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Abstract

We consider concurrent games played on graphs. At every round of a game, each player simul-
taneously and independently selects a move; the moves jointly determine the transition to a successor
state. Two basic objectives are the safety objective to stayforever in a given set of states, and its dual, the
reachability objective to reach a given set of states. First, we present a simple proof of the fact that in con-
current reachability games, for allε > 0, memorylessε-optimal strategies exist. A memoryless strategy
is independent of the history of plays, and anε-optimal strategy achieves the objective with probability
within ε of the value of the game. In contrast to previous proofs of this fact, our proof is more elementary
and more combinatorial. Second, we present a strategy-improvement (a.k.a. policy-iteration) algorithm
for concurrent games with reachability objectives. We thenpresent a strategy-improvement algorithm
for concurrent games with safety objectives. Our algorithms yield sequences of player-1 strategies which
ensure probabilities of winning that converge monotonically to the value of the game. Our result is sig-
nificant because the strategy-improvement algorithm for safety games provides, for the first time, a way
to approximate the value of a concurrent safety gamefrom below. Previous methods could approximate
the values of these games only from one direction, and as no rates of convergence are known, they did
not provide a practical way to solve these games.

Keywords.Concurrent games; Reachability and safety objectives; Strategy improvement algorithms.

1 Introduction

We consider games played between two players on graphs. At every round of the game, each of the two
players selects a move; the moves of the players then determine the transition to the successor state. A play of
the game gives rise to a path in the graph. We consider the two basic objectives for the players:reachability
and safety. The reachability goal asks player 1 to reach a given set of target states or, if randomization
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is needed to play the game, to maximize the probability of reaching the target set. The safety goal asks
player 2 to ensure that a given set of safe states is never leftor, if randomization is required, to minimize
the probability of leaving the target set. The two objectives are dual, and the games are determined: the
supremum probability with which player 1 can reach the target set is equal to one minus the supremum
probability with which player 2 can confine the game to the complement of the target set [14].

These games on graphs can be divided into two classes:turn-basedand concurrent. In turn-based
games, only one player has a choice of moves at each state; in concurrent games, at each state both players
choose a move, simultaneously and independently, from a setof available moves. For turn-based games, the
solution of games with reachability and safety objectives has long been known. If each move determines
a unique successor state, then the games are P-complete and can be solved in linear time in the size of
the game graph. If, more generally, each move determines a probability distribution on possible successor
states, then the problem of deciding whether a turn-based game can be won with probability greater than
a given thresholdp ∈ [0, 1] is in NP∩ co-NP [5], and the exact value of the game can be computed by a
strategy-improvement algorithm [6], which works well in practice. These results all depend on the fact that
in turn-based reachability and safety games, both players have optimal deterministic (i.e., no randomization
is required), memoryless strategies. These strategies arefunctions from states to moves, so they are finite in
number, and this guarantees the termination of the strategy-improvement algorithm.

The situation is very different for concurrent games. The player-1valueof the game is defined, as usual,
as the sup-inf value: the supremum, over all strategies of player 1, of the infimum, over all strategies of
player 2, of the probability of achieving the reachability or safety goal. In concurrent reachability games,
player 1 is guaranteed only the existence ofε-optimal strategies, which ensure that the value of the game
is achieved within a specified toleranceε > 0 [14]. Moreover, while these strategies (which depend onε)
are memoryless, in general they require randomization [14](even in the special case in which the transition
function is deterministic). For player 2 (the safety player), optimalmemoryless strategies exist [24], which
again require randomization (even when the transition function is deterministic). All of these strategies are
functions from states to probability distributions on moves. The question of deciding whether a concurrent
game can be won with probability greater thanp is in PSPACE; this is shown by reduction to the theory of
the real-closed fields [13].

To summarize: while strategy-improvement algorithms are available for turn-based reachability and
safety games [6], so far no strategy-improvement algorithms or even approximation schemes were known
for concurrent games. If one wanted to compute the value of a concurrent game within a specified tolerance
ε > 0, one was reduced to using a binary search algorithm that approximates the value by iterating queries
in the theory of the real-closed fields. Value-iteration schemes were known for such games, but they can be
used to approximate the value from one direction only, for reachability goals from below, and for safety goals
from above [11]. The value-iteration schemes are not guaranteed to terminate. Worse, since no convergence
rates are known for these schemes, they provide no termination criteria for approximating a value withinε.

Our results for concurrent reachability games. Concurrent reachability games belong to the family of
stochastic games [26, 14], and they have been studied more specifically in [10, 9, 11]. Our contributions for
concurrent reachability games are two-fold. First, we present a simple and combinatorial proof of the exis-
tence of memorylessε-optimal strategies for concurrent games with reachability objectives, for allε > 0.
Second, using the proof techniques we developed for provingexistence of memorylessε-optimal strategies,
for ε > 0, we obtain a strategy-improvement (a.k.a. policy-iteration) algorithm for concurrent reachability
games. Unlike in the special case of turn-based games the algorithm need not terminate in finitely many
iterations.

It has long been known that optimal strategies need not existfor concurrent reachability games, and for
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all ε > 0, there existε-optimal strategies that are memoryless [14]. A proof of this fact can be obtained
by considering limit of discounted games. The proof considers discountedversions of reachability games,
where a play that reaches the target ink steps is assigned a value ofαk, for some discount factor0 < α ≤
1. It is possible to show that, for0 < α < 1, memoryless optimal strategies exist. The result for the
undiscounted (α = 1) case followed from an analysis of the limit behavior of suchoptimal strategies for
α → 1. The limit behavior is studied with the help of results from the field of real Puisieux series [23]. This
proof idea works not only for reachability games, but also for total-reward games with nonnegative rewards
(see [15, Chapter 5] for details). A more recent result [13] establishes the existence of memorylessε-
optimal strategies for certain infinite-state (recursive)concurrent games, but again the proof relies on results
from analysis and properties of solutions of certain polynomial functions. Another proof of existence of
memorylessε-optimal strategies for reachability objectives follows from the result of [14] and the proof uses
induction on the number of states of the game. We show the existence of memorylessε-optimal strategies
for concurrent reachability games by more combinatorial and elementary means. Our proof relies only on
combinatorial techniques and on simple properties of Markov decision processes [1, 8]. As our proof is
more combinatorial, we believe that the proof techniques will find future applications in game theory.

Our proof of the existence of memorylessε-optimal strategies, for allε > 0, is built upon a value-
iteration scheme that converges to the value of the game [11]. The value-iteration scheme computes a
sequenceu0, u1, u2, . . . of valuations, where fori = 0, 1, 2, . . . each valuationui associates with each state
s of the game a lower boundui(s) on the value of the game, such thatlimi→∞ ui(s) converges to the value of
the game ats. The convergence is monotonic from below, but no rate of convergence was known. From each
valuationui, we can extract a memoryless, randomized player-1 strategy, by considering the (randomized)
choice of moves for player 1 that achieves the maximal one-step expectation ofui. In general, a strategyπi

obtained in this fashion is not guaranteed to achieve the valueui. We show thatπi is guaranteed to achieve
the valueui if it is proper, that is, if regardless of the strategy adopted by player 2, the play reaches with
probability 1 states that are either in the target, or that have no path leading to the target. Next, we show how
to extract from the sequence of valuationsu0, u1, u2, . . . a sequence of memoryless randomized player-1
strategiesπ0, π1, π2, . . . that are guaranteed to be proper, and thus achieve the valuesu0, u1, u2, . . .. This
proves the existence of memorylessε-optimal strategies for allε > 0. Our proof is completely different as
compared to the proof of [14]: the proof of [14] uses induction on the number of states, whereas our proof
is based on the notion of ranking function obtained from the value-iteration algorithm.

We then apply the techniques developed for the above proof todesign astrategy-improvementalgo-
rithm for concurrent reachability games. Strategy-improvement algorithms, also known aspolicy-iteration
algorithms in the context of Markov decision processes [20], compute a sequence of memoryless strategies
π′

0, π
′
1, π

′
2, . . . such that, for allk ≥ 0, (i) the strategyπ′

k+1 is at all states no worse thanπ′
k; (ii) if π′

k+1 = π′
k,

thenπk is optimal; and (iii) for everyε > 0, we can find ak sufficiently large so thatπ′
k is ε-optimal. Com-

puting a sequence of strategiesπ0, π1, π2, . . . on the basis the value-iteration scheme from above does not
yield a strategy-improvement algorithm, as condition (ii)may be violated: there is no guarantee that a step
in the value iteration leads to an improvement in the strategy. We will show that the key to obtain a strategy-
improvement algorithm consists in recomputing, at each iteration, the values of the player-1 strategy to be
improved, and in adopting a particular strategy-update rule, which ensures that all generated strategies are
proper. Unlike previous proofs of strategy-improvement algorithms for concurrent games [6, 15], which rely
on the analysis of discounted versions of the games, our analysis is again more combinatorial. Hoffman-
Karp [19] presented a strategy improvement algorithm for the special case of concurrent games with ergodic
property (i.e., from every states any other statet can be guaranteed to reach with probability 1) (also see
algorithm for discounted games in [25]). Observe that for concurrent reachability games, with the ergodic
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assumption the value at all states is trivially 1, and thus the ergodic assumption gives us the trivial case. Our
results give a combinatorial strategy improvement algorithm for the whole class of concurrent reachability
games. The results of [13] presents a strategy improvement algorithm for recursive concurrent games with
termination criteria: the algorithm of [13] is more involved (depends on properties of certain polynomial
functions) and works for the more general class of recursiveconcurrent games. Differently from turn-based
games [6], for concurrent games we cannot guarantee the termination of the strategy-improvement algo-
rithm. However, for turn-based stochastic games we presenta detailed analysis of termination criteria. Our
analysis is based on bounds on the precision of values for turn-based stochastic games. As a consequence
of our analysis, we obtain an improved upper bound for termination for turn-based stochastic games.

Our results for concurrent safety games.We present for the first time a strategy-improvement scheme that
approximates the value of a concurrent safety gamefrom below. Together with the strategy improvement
algorithm for reachability games, or the value-iteration scheme, to approximate the value of such a game
from above, we obtain a termination criterion for computingthe value of concurrent reachability and safety
games within any given toleranceε > 0. This is the first termination criterion for an algorithm that approx-
imates the value of a concurrent game. Several difficulties had to be overcome in developing our scheme.
First, while the strategy-improvement algorithm that approximates reachability values from below is based
on locally improving a strategy on the basis of the valuationit yields, this approach does not suffice for
approximating safety values from below: we would obtain an increasing sequence of values, but they would
not necessarily converge to the value of the game (see Example 2). Rather, we introduce a novel, non-local
improvement step, which augments the standard valuation-based improvement step. Each non-local step
involves the solution of an appropriately constructed turn-based game. The turn-based game constructed is
polynomial in the state space of the original game, butexponentialin the number of actions. It is an interest-
ing open question whether the turn-based game can be also made polynomial in the number of the actions.
Second, as value-iteration for safety objectives converges from above, while our sequences of strategies
yield values that converge from below, the proof of convergence for our algorithm cannot be derived from
a connection with value-iteration, as was the case for reachability objectives. We had to develop new proof
techniques both to show the monotonicity of the strategy values produced by our algorithm, and to show
their convergence to the value of the game.

Added value of our algorithms. The new strategy improvement algorithms we present in this paper has
two important contributions as compared to the classical value-iteration algorithms.

1. Termination for approximation.The value-iteration algorithm for reachability games converges from
below, and the value-iteration for safety games converges for above. Hence given desired precision
ε > 0 for approximation, there is no termination criteria to stopthe value-iteration algorithm and
guaranteeε-approximation. The sequence of valuation of our strategy improvement algorithm for
concurrent safety games converges from below, and along with the value-iteration or strategy im-
provement algorithm for concurrent reachability games we obtain thefirst termination criteria for
ε-approximation of values in concurrent reachability and safety games. Using a result of [18] on the
bound onk-uniform memorylessε-optimal strategies, forε > 0, we also obtain a bound on the num-
ber of iterations of the strategy improvement algorithms that guaranteeε-approximation of the values.
Moreover a recent result of [17] provide a nearly tight double exponential upper and lower bound on
the number of iterations required forε-approximation of the values.

