h),  R(R) = LS 0(wi, 93, )
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Slightly more general notation than before:
hypothesis set H C {X — R} (can be real-valued)
loss £: X x Y xH — R, eg. l(z,y,h) =max{0,1—yh(x)},

R(h) = E(I,y)NP g(xa Y, h)? ﬁ(h) = % zril K(IL'Z, Yis h)

Theorem (Rademacher-based generalization bound)

Let {(z,y,h) < ¢ be a bounded loss function and set
F={loh:heH} ={lz,y,h(x)):heH}C{f: X xY >R}

Then, with prob. at least 1 — & over Dy, st p, it holds for all h € H.:

R(h) < R(h) + 28m(F) + ¢ log;;/‘”.

Also, with prob. at least 1 — §, it holds for all h € H.:

R(h) < R(h) + 2Rp, (F) + 3CW.

Proof. textbook/notes O
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Useful properties:

Lemma

For F C RY let F' := {f + fo: f € F} be a translated version for some fo: X — R .
Then, for any m,

Rp,,(F') = Rp,, (F)

Lemma
For F C RY let F' := {\f : f € F} be scaled by a constant A € R. Then, for any m,

Rp,, (F') = Mip,, (F)

Lemma

For FCRY and ¢ : R = R let F' :={¢po f: f € F}. If ¢ is L-Lipschitz continuous, i.e.
lp(t) — o(t')| < L|t — |, then for any m,

Rp,, (F') < L-Rp,, (F)
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Lemma

Let Z be an inner-product space (e.g. R? with (-,-)). Let F = {f = (w,2) : X — R} be the
set of linear functions with ||w|| < B. Then, for any D,, = {z1,...,2m},

. B
Fip, (F) < =[5 I

Proof: textbook/notes

Lemma

Let F ={f = (w, z) : X — R} be linear functions with ||w|| < B and let p be such that
Pr{||z|| < R} =1 Then
1
R (F) < BRy —
m

Proof: Rp, (F) < B\/mR? with prob. 1, so Ep R < 5\/mR2, too.
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Reminder: (soft-margin) support vector machine (SVM):

LA 1
min 5ol + S max(0.1 i)}
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Reminder: (soft-margin) support vector machine (SVM):

A 1
n Sl + 3 max{0, 1 - yifuw, )}
7

Example: SVM "radius/margin" bound

Let £(x,y;w) := max{0,1 — y(w, )} be the hinge loss. Let p be a distribution on R? x
such that Pr{||z| < R} =1 and let H = {h(x) = (w,z) : w € R A ||w|| < B}.

Then, with prob. at least 1 — § over D,, = p the following inequality holds for all w € H:
2BR log 1

E < — 0,1 — — 0

[sign{w, x) # y] — Zmax{ Y {(w, ')} + N +

(z,y)~p =1

o2m

Properties:
complexity terms decrease with rate O(y/1)

short ||w]| is better than long |jw||

dimensionality of & does not show up, no curse of dimensionality!
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Proof sketch:
|z|| < R (with probability 1)
"ramp loss": {(z,y,h) = min{ max{0,1—yh(x)},1} €[0,1]
H = {h(x) = (w,z): |w| < B}, F={loh, heH}

With prob. 1—8: Vh € H: R(k) < R(h) + 208, (F) + | 22172

2m

¢ is 1-Lipschitz, i.e. for F ={loh: h € H}:

1-Lip. Lemma 1
Rn(F) < Ru(H) < BRy—

m
¢ is upper bounds to 0/1 error and lower bound to hinge loss

~ 1
< <> — yih(z
Pr{h(z) # y} < R(h) R(h) < m 2 max{0,1 — y;h(x;)}
With prob. 1 — § for every h = (w,x) € H:
, J 2RB log(1/0)
< — )
Pr{sign{w, z) # y} < - ;:1 max{0,1 — y;(w, z;)} + T + o
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Theorem (Connections to other complexity measures)

Let H={h: X — {£1}} be a hypothesis class. Then

S (1) < 1) 28 iy s e,
m

2log Iy (m)
m

Fn(H) < 1| 2H8™ | bere d = VCdim(H).
m

Theorem (Connections to covering numbers)

Let H C {X — [-1,1]} and D "X p(x,y) with |D| = m. Then

R (H)<1nf Oz—f—\/NaHlD’H HLI)}

where N are covering numbers of the set of values that H assigns to D.

where Iy (m) is the growth function,

|
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Beyond Complexity Measures
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Algorithm-dependent bounds

Generalization bounds so far: with probability at least 1 — 9:

VfeH: R(f) <R(f)+ "something"

Observation:
holds simultaneous for all hypotheses in H, we can pick any we like

but: in practice, we have some algorithm that choses the hypothesis and we really only
need the result for that
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Algorithm-dependent bounds

Generalization bounds so far: with probability at least 1 — 9:

VfeH: R(f) <R(f)+ "something"

Observation:
holds simultaneous for all hypotheses in H, we can pick any we like

but: in practice, we have some algorithm that choses the hypothesis and we really only
need the result for that

Goal: algorithm-dependent bounds

Instead of
"For which hypothesis sets does learning not overfit?"
ask

"Which learning algorithms do not overfit?"
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hypothesis set 7,  write loss function in form L(x,y, h) = £(y, h(z))

Definition (Learning algorithm)

A learning algorithm, A, is a function that takes as input a finite subset, D,, C Z, and
outputs a hypothesis A[D,,| € H.