2. Approximation of strategies.Our strategy improvement algorithms are also the first approach to ap-
proximate memorylessε-optimal strategies in concurrent reachability and safetygames. The witness
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strategy produced by the value-iteration algorithm for concurrent reachability games is not memory-
less; and for concurrent safety games since the value-iteration algorithm converges from above it does
not provide any witness strategies. Our strategy improvement algorithms for concurrent reachability
and safety games yield sequence of memoryless strategies that ensure for convergence to the value of
the game from below, and yield witness memoryless strategies to approximate the value of concurrent
reachability and safety games.

2 Definitions

Notation. For a countable setA, a probability distributionon A is a functionδ : A → [0, 1] such that∑
a∈A δ(a) = 1. We denote the set of probability distributions onA by D(A). Given a distributionδ ∈

D(A), we denote bySupp(δ) = {x ∈ A | δ(x) > 0} the support set ofδ.

Definition 1 (CONCURRENT GAMES). A (two-player)concurrent game structureG = 〈S,M,Γ1,Γ2, δ〉
consists of the following components:

• A finite state spaceS and a finite setM of moves or actions.

• Two move assignmentsΓ1,Γ2 : S → 2M \ ∅. Fori ∈ {1, 2}, assignmentΓi associates with each state
s ∈ S a nonempty setΓi(s) ⊆ M of moves available to playeri at states.

• A probabilistic transition functionδ : S × M × M → D(S) that gives the probabilityδ(s, a1, a2)(t)
of a transition froms to t when player 1 chooses at states movea1 and player 2 chooses movea2, for
all s, t ∈ S anda1 ∈ Γ1(s), a2 ∈ Γ2(s).

We denote by|δ| the size of transition function, i.e.,|δ| =
∑

s∈S,a∈Γ1(s),b∈Γ2(s),t∈S |δ(s, a, b)(t)|, where
|δ(s, a, b)(t)| is the number of bits required to specify the transition probability δ(s, a, b)(t). We denote
by |G| the size of the game graph, and|G| = |δ| + |S|. At every states ∈ S, player 1 chooses a move
a1 ∈ Γ1(s), and simultaneously and independently player 2 chooses a move a2 ∈ Γ2(s). The game then
proceeds to the successor statet with probability δ(s, a1, a2)(t), for all t ∈ S. A states is anabsorbing
stateif for all a1 ∈ Γ1(s) anda2 ∈ Γ2(s), we haveδ(s, a1, a2)(s) = 1. In other words, at an absorbing
states for all choices of moves of the two players, the successor state is alwayss.

Definition 2 (TURN-BASED STOCHASTIC GAMES). A turn-based stochastic game graph(21/2-player
game graph) G = 〈(S,E), (S1, S2, SR), δ〉 consists of a finite directed graph(S,E), a partition(S1, S2,
SR) of the finite setS of states, and a probabilistic transition functionδ: SR → D(S), whereD(S) denotes
the set of probability distributions over the state spaceS. The states inS1 are theplayer-1 states, where
player 1 decides the successor state; the states inS2 are theplayer-2 states, where player2 decides the
successor state; and the states inSR are therandom or probabilisticstates, where the successor state is
chosen according to the probabilistic transition functionδ. We assume that fors ∈ SR andt ∈ S, we have
(s, t) ∈ E iff δ(s)(t) > 0, and we often writeδ(s, t) for δ(s)(t). For technical convenience we assume that
every state in the graph(S,E) has at least one outgoing edge. For a states ∈ S, we writeE(s) to denote
the set{t ∈ S | (s, t) ∈ E} of possible successors. We denote by|δ| the size of the transition function, i.e.,
|δ| =

∑
s∈SR,t∈S |δ(s)(t)|, where|δ(s)(t)| is the number of bits required to specify the transition probability

δ(s)(t). We denote by|G| the size of the game graph, and|G| = |δ| + |S| + |E|.
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Plays.A playω of G is an infinite sequenceω = 〈s0, s1, s2, . . .〉 of states inS such that for allk ≥ 0, there
are movesak

1 ∈ Γ1(sk) andak
2 ∈ Γ2(sk) with δ(sk, ak

1 , a
k
2)(sk+1) > 0. We denote byΩ the set of all plays,

and byΩs the set of all playsω = 〈s0, s1, s2, . . .〉 such thats0 = s, that is, the set of plays starting from
states.

Selectors and strategies.A selectorξ for playeri ∈ {1, 2} is a functionξ : S → D(M) such that for all
statess ∈ S and movesa ∈ M , if ξ(s)(a) > 0, thena ∈ Γi(s). A selectorξ for playeri at a states is a
distribution over moves such that ifξ(s)(a) > 0, thena ∈ Γi(s). We denote byΛi the set of all selectors
for playeri ∈ {1, 2}, and similarly, we denote byΛi(s) the set of all selectors for playeri at a states. The
selectorξ is pure if for every states ∈ S, there is a movea ∈ M such thatξ(s)(a) = 1. A strategyfor
playeri ∈ {1, 2} is a functionπ : S+ → D(M) that associates with every finite, nonempty sequence of
states, representing the history of the play so far, a selector for playeri; that is, for allw ∈ S∗ ands ∈ S,
we haveSupp(π(w · s)) ⊆ Γi(s). The strategyπ is pure if it always chooses a pure selector; that is, for all
w ∈ S+, there is a movea ∈ M such thatπ(w)(a) = 1. A memorylessstrategy is independent of the history
of the play and depends only on the current state. Memorylessstrategies correspond to selectors; we write
ξ for the memoryless strategy consisting in playing forever the selectorξ. A strategy ispure memoryless
if it is both pure and memoryless. In a turn-based stochasticgame, a strategy for player 1 is a function
π1 : S∗ · S1 → D(S), such that for allw ∈ S∗ and for alls ∈ S1 we haveSupp(π1(w · s)) ⊆ E(s).
Memoryless strategies and pure memoryless strategies are obtained as the restriction of strategies as in the
case of concurrent game graphs. The family of strategies forplayer 2 are defined analogously. We denote
by Π1 andΠ2 the sets of all strategies for player1 and player2, respectively. We denote byΠM

i andΠPM
i

the sets of memoryless strategies and pure memoryless strategies for playeri, respectively.

Destinations of moves and selectors.For all statess ∈ S and movesa1 ∈ Γ1(s) anda2 ∈ Γ2(s), we
indicate byDest(s, a1, a2) = Supp(δ(s, a1, a2)) the set of possible successors ofs when the movesa1 and
a2 are chosen. Given a states, and selectorsξ1 andξ2 for the two players, we denote by

Dest(s, ξ1, ξ2) =
⋃

a1∈Supp(ξ1(s)),

a2∈Supp(ξ2(s))

Dest(s, a1, a2)

the set of possible successors ofs with respect to the selectorsξ1 andξ2.
Once a starting states and strategiesπ1 andπ2 for the two players are fixed, the game is reduced to an

ordinary stochastic process. Hence, the probabilities of events are uniquely defined, where aneventA ⊆ Ωs

is a measurable set of plays. For an eventA ⊆ Ωs, we denote byPrπ1,π2
s (A) the probability that a play

belongs toA when the game starts froms and the players follows the strategiesπ1 andπ2. Similarly, for
a measurable functionf : Ωs → IR, we denote byEπ1,π2

s (f) the expected value off when the game starts
from s and the players follow the strategiesπ1 andπ2. For i ≥ 0, we denote byΘi : Ω → S the random
variable denoting thei-th state along a play.

Valuations. A valuationis a mappingv : S → [0, 1] associating a real numberv(s) ∈ [0, 1] with each state
s. Given two valuationsv,w : S → IR, we writev ≤ w whenv(s) ≤ w(s) for all statess ∈ S. For an event
A, we denote byPrπ1,π2(A) the valuationS → [0, 1] defined for all statess ∈ S by

(
Prπ1,π2(A)

)
(s) =

Prπ1,π2
s (A). Similarly, for a measurable functionf : Ωs → [0, 1], we denote byEπ1,π2(f) the valuation

S → [0, 1] defined for alls ∈ S by
(
Eπ1,π2(f)

)
(s) = Eπ1,π2

s (f).
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The Pre operator. Given a valuationv, and two selectorsξ1 ∈ Λ1 andξ2 ∈ Λ2, we define the valuations
Preξ1,ξ2(v), Pre1:ξ1(v), andPre1(v) as follows, for all statess ∈ S:

Preξ1,ξ2(v)(s) =
∑

a,b∈M

∑

t∈S

v(t) · δ(s, a, b)(t) · ξ1(s)(a) · ξ2(s)(b)

Pre1:ξ1(v)(s) = inf
ξ2∈Λ2

Preξ1,ξ2(v)(s)

Pre1(v)(s) = sup
ξ1∈Λ1

inf
ξ2∈Λ2

Preξ1,ξ2(v)(s)

Intuitively, Pre1(v)(s) is the greatest expectation ofv that player 1 can guarantee at a successor state ofs.
Also note that given a valuationv, the computation ofPre1(v) reduces to the solution of a zero-sum one-shot
matrix game, and can be solved by linear programming. Similarly, Pre1:ξ1(v)(s) is the greatest expectation
of v that player 1 can guarantee at a successor state ofs by playing the selectorξ1. Note that all of these
operators on valuations are monotonic: for two valuationsv,w, if v ≤ w, then for all selectorsξ1 ∈ Λ1 and
ξ2 ∈ Λ2, we havePreξ1,ξ2(v) ≤ Preξ1,ξ2(w), Pre1:ξ1(v) ≤ Pre1:ξ1(w), andPre1(v) ≤ Pre1(w).

Reachability and safety objectives.Given a setF ⊆ S of safestates, the objective of a safety game consists
in never leavingF . Therefore, we define the set of winning plays as the set Safe(F ) = {〈s0, s1, s2, . . .〉 ∈
Ω | sk ∈ F for all k ≥ 0}. Given a subsetT ⊆ S of target states, the objective of a reachability game
consists in reachingT . Correspondingly, the set winning plays is Reach(T ) = {〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈
T for somek ≥ 0} of plays that visitT . For all F ⊆ S andT ⊆ S, the sets Safe(F ) and Reach(T ) is
measurable. An objective in general is a measurable set, andin this paper we consider only reachability and
safety objectives. For an objectiveΦ, the probability of satisfyingΦ from a states ∈ S under strategies
π1 andπ2 for players 1 and 2, respectively, isPrπ1,π2

s (Φ). We define thevalue for player 1 of game with
objectiveΦ from the states ∈ S as

〈〈1〉〉val(Φ)(s) = sup
π1∈Π1

inf
π2∈Π2

Prπ1,π2
s (Φ);

i.e., the value is the maximal probability with which player1 can guarantee the satisfaction ofΦ against all
player 2 strategies. Given a player-1 strategyπ1, we use the notation

〈〈1〉〉π1
val

(Φ)(s) = inf
π2∈Π2

Prπ1,π2
s (Φ).

A strategyπ1 for player 1 isoptimal for an objectiveΦ if for all statess ∈ S, we have

〈〈1〉〉π1
val

(Φ)(s) = 〈〈1〉〉val(Φ)(s).

Forε > 0, a strategyπ1 for player 1 isε-optimal if for all statess ∈ S, we have

〈〈1〉〉π1
val

(Φ)(s) ≥ 〈〈1〉〉val(Φ)(s) − ε.

The notion of values and optimal strategies for player 2 are defined analogously. Reachability and safety
objectives are dual, i.e., we have Reach(T ) = Ω \ Safe(S \ T ). The quantitative determinacy result of [14]
ensures that for all statess ∈ S, we have

〈〈1〉〉val(Safe(F ))(s) + 〈〈2〉〉val(Reach(S \ F ))(s) = 1.
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3 Markov Decision Processes

To develop our arguments, we need some facts about one-player versions of concurrent stochastic games,
known asMarkov decision processes(MDPs) [12, 1]. Fori ∈ {1, 2}, aplayer-i MDP (for short,i-MDP) is
a concurrent game where, for all statess ∈ S, we have|Γ3−i(s)| = 1. Given a concurrent gameG, if we
fix a memoryless strategy corresponding to selectorξ1 for player 1, the game is equivalent to a 2-MDPGξ1

with the transition function

δξ1(s, a2)(t) =
∑

a1∈Γ1(s)

δ(s, a1, a2)(t) · ξ1(s)(a1),

for all s ∈ S anda2 ∈ Γ2(s). Similarly, if we fix selectorsξ1 andξ2 for both players in a concurrent game
G, we obtain a Markov chain, which we denote byGξ1,ξ2.

End components.In an MDP, the sets of states that play an equivalent role to the closed recurrent classes
of Markov chains [21, Chapter 4] are called “end components”[7, 8].

Definition 3 (END COMPONENTS). An end componentof ani-MDP G, for i ∈ {1, 2}, is a subsetC ⊆ S
of the states such that there is a selectorξ for playeri so thatC is a closed recurrent class of the Markov
chainGξ.

It is not difficult to see that an equivalent characterization of an end componentC is the following. For each
states ∈ C, there is a subsetMi(s) ⊆ Γi(s) of moves such that:

1. (closed)if a move inMi(s) is chosen by playeri at states, then all successor states that are obtained
with nonzero probability lie inC; and

2. (recurrent)the graph(C,E), whereE consists of the transitions that occur with nonzero probability
when moves inMi(·) are chosen by playeri, is strongly connected.

Given a playω ∈ Ω, we denote byInf(ω) the set of states that occurs infinitely often alongω. Given a set
F ⊆ 2S of subsets of states, we denote byInf(F) the event{ω | Inf(ω) ∈ F}. The following theorem
states that in a 2-MDP, for every strategy of player 2, the setof states that are visited infinitely often is, with
probability 1, an end component. Corollary 1 follows easilyfrom Theorem 1.

Theorem 1 ([8]). For a player-1 selectorξ1, let C be the set of end components of a 2-MDPGξ1 . For all

player-2 strategiesπ2 and all statess ∈ S, we havePr
ξ1,π2
s (Inf(C)) = 1.

Corollary 1 For a player-1 selectorξ1, let C be the set of end components of a 2-MDPGξ1 , and let
Z =

⋃
C∈C C be the set of states of all end components. For all player-2 strategiesπ2 and all statess ∈ S,

we havePr
ξ1,π2
s (Reach(Z)) = 1.

MDPs with reachability objectives. Given a 2-MDP with a reachability objective Reach(T ) for player 2,
whereT ⊆ S, the values can be obtained as the solution of a linear program [15] (see Section 2.9 of [15]
where linear program solution is given for MDPs with limit-average objectives and reachability objective is
a special case of limit-average objectives). The linear program has a variablex(s) for all statess ∈ S, and
the objective function and the constraints are as follows:

min
∑

s∈S

x(s) subject to
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x(s) ≥
∑

t∈S

x(t) · δ(s, a2)(t) for all s ∈ S anda2 ∈ Γ2(s)

x(s) = 1 for all s ∈ T

0 ≤ x(s) ≤ 1 for all s ∈ S

The correctness of the above linear program to compute the values follows from [15] (see section 2.9 of [15],
and also see [7] for the correctness of the linear program).

4 Existence of Memorylessε-Optimal Strategies for Concurrent Reachabil-
ity Games

In this section we present an elementary and combinatorial proof of the existence of memorylessε-optimal
strategies for concurrent reachability games, for allε > 0 (optimal strategies need not exist for concurrent
games with reachability objectives [14]).

4.1 From value iteration to selectors

Consider a reachability game with targetT ⊆ S, i.e., objective for player 1 is Reach(T ). Let W2 = {s ∈
S | 〈〈1〉〉val(Reach(T ))(s) = 0} be the set of states from which player 1 cannot reach the target with positive
probability. From [9], we know that this set can be computed as W2 = limk→∞ W k

2 , whereW 0
2 = S \ T ,

and for allk ≥ 0,

W k+1
2 = {s ∈ S \ T | ∃a2 ∈ Γ2(s) . ∀a1 ∈ Γ1(s) . Dest(s, a1, a2) ⊆ W k

2 } .

The limit is reached in at most|S| iterations. Note that player 2 has a strategy that confines the game toW2,
and that consequently all strategies are optimal for player1, as they realize the value 0 of the game inW2.
Therefore, without loss of generality, in the remainder we assume that all states inW2 andT are absorbing.

Our first step towards proving the existence of memorylessε-optimal strategies for reachability games
consists in considering a value-iteration scheme for the computation of〈〈1〉〉val(Reach(T )). Let [T ] : S →
[0, 1] be the indicator function ofT , defined by[T ](s) = 1 for s ∈ T , and [T ](s) = 0 for s 6∈ T . Let
u0 = [T ], and for allk ≥ 0, let

uk+1 = Pre1(uk). (1)

Note that the classical equation assignsuk+1 = [T ] ∨ Pre1(uk), where∨ is interpreted as the maxi-
mum in pointwise fashion. Since we assume that all states inT are absorbing, the classical equation re-
duces to the simpler equation given by (1). From the monotonicity of Pre1 it follows that uk ≤ uk+1,
that is, Pre1(uk) ≥ uk, for all k ≥ 0. The result of [11] establishes by a combinatorial argu-
ment that〈〈1〉〉val(Reach(T )) = limk→∞ uk, where the limit is interpreted in pointwise fashion. For
all k ≥ 0, let the player-1 selectorζk be avalue-optimalselector foruk, that is, a selector such that
Pre1(uk) = Pre1:ζk

(uk). An ε-optimal strategyπk
1 for player 1 can be constructed by applying the

sequenceζk, ζk−1, . . . , ζ1, ζ0, ζ0, ζ0, . . . of selectors, where the last selector,ζ0, is repeated forever. It is
possible to prove by induction onk that

inf
π2∈Π2

Prπk
1 ,π2(∃j ∈ [0..k].Θj ∈ T ) ≥ uk.

9
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Figure 1: An MDP with reachability objective.

As the strategiesπk
1 , for k ≥ 0, are not necessarily memoryless, this proof does not sufficefor showing

the existence of memorylessε-optimal strategies. On the other hand, the following example shows that the
memoryless strategyζk does not necessarily guarantee the valueuk.

Example 1 Consider the1-MDP shown in Fig 1. At all states excepts3, the set of available moves for
player 1 is a singleton set. Ats3, the available moves for player 1 area andb. The transitions at the various
states are shown in the figure. The objective of player 1 is to reach the states0.

We consider the value-iteration procedure and denote byuk the valuation afterk iterations. Writing a
valuationu as the list of values

(
u(s0), u(s1), . . . , u(s4)

)
, we have:

u0 = (1, 0, 0, 0, 0)

u1 = Pre1(u0) = (1, 0, 1/2, 0, 0)

u2 = Pre1(u1) = (1, 0, 1/2, 1/2, 0)

u3 = Pre1(u2) = (1, 0, 1/2, 1/2, 1/2)

u4 = Pre1(u3) = u3 = (1, 0, 1/2, 1/2, 1/2)

The valuationu3 is thus a fixpoint.
Now consider the selectorξ1 for player 1 that chooses at states3 the movea with probability 1. The

selectorξ1 is optimal with respect to the valuationu3. However, if player 1 follows the memoryless strategy
ξ1, then the play visitss3 ands4 alternately and reachess0 with probability 0. Thus,ξ1 is an example of a
selector that is value-optimal, but not optimal.

On the other hand, consider any selectorξ′1 for player 1 that chooses moveb at states3 with positive
probability. Under the memoryless strategyξ

′
1, the set{s0, s1} of states is reached with probability 1, and

s0 is reached with probability1/2. Such aξ′1 is thus an example of a selector that is both value-optimal and
optimal.

In the example, the problem is that the strategyξ1 may cause player 1 to stay forever inS \ (T ∪ W2)
with positive probability. We call “proper” the strategiesof player 1 that guarantee reachingT ∪ W2 with
probability 1.

Definition 4 (PROPER STRATEGIES AND SELECTORS). A player-1 strategyπ1 is proper if for all player-2
strategiesπ2, and for all statess ∈ S \ (T ∪ W2), we havePrπ1,π2

s (Reach(T ∪ W2)) = 1. A player-1
selectorξ1 is proper if the memoryless player-1 strategyξ1 is proper.

We note that proper strategies are closely related to Condon’s notion of ahalting game[5]: precisely, a game
is halting iff all player-1 strategies are proper. We can check whether a selector for player 1 is proper by
considering only the pure selectors for player 2.

10



Lemma 1 Given a selectorξ1 for player 1, the memoryless player-1 strategyξ1 is proper iff for every pure

selectorξ2 for player 2, and for all statess ∈ S, we havePr
ξ1,ξ2
s (Reach(T ∪ W2)) = 1.

Proof. We prove the contrapositive. Given a player-1 selectorξ1, consider the 2-MDPGξ1 . If ξ1 is not
proper, then by Theorem 1, there must exist an end componentC ⊆ S \ (T ∪ W2) in Gξ1 . Then, from
C, player 2 can avoid reachingT ∪ W2 by repeatedly applying a pure selectorξ2 that at every states ∈ C
deterministically chooses a movea2 ∈ Γ2(s) such thatDest(s, ξ1, a2) ⊆ C. The existence of a suitable
ξ2(s) for all statess ∈ C follows from the definition of end component.

The following lemma shows that the selector that chooses allavailable moves uniformly at random is
proper. This fact will be used later to initialize our strategy-improvement algorithm.

Lemma 2 Let ξunif
1 be the player-1 selector that at all statess ∈ S \ (T ∪ W2) chooses all moves inΓ1(s)

uniformly at random. Thenξunif
1 is proper.

Proof. Assume towards contradiction thatξunif
1 is not proper. From Theorem 1, in the 2-MDPG

ξ
unif
1

there

must be an end componentC ⊆ S \ (T ∪ W2). Then, when player 1 follows the strategyξ
unif
1 , player 2

can confine the game toC. By the definition ofξunif
1 , player 2 can ensure that the game does not leaveC

regardless of the moves chosen by player 1, and thus, forall strategies of player 1. This contradicts the fact
thatW2 contains all states from which player 2 can ensure thatT is not reached.

The following lemma shows that if the player-1 selectorζk computed by the value-iteration scheme (1)
is proper, then the player-1 strategyζk guarantees the valueuk, for all k ≥ 0.

Lemma 3 Let v be a valuation such thatPre1(v) ≥ v andv(s) = 0 for all statess ∈ W2. Let ξ1 be a
selector for player 1 such thatPre1:ξ1(v) = Pre1(v). If ξ1 is proper, then for all player-2 strategiesπ2, we

havePrξ1,π2(Reach(T )) ≥ v.

Proof. Consider an arbitrary player-2 strategyπ2, and fork ≥ 0, let

vk = Eξ1,π2
(
v(Θk)

)

be the expected value ofv afterk steps underξ1 andπ2. By induction onk, we can provevk ≥ v for all
k ≥ 0. In fact,v0 = v, and fork ≥ 0, we have

vk+1 ≥ Pre1:ξ1(vk) ≥ Pre1:ξ1(v) = Pre1(v) ≥ v.

For allk ≥ 0 ands ∈ S, we can writevk as

vk(s) = E
ξ1,π2
s

(
v(Θk) | Θk ∈ T

)
· Pr

ξ1,π2
s

(
Θk ∈ T

)

+ E
ξ1,π2
s

(
v(Θk) | Θk ∈ S \ (T ∪ W2)

)
· Pr

ξ1,π2
s

(
Θk ∈ S \ (T ∪ W2)

)

+ E
ξ1,π2
s

(
v(Θk) | Θk ∈ W2

)
· Pr

ξ1,π2
s

(
Θk ∈ W2

)
.