31/38



hypothesis set 7,  write loss function in form L(x,y, h) = £(y, h(z))

Definition (Learning algorithm)

A learning algorithm, A, is a function that takes as input a finite subset, D,, C Z, and
outputs a hypothesis A[D,,| € H.

Definition (Uniform stability)

For a training set, D = {(x1,91), ..., (Tm,Ym)}, we define the training set with the i-th
element removed

D\l - {(xla yl)a DI} (xi—luyi—1)7 (»’Ui+17yi+1)7 ey ($maym)}

A learning algorithm, A, has uniform stability 5 with respect to the loss £ if the following
holds,

A small change to the training does not affect on the quality of the learned function much./38



Theorem (Stable algorithms generalize well [sousquet et a., 2002])

Let A be a B-uniformly stable learning algorithm. For a training set D,,, that consists of m
i.i.d. samples, denote by f = A[D,,] be the output of A on D,,. Let {(y,y) be bounded by
M.

Then, for any § > 0, with probability at least 1 — ¢,

R(f) < R(f) + 28 + (4mp + M) 10g2<;/5>

Note: for the bound to be useful, the stability 8 should decrease faster than \/% (but
preferably least like %)
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Reminder: stochastic gradient descent (SGD): minimize a function

HOEE SHCRT)
=1

Theorem (Stability of Stochastic Gradient Descent [Hardt et ar., 2016])

Let f(x,y;-) be y-smooth, convex and L-Lipschitz for every (x,y). Suppose that we run
SGD with step sizes oy < 2/~ for T steps. Then, SGD satisfies uniform stability with

Let f(x,y;-) be y-smooth and L-Lipschitz, but not necessarily convex. Assume we run SGD
with monotonically non-increasing step sizes oy < ¢/t for some c¢. Then, SGD satisfies
uniform stability with

1+ = :
B <~ (9cL?) TR TN
“m—1
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The Power of Compression
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Reminder:

Perceptron — Training

input training set D C R% x {—1,+1}
initialize w = (0,...,0) € R%,
repeat
for all (z,y) € D: do
compute a := (w,x) ('activation’)
if ya <0 then
W W+ YT
end if
end for
until w wasn't updated for a complete pass over D

Let's assume D is very large, so we don’'t need multiple passes.
Properties:
sequential training, one pass over data

only those examples matter, where perceptron made a mistake (only those affect w)
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Towards Sample Compression Bounds

Take training set as a sequence:
T: (('CC:l?yl)?(x27y2)7"'7(xn7yn))
algorithm A processes T in order, producting output f := A(T)

What if only a subset of examples influence the algorithm output?

for increasing subsequence, I C {1,...,n}, with |I| =1, set

Tr = ((z",y"), (2, 9"),..., (2", y"))

Definition
I is a compression set for T', if A(T) = A(Ty).

Example: I = {set of examples where Perceptron made a mistake}
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Definition (Compression scheme (Litestone/Warmuth, 1986])

A learning algorithm A is called compression scheme, if there is a pair of functions: C
(called compression function), and L (called reconstruction function), such that:

C takes as input a finite dataset and outputs a subsequence of indices
L takes as input a finite dataset and outputs a predictor

A is the result of applying L to the data selected by C
A= L(Ty) for I = C(T)

Examples:
C selects half of the data from 7' at random
C run a clustering algorithm on T and returns the cluster centers as [

Examples, where A = L(77) equals L(T):
Perceptron (I = indices of examples where will be updated)
SVMs (I = set of support vectors)

kE-NN (I = set of examples that support the decision boundaries)
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IIIZE y',h(z")) and R-s(h n_mZé y', h(z
el izl

Theorem (Compression Bound [ittiestone/Warmuth, 1986; Graepel 2005] )

Let A be a compression scheme with compression function C'. Let the loss ¢ be bounded by
[0,1]. Then, with probability at least 1 — & over the random draw of T', we have that:

R(A(T)) < n%((l—i—l)logn—i—log %) — O(%)
For general R—;(A(T)):
1
R(A(T)) < R 4(AT)) + \/ B e - 0()

where I = C(T') and | = |1|.
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