Sincev(s) ≤ 1 whens ∈ T , the first term on the right-hand side is at mostPr
ξ1,π2
s

(
Θk ∈ T

)
. For the second

term, we havelimk→∞ Prξ1,π2
(
Θk ∈ S\(T ∪W2)

)
= 0 by hypothesis, becausePrξ1,π2(Reach(T ∪W2)) =
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1 and every states ∈ (T ∪ W2) is absorbing. Finally, the third term on the right hand side is 0, asv(s) = 0
for all statess ∈ W2. Hence, taking the limit withk → ∞, we obtain

Prξ1,π2
(
Reach(T )

)
= lim

k→∞
Prξ1,π2

(
Θk ∈ T

)
≥ lim

k→∞
vk ≥ v,

where the last inequality follows fromvk ≥ v for all k ≥ 0. Note thatvk = Prξ1,π2
(
Θk ∈ T

)
, and sinceT

is absorbing it follows thatvk is non-deccreasing (monotonic) and is bounded by 1 (since itis a probability
measure). Hence the limit ofvk is defined. The desired result follows.

4.2 From value iteration to optimal selectors

In this section we show how to obtain memorylessε-optimal strategies from the value-iteration scheme, for
ε > 0. In the following section the existence such strategies would be established using a strategy-iteration
scheme. The strategy-iteration scheme has been used previously to establish existence of memorylessε-
optimal strategies, forε > 0 (for example see [13] and also results of Condon [5] for turn-based games).
However our proof which constructs the memoryless strategies based on value-iteration scheme is new.
Considering again the value-iteration scheme (1), since〈〈1〉〉val(Reach(T )) = limk→∞ uk, for everyε > 0
there is ak such thatuk(s) ≥ uk−1(s) ≥ 〈〈1〉〉val(Reach(T ))(s) − ε at all statess ∈ S. Lemma 3 indicates
that, in order to construct a memorylessε-optimal strategy, we need to construct fromuk−1 a player-1
selectorξ1 such that:

1. ξ1 is value-optimal foruk−1, that is,Pre1:ξ1(uk−1) = Pre1(uk−1) = uk; and

2. ξ1 is proper.

To ensure the construction of a value-optimal, proper selector, we need some definitions. Forr > 0, the
value class

Uk
r = {s ∈ S | uk(s) = r}

consists of the states with valuer under the valuationuk. Similarly we defineUk
⊲⊳r = {s ∈ S | uk(s) ⊲⊳ r},

for ⊲⊳∈ {<,≤,≥, >}. For a states ∈ S, let ℓk(s) = min{j ≤ k | uj(s) = uk(s)} be theentry timeof s in
Uk

uk(s), that is, the least iterationj in which the states has the same value as in iterationk. Fork ≥ 0, we
define the player-1 selectorηk as follows: ifℓk(s) > 0, then

ηk(s) = ηℓk(s)(s) = arg max
ξ1∈Λ1

inf
ξ2∈Λ2

Preξ1,ξ2(uℓk(s)−1);

otherwise, ifℓk(s) = 0, thenηk(s) = ηℓk(s)(s) = ξunif
1 (s) (this definition is arbitrary, and it does not affect

the remainder of the proof). In words, the selectorηk(s) is an optimal selector fors at the iterationℓk(s). It
follows easily thatuk = Pre1:ηk

(uk−1), that is,ηk is also value-optimal foruk−1, satisfying the first of the
above conditions.

To conclude the construction, we need to prove that fork sufficiently large (namely, fork such that
uk(s) > 0 at all statess ∈ S \ (T ∪ W2)), the selectorηk is proper. To this end we use Theorem 1, and
show that for sufficiently largek no end component ofGηk

is entirely contained inS \(T ∪W2).1 To reason
about the end components ofGηk

, for a states ∈ S and a player-2 movea2 ∈ Γ2(s), we write

Destk(s, a2) =
⋃

a1∈Supp(ηk(s))

Dest(s, a1, a2)

1In fact, the result holds for allk, even though our proof, for the sake of a simpler argument, does not show it.
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for the set of possible successors of states when player 1 follows the strategyηk, and player 2 chooses the
movea2.

Lemma 4 Let 0 < r ≤ 1 andk ≥ 0, and consider a states ∈ S \ (T ∪ W2) such thats ∈ Uk
r . For all

movesa2 ∈ Γ2(s), we have:

1. eitherDestk(s, a2) ∩ Uk
>r 6= ∅,

2. or Destk(s, a2) ⊆ Uk
r , and there is a statet ∈ Destk(s, a2) with ℓk(t) < ℓk(s).

Proof. For convenience, letm = ℓk(s), and consider any movea2 ∈ Γ2(s).

• Consider first the case thatDestk(s, a2) 6⊆ Uk
r . Then, it cannot be thatDestk(s, a2) ⊆ Uk

≤r; other-
wise, for all statest ∈ Destk(s, a2), we would haveuk(t) ≤ r, and there would be at least one state
t ∈ Destk(s, a2) such thatuk(t) < r, contradictinguk(s) = r andPre1:ηk

(uk−1) = uk. So, it must
be thatDestk(s, a2) ∩ Uk

>r 6= ∅.

• Consider now the case thatDestk(s, a2) ⊆ Uk
r . Sinceum ≤ uk, due to the monotonicity of thePre1

operator and (1), we have thatum−1(t) ≤ r for all statest ∈ Destk(s, a2). From r = uk(s) =
um(s) = Pre1:ηk

(um−1), it follows thatum−1(t) = r for all statest ∈ Destk(s, a2), implying that
ℓk(t) < m for all statest ∈ Destk(s, a2).

The above lemma states that underηk, from each statei ∈ Uk
r with r > 0 we are guaranteed a probability

bounded away from 0 of either moving to a higher-value classUk
>r, or of moving to states within the value

class that have a strictly lower entry time. Note that the states in the target setT are all inU0
1 : they have

entry-time 0 in the value class for value 1. This implies thatevery state inS \W2 has a probability bounded
above zero of reachingT in at mostn = |S| steps, so that the probability of staying forever inS \ (T ∪W2)
is 0. To prove this fact formally, we analyze the end components ofGηk

in light of Lemma 4.

Lemma 5 For all k ≥ 0, if for all statess ∈ S \W2 we haveuk−1(s) > 0, then for all player-2 strategies
π2, we havePrηk,π2

(
Reach(T ∪ W2)) = 1.

Proof. Since every states ∈ (T ∪ W2) is absorbing, to prove this result, in view of Corollary 1, itsuffices
to show that no end component ofGηk

is entirely contained inS \ (T ∪ W2). Towards the contradiction,
assume there is such an end componentC ⊆ S \ (T ∪W2). Then, we haveC ⊆ Uk

[r1,r2]
with C ∩Ur2 6= ∅,

for some0 < r1 ≤ r2 ≤ 1, whereUk
[r1,r2]

= Uk
≥r1

∩ Uk
≤r2

is the union of the value classes for all values in

the interval[r1, r2]. Consider a states ∈ Uk
r2

with minimal ℓk, that is, such thatℓk(s) ≤ ℓk(t) for all other
statest ∈ Uk

r2
. From Lemma 4, it follows that for every movea2 ∈ Γ2(s), there is a statet ∈ Destk(s, a2)

such that (i) eithert ∈ Uk
r2

andℓk(t) < ℓk(s), (ii) or t ∈ Uk
>r2

. In both cases, we obtain a contradiction.

The above lemma shows thatηk satisfies both requirements for optimal selectors spelt outat the begin-
ning of Section 4.2. Hence,ηk guarantees the valueuk. This proves the existence of memorylessε-optimal
strategies for concurrent reachability games.

Theorem 2 (MEMORYLESSε-OPTIMAL STRATEGIES). For everyε > 0, memorylessε-optimal strategies
exist for all concurrent games with reachability objectives.
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Proof. Consider a concurrent reachability game with targetT ⊆ S. Since limk→∞ uk =
〈〈1〉〉val(Reach(T )), for everyε > 0 we can findk ∈ N such that the following two assertions hold:

max
s∈S

(
〈〈1〉〉val(Reach(T ))(s) − uk−1(s)

)
< ε

min
s∈S\W2

uk−1(s) > 0

By construction,Pre1:ηk
(uk−1) = Pre1(uk−1) = uk. Hence, from Lemma 3 and Lemma 5, for all player-2

strategiesπ2, we havePrηk,π2(Reach(T )) ≥ uk−1, leading to the result.

5 Strategy Improvement Algorithm for Concurrent Reachability Games

In the previous section, we provided a proof of the existenceof memorylessε-optimal strategies for all
ε > 0, on the basis of a value-iteration scheme. In this section wepresent a strategy-improvement algorithm
for concurrent games with reachability objectives. The algorithm will produce a sequence of selectors
γ0, γ1, γ2, . . . for player 1, such that:

1. for all i ≥ 0, we have〈〈1〉〉γi
val

(Reach(T )) ≤ 〈〈1〉〉
γi+1

val
(Reach(T ));

2. if there isi ≥ 0 such thatγi = γi+1, then〈〈1〉〉γi
val

(Reach(T )) = 〈〈1〉〉val(Reach(T )); and

3. limi→∞〈〈1〉〉
γi
val

(Reach(T )) = 〈〈1〉〉val(Reach(T )).

Condition 1 guarantees that the algorithm computes a sequence of monotonically improving selectors. Con-
dition 2 guarantees that if a selector cannot be improved, then it is optimal. Condition 3 guarantees that the
value guaranteed by the selectors converges to the value of the game, or equivalently, that for allε > 0,
there is a numberi of iterations such that the memoryless player-1 strategyγi is ε-optimal. Note that for
concurrent reachability games, there may be noi ≥ 0 such thatγi = γi+1, that is, the algorithm may fail
to generate an optimal selector. This is because there are concurrent reachability games that do not admit
optimal strategies, but onlyε-optimal strategies for allε > 0 [14, 10]. Forturn-basedreachability games,
our algorithm terminates with an optimal selector and we will present bounds for termination.

We note that the value-iteration scheme of the previous section does not directly yield a strategy-
improvement algorithm. In fact, the sequence of player-1 selectorsη0, η1, η2, . . . computed in Section 4.1
may violate Condition 2: it is possible that for somei ≥ 0 we haveηi = ηi+1, butηi 6= ηj for somej > i.
This is because the scheme of Section 4.1 is fundamentally a value-iteration scheme, even though a selector
is extracted from each valuation. The scheme guarantees that the valuationsu0, u1, u2, . . . defined as in (1)
converge, but it does not guarantee that the selectorsη0, η1, η2, . . . improve at each iteration.

The strategy-improvement algorithm presented here sharesan important connection with the proof of
the existence of memorylessε-optimal strategies presented in the previous section. Here, also, the key is
to ensure that all generated selectors are proper. Again, this is ensured by modifying the selectors, at each
iteration, only where they can be improved.

5.1 The strategy-improvement algorithm

Ordering of strategies. We let W2 be as in Section 4.1, and again we assume without loss of gener-
ality that all states inW2 ∪ T are absorbing. We define a preorder≺ on the strategies for player 1 as
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Algorithm 1 Reachability Strategy-Improvement Algorithm

Input: a concurrent game structureG with target setT .
Output: a strategyγ for player 1.

0. ComputeW2 = {s ∈ S | 〈〈1〉〉val(Reach(T ))(s) = 0}.
1. Letγ0 = ξunif

1 andi = 0.
2. Computev0 = 〈〈1〉〉

γ0
val

(Reach(T )).
3. do {

3.1. LetI = {s ∈ S \ (T ∪ W2) | Pre1(vi)(s) > vi(s)}.
3.2. Letξ1 be a player-1 selector such that for all statess ∈ I,

we havePre1:ξ1(vi)(s) = Pre1(vi)(s) > vi(s).
3.3. The player-1 selectorγi+1 is defined as follows: for each states ∈ S, let

γi+1(s) =

{
γi(s) if s 6∈ I;

ξ1(s) if s ∈ I.

3.4. Computevi+1 = 〈〈1〉〉
γi+1

val
(Reach(T )).

3.5. Leti = i + 1.
} until I = ∅.
4. return γi.

follows: given two player 1 strategiesπ1 and π′
1, let π1 ≺ π′

1 if the following two conditions hold:

(i) 〈〈1〉〉π1
val

(Reach(T )) ≤ 〈〈1〉〉
π′
1

val
(Reach(T )); and (ii) 〈〈1〉〉π1

val
(Reach(T ))(s) < 〈〈1〉〉

π′
1

val
(Reach(T ))(s) for

some states ∈ S. Furthermore, we writeπ1 � π′
1 if eitherπ1 ≺ π′

1 or π1 = π′
1.

Informal description of Algorithm 1. We now present the strategy-improvement algorithm (Algorithm 1)
for computing the values for all states inS\(T ∪W2). The algorithm iteratively improves player-1 strategies

according to the preorder≺. The algorithm starts with the random selectorγ0 = ξ
unif
1 . At iteration i + 1,

the algorithm considers the memoryless player-1 strategyγi and computes the value〈〈1〉〉γi
val

(Reach(T )).

Observe that sinceγi is a memoryless strategy, the computation of〈〈1〉〉
γi
val

(Reach(T )) involves solving the

2-MDP Gγi . The valuation〈〈1〉〉γi
val

(Reach(T )) is namedvi. For all statess such thatPre1(vi)(s) > vi(s),
the memoryless strategy ats is modified to a selector that is value-optimal forvi. The algorithm then
proceeds to the next iteration. IfPre1(vi) = vi, the algorithm stops and returns the optimal memoryless
strategyγi for player 1. Unlike strategy-improvement algorithms for turn-based games (see [6] for a survey),
Algorithm 1 is not guaranteed to terminate, because the value of a reachability game may not be rational.

5.2 Convergence

Lemma 6 Letγi andγi+1 be the player-1 selectors obtained at iterationsi andi + 1 of Algorithm 1. Ifγi

is proper, thenγi+1 is also proper.

Proof. Assume towards a contradiction thatγi is proper andγi+1 is not. Letξ2 be a pure selector for
player 2 to witness thatγi+1 is not proper. Then there exist a subsetC ⊆ S \ (T ∪ W2) such thatC is a
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closed recurrent set of states in the Markov chainGγi+1,ξ2. Let I be the nonempty set of states where the
selector is modified to obtainγi+1 from γi; at all other statesγi andγi+1 agree.

Sinceγi andγi+1 agree at all states other than the states inI, andγi is a proper strategy, it follows
thatC ∩ I 6= ∅. Let U i

r = {s ∈ S \ (T ∪ W2) | 〈〈1〉〉
γi
val

(Reach(T ))(s) = vi(s) = r} be the value class
with valuer at iterationi. For a states ∈ U i

r the following assertion holds: ifDest(s, γi, ξ2) ( U i
r, then

Dest(s, γi, ξ2) ∩ U i
>r 6= ∅. Let z = max{r | U i

r ∩ C 6= ∅}, that is,U i
z is the greatest value class at iteration

i with a nonempty intersection with the closed recurrent setC. It easily follows that0 < z < 1. Consider
any states ∈ I, and lets ∈ U i

q. SincePre1(vi)(s) > vi(s), it follows thatDest(s, γi+1, ξ2) ∩ U i
>q 6= ∅.

Hence we must havez > q, and thereforeI ∩ C ∩ U i
z = ∅. Thus, for all statess ∈ U i

z ∩ C, we have
γi(s) = γi+1(s). Recall thatz is the greatest value class at iterationi with a nonempty intersection withC;
henceU i

>z ∩ C = ∅. Thus for all statess ∈ C ∩ U i
z, we haveDest(s, γi+1, ξ2) ⊆ U i

z ∩ C. It follows that
C ⊆ U i

z. However, this gives us three statements that together forma contradiction:C ∩ I 6= ∅ (or elseγi

would not have been proper),I ∩ C ∩ U i
z = ∅, andC ⊆ U i

z.

Lemma 7 For all i ≥ 0, the player-1 selectorγi obtained at iterationi of Algorithm 1 is proper.

Proof. By Lemma 2 we have thatγ0 is proper. The result then follows from Lemma 6 and induction.

Lemma 8 Let γi and γi+1 be the player-1 selectors obtained at iterationsi and i + 1 of Algorithm 1.

Let I = {s ∈ S | Pre1(vi)(s) > vi(s)}. Let vi = 〈〈1〉〉
γi
val

(Reach(T )) and vi+1 = 〈〈1〉〉
γi+1

val
(Reach(T )).

Thenvi+1(s) ≥ Pre1(vi)(s) for all statess ∈ S; and thereforevi+1(s) ≥ vi(s) for all statess ∈ S, and
vi+1(s) > vi(s) for all statess ∈ I.

Proof. Consider the valuationsvi andvi+1 obtained at iterationsi andi + 1, respectively, and letwi be the
valuation defined bywi(s) = 1 − vi(s) for all statess ∈ S. Sinceγi+1 is proper (by Lemma 7), it follows
that the counter-optimal strategy for player 2 to minimizevi+1 is obtained by maximizing the probability to
reachW2. In fact, there are no end components inS \ (W2 ∪ T ) in the 2-MDPGγi+1 . Let

ŵi(s) =

{
wi(s) if s ∈ S \ I;

1 − Pre1(vi)(s) < wi(s) if s ∈ I.

In other words,ŵi = 1 − Pre1(vi), and we also havêwi ≤ wi. We now show that̂wi is a feasible
solution to the linear program for MDPs with the objective Reach(W2), as described in Section 3. Since
vi = 〈〈1〉〉

γi
val

(Reach(T )), it follows that for all statess ∈ S and all movesa2 ∈ Γ2(s), we have

wi(s) ≥
∑

t∈S

wi(t) · δγi(s, a2).

For all statess ∈ S \ I, we haveγi(s) = γi+1(s) andŵi(s) = wi(s), and sincêwi ≤ wi, it follows that for
all statess ∈ S \ I and all movesa2 ∈ Γ2(s), we have

ŵi(s) ≥
∑

t∈S

ŵi(t) · δγi+1(s, a2) (for s ∈ (S \ I)).

Since fors ∈ I the selectorγi+1(s) is obtained as an optimal selector forPre1(vi)(s), it follows that
for all statess ∈ I and all movesa2 ∈ Γ2(s), we have

Preγi+1,a2(vi)(s) ≥ Pre1(vi)(s);
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in other words,1 − Pre1(vi)(s) ≥ 1 − Preγi+1,a2(vi)(s). Hence for all statess ∈ I and all moves
a2 ∈ Γ2(s), we have

ŵi(s) ≥
∑

t∈S

wi(t) · δγi+1(s, a2).

Sinceŵi ≤ wi, for all statess ∈ I and all movesa2 ∈ Γ2(s), we have

ŵi(s) ≥
∑

t∈S

ŵi(t) · δγi+1(s, a2) ( for s ∈ I).

Hence it follows thatŵi is a feasible solution to the linear program for MDPs with reachability objectives.
Since the reachability valuation for player 2 for Reach(W2) is the least solution (observe that the objective
function of the linear program is a minimizing function), itfollows thatvi+1 ≥ 1 − ŵi = Pre1(vi). Thus
we obtainvi+1(s) ≥ vi(s) for all statess ∈ S, andvi+1(s) > vi(s) for all statess ∈ I.

Theorem 3 (STRATEGY IMPROVEMENT). The following two assertions hold about Algorithm 1:

1. For all i ≥ 0, we haveγi � γi+1; moreover, ifγi = γi+1, thenγi is an optimal strategy.

2. limi→∞ vi = limi→∞〈〈1〉〉
γi
val

(Reach(T )) = 〈〈1〉〉val(Reach(T )).

Proof. We prove the two parts as follows.

1. The assertion thatγi � γi+1 follows from Lemma 8. Ifγi = γi+1, thenPre1(vi) = vi. Let
v = 〈〈1〉〉val(Reach(T )), and sincev is the least solution to satisfyPre1(x) = x (i.e., the least
fixpoint) [11], it follows thatvi ≥ v. From Lemma 7 it follows thatγi is proper. Sinceγi is proper by
Lemma 3, we have〈〈1〉〉γi

val
(Reach(T )) ≥ vi ≥ v. It follows thatγi is optimal for player 1.

2. Let v0 = [T ] andu0 = [T ]. We haveu0 ≤ v0. For all k ≥ 0, by Lemma 8, we havevk+1 ≥
[T ] ∨ Pre1(vk). For all k ≥ 0, let uk+1 = [T ] ∨ Pre1(uk). By induction we conclude that for all
k ≥ 0, we haveuk ≤ vk. Moreover,vk ≤ 〈〈1〉〉val(Reach(T )), that is, for allk ≥ 0, we have

uk ≤ vk ≤ 〈〈1〉〉val(Reach(T )).

Sincelimk→∞ uk = 〈〈1〉〉val(Reach(T )), it follows that

lim
k→∞

〈〈1〉〉
γk
val

(Reach(T )) = lim
k→∞

vk = 〈〈1〉〉val(Reach(T )).

The theorem follows.

5.3 Termination for turn-based stochastic games

If the input game structure to Algorithm 1 is a turn-based stochastic game structure, then if we start with a
proper selectorγ0 that is pure, then for alli ≥ 0 we can choose the selectorγi such thatγi is both proper and
pure: the above claim follows since given a valuationv, if a states is a player 1 state, then there is an actiona
ats (or choice of an edge ats) that achievesPre1(v)(s) ats. Since the number of pure selectors is bounded,
if we start with a pure, proper selector then termination is ensured. Hence we present a procedure to compute
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a pure, proper selector, and then present termination bounds (i.e., bounds oni such thatui+1 = ui). The
construction of a pure, proper selector is based on the notion of attractorsdefined below.

Attractor strategy.Let A0 = W2 ∪ T , and fori ≥ 0 we have

Ai+1 = Ai ∪ {s ∈ S1 ∪ SR | E(s) ∩ Ai 6= ∅} ∪ {s ∈ S2 | E(s) ⊆ Ai}.

Since for alls ∈ S \ W2 we have〈〈1〉〉val(Reach(T )) > 0, it follows that from all states inS \ W2 player 1
can ensure thatT is reached with positive probability. It follows that for some i ≥ 0 we haveAi = S. The
pureattractor selectorξ∗ is as follows: for a states ∈ (Ai+1 \Ai)∩S1 we haveξ∗(s)(t) = 1, wheret ∈ Ai

(such at exists by construction). The pure memoryless strategyξ∗ ensures that for alli ≥ 0, from Ai+1 the
game reachesAi with positive probability. Hence there is no end-componentC contained inS \ (W2 ∪ T )
in the MDPGξ∗ . It follows thatξ∗ is a pure selector that is proper, and the selectorξ∗ can be computed in
O(|E|) time. We now present the termination bounds.

Termination bounds.We present termination bounds for binary turn-based stochastic games. A turn-based
stochastic game is binary if for alls ∈ SR we have|E(s)| ≤ 2, and for alls ∈ SR if |E(s)| = 2, then for
all t ∈ E(s) we haveδ(s)(t) = 1

2 , i.e., for all probabilistic states there are at most two successors and the
transition functionδ is uniform.

Lemma 9 Let G be a binary Markov chain with|S| states with a reachability objective Reach(T ). Then
for all s ∈ S we have〈〈1〉〉val(Reach(T )) = p

q
, with p, q ∈ N andp, q ≤ 4|S|−1.

Proof. The results follow as a special case of Lemma 2 of [6]. Lemma 2 of [6] holds for halting turn-
based stochastic games, and since Markov chains reaches theset of closed connected recurrent states with
probability 1 from all states the result follows.

Lemma 10 Let G be a binary turn-based stochastic game with a reachability objective Reach(T ). Then
for all s ∈ S we have〈〈1〉〉val(Reach(T )) = p

q
, with p, q ∈ N andp, q ≤ 4|SR|−1.

Proof. Since pure memoryless optimal strategies exist for both players (existence of pure memoryless
optimal strategies for both players in turn-based stochastic reachability games follows from [5]), we fix pure
memoryless optimal strategiesπ1 andπ2 for both players. The Markov chainGπ1,π2 can be then reduced
to an equivalent Markov chains with|SR| states (since we fix deterministic successors for states inS1 ∪ S2,
they can be collapsed to their successors). The result then follows from Lemma 9.

From Lemma 10 it follows that at iterationi of the reachability strategy improvement algorithm either
the sum of the values either increases by1

4|SR|−1 or else there is a valuationui such thatui+1 = ui. Since

the sum of values of all states can be at most|S|, it follows that algorithm terminates in at most|S| · 4|SR|−1

iterations. Moreover, since the number of pure memoryless strategies is at most
∏

s∈S1
|E(s)|, the algorithm

terminates in at most
∏

s∈S1
|E(s)| iterations. It follows from the results of [28] that a turn-based stochastic

game structureG can be reduced to a equivalent binary turn-based stochasticgame structureG′ such that
the set of player 1 and player 2 states inG andG′ are the same and the number of probabilistic states inG′

is O(|δ|), where|δ| is the size of the transition function inG. Thus we obtain the following result.

Theorem 4 LetG be a turn-based stochastic game with a reachability objective Reach(T ), then the reach-
ability strategy improvement algorithm computes the values in time

O
(
min{

∏

s∈S1

|E(s)|, 2O(|δ|)} · poly(|G|
)
;
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wherepoly is polynomial function.

The results of [16] presented an algorithm for turn-based stochastic games that works in timeO(|SR|! ·
poly(|G|)). The algorithm of [16] works only for turn-based stochasticgames, for general turn-based
stochastic games the complexity of the algorithm of [16] is better. However, for turn-based stochastic games
where the transition function at all states can be expressedwith constantly many bits we have|δ| = O(|SR|).
In these cases the reachability strategy improvement algorithm (that works for both concurrent and turn-
based stochastic games) works in time2O(|SR|)·poly(|G|) as compared to the time2O(|SR|·log(|SR|)·poly(|G|)
of the algorithm of [16].

6 Existence of Memoryless Optimal Strategies for Concurrent Safety
Games

A proof of the existence of memoryless optimal strategies for safety games can be found in [11]: the proof
uses results on martingales to obtain the result. For sake ofcompleteness we present (an alternative) proof
of the result: the proof we present is similar in spirit with the other proofs in this paper and uses the results
on MDPs to obtain the result. The proof is very similar to the proof presented in [13].

Theorem 5 (MEMORYLESS OPTIMAL STRATEGIES). Memoryless optimal strategies exist for all concur-
rent games with safety objectives.

Proof. Consider a concurrent game structureG with an safety objective Safe(F ) for player 1. Then it
follows from the results of [11] that

〈〈1〉〉val(Safe(F )) = νX.
(
min{[F ],Pre1(X)}

)
,

where[F ] is the indicator function of the setF andν denotes the greatest fixpoint. LetT = S \ F , and for
all statess ∈ T we have〈〈1〉〉val(Safe(F ))(s) = 0, and hence any memoryless strategy fromT is an optimal
strategy. Thus without loss of generality we assume all states inT are absorbing. Letv = 〈〈1〉〉val(Safe(F )),
and since we assume all states inT are absorbing it follows thatPre1(v) = v (sincev is a fixpoint). Letγ
be a player 1 selector such that for all statess we havePre1:γ(v)(s) = Pre1(v)(s) = v(s). We show thatγ
is an memoryless optimal strategy. Consider the player-2 MDPGγ and we consider the maximal probability
for player 2 to reach the target setT . Consider the valuationw defined asw = 1 − v. For all statess ∈ T
we havew(s) = 1. SincePre1:γ(v) = Pre1(v) it follows that for all statess ∈ F and alla2 ∈ Γ2(s) we
have

Preγ,a2(v)(s) ≥ Pre1(v)(s) = v(s);

in other words, for alls ∈ F we have1−Pre1(v)(s) = 1− v(s) ≥ 1−Preγ,a2(v)(s). Hence for all states
s ∈ F and all movesa2 ∈ Γ2(s), we have

w(s) ≥
∑

t∈S

w(t) · δγ(s, a2).

Hence it follows thatw is a feasible solution to the linear program for MDPs with reachability objectives,
i.e., given the memoryless strategyγ for player 1 the maximal probability valuation for player 2 to reachT
is at mostw. Hence the memoryless strategyγ ensures that the probability valaution for player 1 to stay
safe inF against all player 2 strategies is at leastv = 〈〈1〉〉val(Safe(F )). Optimality ofγ follows.
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7 Strategy Improvement Algorithm for Concurrent Safety Games

In this section we present a strategy improvement algorithmfor concurrent games with safety objectives.
We consider a concurrent game structure with a safe setF , i.e., the objective for player 1 is Safe(F ). The
algorithm will produce a sequence of selectorsγ0, γ1, γ2, . . . for player 1, such that Condition 1, Condition 2
and Condition 3 of Section 5 are satisfied. Note that for concurrent safety games, there may be noi ≥ 0
such thatγi = γi+1, that is, the algorithm may fail to generate an optimal selector, as the value can be
irrational [11]. We start with a few notations

Optimal selectors.Given a valuationv and a states, we define by

OptSel(v, s) = {ξ1 ∈ Λ1(s) | Pre1:ξ1(v)(s) = Pre1(v)(s)}

the set of optimal selectors forv at states. For an optimal selectorξ1 ∈ OptSel(v, s), we define the set of
counter-optimal actions as follows:

CountOpt(v, s, ξ1) = {b ∈ Γ2(s) | Preξ1,b(v)(s) = Pre1(v)(s)}.

Observe that forξ1 ∈ OptSel(v, s), for all b ∈ Γ2(s) \ CountOpt(v, s, ξ1) we havePreξ1,b(v)(s) >
Pre1(v)(s). We define the set of optimal selector support and the counter-optimal action set as follows:

OptSelCount(v, s) = {(A,B) ⊆ Γ1(s) × Γ2(s) | ∃ξ1 ∈ Λ1(s). ξ1 ∈ OptSel(v, s)
∧ Supp(ξ1) = A ∧ CountOpt(v, s, ξ1) = B};

i.e., it consists of pairs(A,B) of actions of player 1 and player 2, such that there is an optimal selectorξ1

with supportA, andB is the set of counter-optimal actions toξ1.

Turn-based reduction. Given a concurrent gameG = 〈S,M,Γ1,Γ2, δ〉 and a valuationv we construct a
turn-based stochastic gameGv = 〈(S,E), (S1, S2, SR), δ〉 as follows:

1. The set of states is as follows:

S = S ∪ {(s,A,B) | s ∈ S, (A,B) ∈ OptSelCount(v, s)}
∪ {(s,A, b) | s ∈ S, (A,B) ∈ OptSelCount(v, s), b ∈ B}.

2. The state space partition is as follows:S1 = S; S2 = {(s,A,B) | s ∈ S, (A,B) ∈
OptSelCount(v, s)}; andSR = {(s,A, b) | s ∈ S, (A,B) ∈ OptSelCount(v, s), b ∈ B}. In other
words, (S1, S2, SR) is a partition of the state space, whereS1 are player 1 states,S2 are player 2
states, andSR are random or probabilistic states.

3. The set of edges is as follows:

E = {(s, (s,A,B)) | s ∈ S, (A,B) ∈ OptSelCount(v, s)}

∪ {((s,A,B), (s,A, b)) | b ∈ B} ∪ {((s,A, b), t) | t ∈
⋃

a∈A

Dest(s, a, b)}.

4. The transition functionδ for all states inSR is uniform over its successors.
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Figure 2: A turn-based stochastic safety game.

Intuitively, the reduction is as follows. Given the valuation v, states is a player 1 state where player 1 can
select a pair(A,B) (and move to state(s,A,B)) with A ⊆ Γ1(s) andB ⊆ Γ2(s) such that there is an
optimal selectorξ1 with support exactlyA and the set of counter-optimal actions toξ1 is the setB. From a
player 2 state(s,A,B), player 2 can choose any actionb from the setB, and move to state(s,A, b). A state
(s,A, b) is a probabilistic state where all the states in

⋃
a∈A Dest(s, a, b) are chosen uniformly at random.

Given a setF ⊆ S we denote byF = F ∪ {(s,A,B) ∈ S | s ∈ F} ∪ {(s,A, b) ∈ S | s ∈ F}. We refer to
the above reduction asTB, i.e.,(Gv, F ) = TB(G, v, F ).

Value-class of a valuation.Given a valuationv and a real0 ≤ r ≤ 1, thevalue-classUr(v) of valuer is
the set of states with valuationr, i.e.,Ur(v) = {s ∈ S | v(s) = r}

7.1 The strategy-improvement algorithm

Ordering of strategies. Let G be a concurrent game andF be the set of safe states. LetT = S \ F .
Given a concurrent game structureG with a safety objective Safe(F ), the set ofalmost-sure winningstates
is the set of statess such that the value ats is 1, i.e., W1 = {s ∈ S | 〈〈1〉〉val(Safe(F )) = 1} is the set
of almost-sure winning states. An optimal strategy fromW1 is referred as an almost-sure winning strategy.
The setW1 and an almost-sure winning strategy can be computed in linear time by the algorithm given
in [9]. We assume without loss of generality that all states in W1 ∪ T are absorbing. We recall the preorder
≺ on the strategies for player 1 (as defined in Section 5.1) as follows: given two player 1 strategiesπ1

andπ′
1, let π1 ≺ π′

1 if the following two conditions hold: (i)〈〈1〉〉π1
val

(Safe(F )) ≤ 〈〈1〉〉
π′
1

val
(Safe(F )); and

(ii) 〈〈1〉〉π1
val

(Safe(F ))(s) < 〈〈1〉〉
π′
1

val
(Safe(F ))(s) for some states ∈ S. Furthermore, we writeπ1 � π′

1 if
eitherπ1 ≺ π′

1 or π1 = π′
1. We first present an example that shows the improvements based only onPre1

operators are not sufficient for safety games, even on turn-based games and then present our algorithm.

Example 2 Consider the turn-based stochastic game shown in Fig 2, where the2 states are player 1 states,
the 3 states are player 2 states, and© states are random states with probabilities labeled on edges. The
safety goal is to avoid the states6. Consider a memoryless strategyπ1 for player 1 that chooses the successor
s0 → s2, and the counter-strategyπ2 for player 2 choosess1 → s0. Given the strategiesπ1 andπ2, the
value ats0, s1 ands2 is 1/3, and since all successors ofs0 have value1/3, the value cannot be improved by
Pre1. However, note that if player 2 is restricted to choose only value optimal selectors for the value1/3,
then player 1 can switch to the strategys0 → s2 and ensure that the game stays in the value class1/3 with
probability 1. Hence switching tos0 → s1 would force player 2 to select a counter-strategy that switches to
the strategys1 → s3, and thus player 1 can get a value2/3.

Informal description of Algorithm 2. We first present the basic strategy improvement algorithm (Algo-
rithm 2) and will later present a convergent version (Algorithm 4) for computing the values for all states in
S \ W1. The algorithm (Algorithm 2) iteratively improves player-1 strategies according to the preorder≺.
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Algorithm 2 Safety Strategy-Improvement Algorithm

Input: a concurrent game structureG with safe setF .
Output: a strategyγ for player 1.
0. ComputeW1 = {s ∈ S | 〈〈1〉〉val(Safe(F ))(s) = 1}.
1. Letγ0 = ξunif

1 andi = 0.
2. Computev0 = 〈〈1〉〉

γ0
val

(Safe(F )).
3. do {

3.1. LetI = {s ∈ S \ (W1 ∪ T ) | Pre1(vi)(s) > vi(s)}.
3.2 if I 6= ∅, then

3.2.1 Letξ1 be a player-1 selector such that for all statess ∈ I,
we havePre1:ξ1(vi)(s) = Pre1(vi)(s) > vi(s).

3.2.2 The player-1 selectorγi+1 is defined as follows: for each states ∈ S, let

γi+1(s) =

{
γi(s) if s 6∈ I;

ξ1(s) if s ∈ I.

3.3else
3.3.1 let(Gvi , F ) = TB(G, vi, F )

3.3.2 letAi be the set of almost-sure winning states inGvi for Safe(F ) and
π1 be a pure memoryless almost-sure winning strategy from the setAi.

3.3.3if ((Ai ∩ S) \ W1 6= ∅)
3.3.3.1 letU = (Ai ∩ S) \ W1

3.3.3.2 The player-1 selectorγi+1 is defined as follows: fors ∈ S, let

γi+1(s) =






γi(s) if s 6∈ U ;

ξ1(s) if s ∈ U, ξ1(s) ∈ OptSel(vi, s),

π1(s) = (s,A,B), B = OptSelCount(s, v, ξ1).

3.4. Computevi+1 = 〈〈1〉〉
γi+1

val
(Safe(F )).

3.5. Leti = i + 1.
} until I = ∅ and(Ai−1 ∩ S) \ W1 = ∅.
4. return γi.

The algorithm starts with the random selectorγ0 = ξ
unif
1 that plays at all states all actions uniformly at ran-

dom. At iterationi+1, the algorithm considers the memoryless player-1 strategyγi and computes the value
〈〈1〉〉

γi
val

(Safe(F )). Observe that sinceγi is a memoryless strategy, the computation of〈〈1〉〉
γi
val

(Safe(F )) in-

volves solving the 2-MDPGγi . The valuation〈〈1〉〉γi
val

(Safe(F )) is namedvi. For all statess such that
Pre1(vi)(s) > vi(s), the memoryless strategy ats is modified to a selector that is value-optimal forvi.
The algorithm then proceeds to the next iteration. IfPre1(vi) = vi, then the algorithm constructs the game
(Gvi , F ) = TB(G, vi, F ), and computesAi as the set of almost-sure winning states inGvi for the objective
Safe(F ). Let U = (Ai ∩ S) \ W1. If U is non-empty, then a selectorγi+1 is obtained atU from an pure
memoryless optimal strategy (i.e., an almost-sure winningstrategy) inGvi , and the algorithm proceeds to
iterationi + 1. If Pre1(vi) = vi andU is empty, then the algorithm stops and returns the memoryless strat-
egyγi for player 1. Unlike strategy improvement algorithms for turn-based games (see [6] for a survey),
Algorithm 2 is not guaranteed to terminate, because the value of a safety game may not be rational.
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Lemma 11 Letγi andγi+1 be the player-1 selectors obtained at iterationsi andi + 1 of Algorithm 2. Let

I = {s ∈ S \ (W1 ∪ T ) | Pre1(vi)(s) > vi(s)}. Letvi = 〈〈1〉〉
γi
val

(Safe(F )) andvi+1 = 〈〈1〉〉
γi+1

val
(Safe(F )).

Thenvi+1(s) ≥ Pre1(vi)(s) for all statess ∈ S; and thereforevi+1(s) ≥ vi(s) for all statess ∈ S, and
vi+1(s) > vi(s) for all statess ∈ I.

Proof. The proof is essentially similar to the proof of Lemma 8, and we present the details for completeness.
Consider the valuationsvi andvi+1 obtained at iterationsi andi+1, respectively, and letwi be the valuation
defined bywi(s) = 1 − vi(s) for all statess ∈ S. The counter-optimal strategy for player 2 to minimize
vi+1 is obtained by maximizing the probability to reachT . Let

ŵi(s) =

{
wi(s) if s ∈ S \ I;

1 − Pre1(vi)(s) < wi(s) if s ∈ I.

In other words,ŵi = 1 − Pre1(vi), and we also havêwi ≤ wi. We now show that̂wi is a feasible
solution to the linear program for MDPs with the objective Reach(T ), as described in Section 3. Since
vi = 〈〈1〉〉

γi
val

(Safe(F )), it follows that for all statess ∈ S and all movesa2 ∈ Γ2(s), we have

wi(s) ≥
∑

t∈S

wi(t) · δγi(s, a2).

For all statess ∈ S \ I, we haveγi(s) = γi+1(s) andŵi(s) = wi(s), and sincêwi ≤ wi, it follows that for
all statess ∈ S \ I and all movesa2 ∈ Γ2(s), we have

ŵi(s) = wi(s) ≥
∑

t∈S

ŵi(t) · δγi+1(s, a2) ( for s ∈ S \ I).

Since fors ∈ I the selectorγi+1(s) is obtained as an optimal selector forPre1(vi)(s), it follows that
for all statess ∈ I and all movesa2 ∈ Γ2(s), we have

Preγi+1,a2(vi)(s) ≥ Pre1(vi)(s);

in other words,1 − Pre1(vi)(s) ≥ 1 − Preγi+1,a2(vi)(s). Hence for all statess ∈ I and all moves
a2 ∈ Γ2(s), we have

ŵi(s) ≥
∑

t∈S

wi(t) · δγi+1(s, a2).

Sinceŵi ≤ wi, for all statess ∈ I and all movesa2 ∈ Γ2(s), we have

ŵi(s) ≥
∑

t∈S

ŵi(t) · δγi+1(s, a2) ( for s ∈ I).

Hence it follows thatŵi is a feasible solution to the linear program for MDPs with reachability objectives.
Since the reachability valuation for player 2 for Reach(T ) is the least solution (observe that the objective
function of the linear program is a minimizing function), itfollows thatvi+1 ≥ 1 − ŵi = Pre1(vi). Thus
we obtainvi+1(s) ≥ vi(s) for all statess ∈ S, andvi+1(s) > vi(s) for all statess ∈ I.

Recall that by Example 2 it follows that improvement by only step 3.2 is not sufficient to guarantee
convergence to optimal values. We now present a lemma about the turn-based reduction, and then show that
step 3.3 also leads to an improvement. Finally, in Theorem 7 we show that if improvements by step 3.2 and
step 3.3 are not possible, then the optimal value and an optimal strategy is obtained.
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Lemma 12 Let G be a concurrent game with a setF of safe states. Letv be a valuation and consider
(Gv, F ) = TB(G, v, F ). Let A be the set of almost-sure winning states inGv for the objective Safe(F ),
and let π1 be a pure memoryless almost-sure winning strategy fromA in Gv. Consider a memoryless
strategyπ1 in G for states inA ∩ S as follows: ifπ1(s) = (s,A,B), thenπ1(s) ∈ OptSel(v, s) such
that Supp(π1(s)) = A and OptSelCount(v, s, π1(s)) = B. Consider a pure memoryless strategyπ2 for
player 2. If for all statess ∈ A ∩ S, we haveπ2(s) ∈ OptSelCount(v, s, π1(s)), then for alls ∈ A ∩ S, we
havePrπ1,π2

s (Safe(F )) = 1.

Proof. We analyze the Markov chain arising after the player fixes thememoryless strategiesπ1 and
π2. Given the strategyπ2 consider the strategyπ2 as follows: if π1(s) = (s,A,B) andπ2(s) = b ∈
OptSelCount(v, s, π1(s)), then at state(s,A,B) choose the successor(s,A, b). Sinceπ1 is an almost-sure
winning strategy for Safe(F ), it follows that in the Markov chain obtained by fixingπ1 andπ2 in Gv, all
closed connected recurrent set of states that intersect with A are contained inA, and from all states ofA
the closed connected recurrent set of states withinA are reached with probability 1. It follows that in the
Markov chain obtained from fixingπ1 andπ2 in G all closed connected recurrent set of states that intersect
with A ∩ S are contained inA ∩ S, and from all states ofA ∩ S the closed connected recurrent set of states
within A ∩ S are reached with probability 1. The desired result follows.

Lemma 13 Letγi andγi+1 be the player-1 selectors obtained at iterationsi andi + 1 of Algorithm 2. Let
I = {s ∈ S \ (W1 ∪ T ) | Pre1(vi)(s) > vi(s)} = ∅, and(Ai ∩ S) \ W1 6= ∅. Letvi = 〈〈1〉〉

γi
val

(Safe(F ))

andvi+1 = 〈〈1〉〉
γi+1

val
(Safe(F )). Thenvi+1(s) ≥ vi(s) for all statess ∈ S, andvi+1(s) > vi(s) for some

states ∈ (Ai ∩ S) \ W1.

Proof. We first show thatvi+1 ≥ vi. Let U = (Ai ∩ S) \ W1. Let wi(s) = 1 − vi(s) for all statess ∈ S.
Sincevi = 〈〈1〉〉

γi
val

(Safe(F )), it follows that for all statess ∈ S and all movesa2 ∈ Γ2(s), we have

wi(s) ≥
∑

t∈S

wi(t) · δγi(s, a2).

The selectorξ1(s) chosen forγi+1 at s ∈ U satisfies thatξ1(s) ∈ OptSel(vi, s). It follows that for all states
s ∈ S and all movesa2 ∈ Γ2(s), we have

wi(s) ≥
∑

t∈S

wi(t) · δγi+1(s, a2).

It follows that the maximal probability with which player 2 can reachT against the strategyγi+1 is at most
wi. It follows thatvi(s) ≤ vi+1(s).

We now argue that for some states ∈ U we havevi+1(s) > vi(s). Given the strategyγi+1, consider a
pure memoryless counter-optimal strategyπ2 for player 2 to reachT . Since the selectorsγi+1(s) at states
s ∈ U are obtained from the almost-sure strategyπ in the turn-based gameGvi to satisfy Safe(F ), it follows
from Lemma 12 that if for every states ∈ U , the actionπ2(s) ∈ OptSelCount(vi, s, γi+1), then from all
statess ∈ U , the game stays safe inF with probability 1. Sinceγi+1 is a given strategy for player 1, andπ2

is counter-optimal againstγi+1, this would imply thatU ⊆ {s ∈ S | 〈〈1〉〉val(Safe(F )) = 1}. This would
contradict thatW1 = {s ∈ S | 〈〈1〉〉val(Safe(F )) = 1} andU ∩ W1 = ∅. It follows that for some state
s∗ ∈ U we haveπ2(s

∗) 6∈ OptSelCount(vi, s
∗, γi+1), and sinceγi+1(s

∗) ∈ OptSel(vi, s
∗) we have

vi(s
∗) <

∑

t∈S

vi(t) · δγi+1(s
∗, π2(s

∗));
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in other words, we have
wi(s

∗) >
∑

t∈S

wi(t) · δγi+1(s
∗, π2(s

∗)).

Define a valuationz as follows: z(s) = wi(s) for s 6= s∗, andz(s∗) =
∑

t∈S wi(t) · δγi+1(s
∗, π2(s

∗)).
Given the strategyγi+1 and the counter-optimal strategyπ2, the valuationz satisfies the inequalities of the
linear-program for reachability toT . It follows that the probability to reachT givenγi+1 is at mostz. Thus
we obtain thatvi+1(s) ≥ vi(s) for all s ∈ S, andvi+1(s

∗) > vi(s
∗). This concludes the proof.

We obtain the following theorem from Lemma 11 and Lemma 13 that shows that the sequences of values
we obtain is monotonically non-decreasing.

Theorem 6 (MONOTONICITY OF VALUES). For i ≥ 0, let γi andγi+1 be the player-1 selectors obtained
at iterationsi andi + 1 of Algorithm 2. Ifγi 6= γi+1, then (a) for alls ∈ S we have〈〈1〉〉γi

val
(Safe(F ))(s) ≤

〈〈1〉〉
γi+1

val
(Safe(F ))(s); and (b) for somes∗ ∈ S we have〈〈1〉〉γi

val
(Safe(F ))(s∗) < 〈〈1〉〉

γi+1

val
(Safe(F ))(s∗).

Theorem 7 (OPTIMALITY ON TERMINATION ). Let vi be the valuation at iterationi of Algorithm 2 such
thatvi = 〈〈1〉〉

γi
val

(Safe(F )). If I = {s ∈ S \ (W1 ∪T ) | Pre1(vi)(s) > vi(s)} = ∅, and(Ai ∩S) \W1 = ∅,
thenγi is an optimal strategy andvi = 〈〈1〉〉val(Safe(F )).

Proof. We show that for all memoryless strategiesπ1 for player 1 we have〈〈1〉〉π1
val

(Safe(F )) ≤ vi. Since
memoryless optimal strategies exist for concurrent games with safety objectives (Theorem 5) the desired
result follows.

Let π2 be a pure memoryless optimal strategy for player 2 inGvi for the objective complementary to
Safe(F ), where(Gvi , Safe(F )) = TB(G, vi, F ). Consider a memoryless strategyπ1 for player 1, and we
define a pure memoryless strategyπ2 for player 2 as follows.

1. If π1(s) 6∈ OptSel(vi, s), thenπ2(s) = b ∈ Γ2(s), such thatPreπ1(s),b(vi)(s) < vi(s); (such ab
exists sinceπ1(s) 6∈ OptSel(vi, s)).

2. If π1(s) ∈ OptSel(vi, s), then let A = Supp(π1(s)), and considerB such that B =
OptSelCount(vi, s, π1(s)). Then we haveπ2(s) = b, such thatπ2((s,A,B)) = (s,A, b).

Observe that by construction ofπ2, for all s ∈ S \ (W1 ∪ T ), we havePreπ1(s),π2(s)(vi)(s) ≤ vi(s). We
first show that in the Markov chain obtained by fixingπ1 andπ2 in G, there is no closed connected recurrent
set of statesC such thatC ⊆ S \ (W1 ∪ T ). Assume towards contradiction thatC is a closed connected
recurrent set of states inS \ (W1 ∪ T ). The following case analysis achieves the contradiction.

1. Suppose for every states ∈ C we haveπ1(s) ∈ OptSel(vi, s). Then consider the strategy
π1 in Gvi such that for a states ∈ C we haveπ1(s) = (s,A,B), where π1(s) = A, and
B = OptSelCount(vi, s, π1(s)). SinceC is closed connected recurrent states, it follows by con-
struction that for all statess ∈ C in the gameGvi we havePrπ1,π2

s (Safe(C)) = 1, where
C = C ∪ {(s,A,B) | s ∈ C} ∪ {(s,A, b) | s ∈ C}. It follows that for all s ∈ C in Gvi we
havePrπ1,π2

s (Safe(F )) = 1. Sinceπ2 is an optimal strategy, it follows thatC ⊆ (Ai ∩ S) \W1. This
contradicts that(Ai ∩ S) \ W1 = ∅.

2. Otherwise for some states∗ ∈ C we haveπ1(s
∗) 6∈ OptSel(vi, s

∗). Letr = min{q | Uq(vi)∩C 6= ∅},
i.e.,r is the least value-class with non-empty intersection withC. Hence it follows that for allq < r,
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we haveUq(vi)∩C = ∅. Observe that since for alls ∈ C we havePreπ1(s),π2(s)(vi)(s) ≤ vi(s), it fol-
lows that for alls ∈ Ur(vi) either (a)Dest(s, π1(s), π2(s)) ⊆ Ur(vi); or (b)Dest(s, π1(s), π2(s)) ∩
Uq(vi) 6= ∅, for someq < r. SinceUr(vi) is the least value-class with non-empty intersection withC,
it follows that for alls ∈ Ur(vi) we haveDest(s, π1(s), π2(s)) ⊆ Ur(vi). It follows thatC ⊆ Ur(vi).
Consider the states∗ ∈ C such thatπ1(s

∗) 6∈ OptSel(vi, s). By the construction ofπ2(s), we have
Preπ1(s∗),π2(s∗)(vi)(s

∗) < vi(s
∗). Hence we must haveDest(s∗, π1(s

∗), π2(s
∗)) ∩ Uq(vi) 6= ∅, for

someq < r. Thus we have a contradiction.

It follows from above that there is no closed connected recurrent set of states inS \ (W1 ∪ T ), and hence
with probability 1 the game reachesW1 ∪ T from all states inS \ (W1 ∪ T ). Hence the probability to
satisfy Safe(F ) is equal to the probability to reachW1. Since for all statess ∈ S \ (W1 ∪ T ) we have
Preπ1(s),π2(s)(vi)(s) ≤ vi(s), it follows that given the strategiesπ1 andπ2, the valuationvi satisfies all the
inequalities for linear program to reachW1. It follows that the probability to reachW1 from s is atmost
vi(s). It follows that for alls ∈ S \ (W1 ∪ T ) we have〈〈1〉〉π1

val
(Safe(F ))(s) ≤ vi(s). The result follows.

k-uniform selectors and strategies.For concurrent games, we will use the result that forε > 0, there
is a k-uniform memorylessstrategy that achieves the value of a safety objective within ε. We first define
k-uniform selectors andk-uniform memoryless strategies. For a positive integerk > 0, a selectorξ for
player 1 isk-uniform if for all s ∈ S \ (T ∪ W1) and alla ∈ Supp(π1(s)) there existsi, j ∈ N such that
0 ≤ i ≤ j ≤ k andξ(s)(a) = i

j
, i.e., the moves in the support are played with probability that are multiples

of 1
ℓ

with ℓ ≤ k. We denote byΛk the set ofk-uniform selectors. A memoryless strategy isk-uniform if it

is obtained from ak-uniform selector. We denote byΠM,k
1 the set ofk-uniform memoryless strategies for

player 1. We first present a technical lemma (Lemma 14) that will be used in the key lemma (Lemma 15) to
prove the convergence result.

Lemma 14 Let a1, a2, . . . , am bem real numbers such that (1) for all1 ≤ i ≤ m, we haveai > 0; and
(2)

∑m
i=1 ai = 1. Letc = min1≤i≤m ai. For η > 0, there existsk ≥ m

c·η andm real numbersb1, b2, . . . , bm

such that (1) for all1 ≤ i ≤ m, we havebi is a multiple of1
k

andbi > 0; (2)
∑m

i=1 bi = 1; and (3) for all
1 ≤ i ≤ m, we haveai

bi
≤ 1 + η and bi

ai
≤ 1 + η.

Proof. Let ℓ = m
η·c . For1 ≤ i ≤ m, definebi such thatbi is a multiple of1

ℓ
andai ≤ bi ≤ ai + 1

ℓ
(basically

definebi as the least multiple of1
ℓ

that is at least the value ofai). For1 ≤ i ≤ m, let bi = bi
Pm

i=1 bi
; i.e.,bi is

defined frombi with normalization. Clearly,
∑m

i=1 bi = 1, and for all1 ≤ i ≤ m, we havebi > 0 andbi can
be expressed as a multiple of1

k
, for somek ≥ m

η·c . We have the following inequalities: for all1 ≤ i ≤ m,
we have

bi ≤ ai +
1

ℓ
; bi ≥

ai

1 + m
ℓ

.

The first inequality follows sincebi ≤ ai + 1
ℓ

and
∑m

i=1 bi ≥
∑m

i=1 ai = 1. The second inequality follows
sincebi ≥ ai and

∑m
i=1 bi ≤

∑m
i=1(ai + 1

ℓ
) =

∑m
i=1 ai + m

ℓ
= 1 + m

ℓ
. Hence for all1 ≤ i ≤ m, we have

bi

ai
≤ 1 +

1

ℓ · ai
≤ 1 +

1

ℓ · c
≤ 1 + η;

ai

bi
≤ 1 +

m

ℓ
≤ 1 + η · c ≤ 1 + η.

The desired result follows.
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Lemma 15 For all concurrent game structuresG, for all safety objectives Safe(F ), for F ⊆ S, for all
ε > 0, there existk > 0 andk-uniform selectorsξ such thatξ is anε-optimal strategy.

Proof. Our proof uses a result of Solan [27] and the existence of memoryless optimal strategies for concur-
rent safety games (Theorem 5). We first present the result of Solan specialized for MDPs with reachability
objectives.

The result of [27].Let G = (S,M,Γ2, δ) andG′ = (S,M,Γ2, δ
′) be two player-2 MDPs defined on the

same state spaceS, with the same move setM and the same move assignment functionΓ2, but with two
different transition functionsδ andδ′, respectively. Let

ρ(G,G′) = max
s,t∈S,a2∈Γ2(s)

{
δ(s, a2)(t)

δ′(s, a2)(t)
,
δ′(s, a2)(t)

δ(s, a2)(t)

}

− 1;

where by conventionx/0 = +∞ for x > 0, and0/0 = 1 (compare with equation (9) of [27]:ρ(G,G′)
is obtained as a specialization of (9) of [27] for MDPs). LetT ⊆ S. For s ∈ S, let v(s) andv′(s) denote
the value for player 2 for the reachability objective Reach(T ) from s in G andG′, respectively. Then from
Theorem 6 of [27] (also see equation (10) of [27]) it follows that

−4 · |S| · ρ(G,G′) ≤ v(s) − v′(s) ≤
4 · |S| · ρ(G,G′)

(1 − 2 · |S| · ρ(G,G′))+
; (2)

wherex+ = max{x, 0}. We first explain how specialization of Theorem 6 of [27] yields (2). Theorem 6
of [27] was proved for value functions of discounted games with costs, even when the discount factor
λ = 0. Since the value functions of limit-average games are obtained as the limit of the value functions
of discounted games as the discount factor goes to0 [23], the result of Theorem 6 of [27] also holds for
concurrent limit-average games (this was the main result of[27]). Since reachability objectives are special
case of limit-average objectives, Theorem 6 of [27] also holds for reachability objectives. In the special
case of reachability objectives with the same target set, the different cost functions used in equation (10)
of [27] coincide, and the maximum absolute value of the cost is 1. Thus we obtain (2) as a specialization of
Theorem 6 of [27].

We now use the existence of memoryless optimal strategies inconcurrent safety games, and (2) to obtain
our desired result. Consider a concurrent safety gameG = (S,M,Γ1,Γ2, δ) with safe setF for player 1.
Let π1 be a memoryless optimal strategy for the objective Safe(F ). Let c = mins∈S,a1∈Γ1(s){π1(s)(a1) |
π1(s)(a1) > 0} be the minimum positive transition probability given byπ1. Given ε > 0, let η =
min{ 1

4·|S| ,
ε

8·|S|}. We define a memoryless strategyπ′
1 satisfying the following conditions: fors ∈ S and

a1 ∈ Γ1(s) we have

1. if π1(s)(a1) = 0, thenπ′
1(s)(a1) = 0;

2. if π1(s)(a1) > 0, then following conditions are satisfied:

(a) π′
1(s)(a1) > 0;

(b) π1(s)(a1)
π′
1(s)(a1) ≤ 1 + η;

(c) π′
1(s)(a1)

π1(s)(a1) ≤ 1 + η; and

(d) π′
1(s)(a1) is a multiple of1

k
, for an integerk > 0 (such ak exists fork > |M |

c·η ).
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For k > |M |
c·η , such a strategyπ′

1 exists (follows from the construction of Lemma 14). LetG1 andG′
1 be

the two player-2 MDPs obtained fromG by fixing the memoryless strategiesπ1 andπ′
1, respectively. Then

by definition ofπ′
1 we haveρ(G1, G

′
1) ≤ η. Let T = S \ F . For s ∈ S, let the value of player 2 for the

objective Reach(T ) in G1 andG′
1 bev(s) andv′(s), respectively. By (2) we have

−4 · |S| · η ≤ v(s) − v′(s) ≤
4 · |S| · η

(1 − 2 · |S| · η)+
;

Observe that by choice ofη we have (a)4 · |S| · η ≤ ε
2·|S| and (b)2 · |S| · η ≤ 1

2 . Hence we have

−ε ≤ v(s) − v′(s) ≤ ε. Sinceπ1 is a memoryless optimal strategy, it follows thatπ′
1 is a k-uniform

memorylessε-optimal strategy.

Turn-based stochastic games convergence.We first observe that since pure memoryless optimal strategies
exist for turn-based stochastic games with safety objectives (the results follows from results of [5, 22]), for
turn-based stochastic games it suffices to iterate over purememoryless selectors. Since the number of pure
memoryless strategies is finite, it follows for turn-based stochastic games Algorithm 2 always terminates
and yields an optimal strategy. In other words, we can restrict the selectors used in Algorithm 2 in Steps
3.2.2 and 3.3.2.2 to be pure memoryless selectors. Then the local improvement steps of Algorithm 2 with
pure memoryless selectors terminates, and by Theorem 7 yield a globally optimal pure memoryless strategy
(which is an optimal strategy). We will use the argument for turn-based stochastic games to a variant of
Algorithm 2 restricted tok-uniform selectors.

Strategy improvement with k-uniform selectors. We now present the variant of Algorithm 2 where we
restrict the algorithm tok-uniform selectors. The notations are essentially the sameas used in Algorithm 2,

but restricted tok-uniform selectors and presented as Algorithm 3. (for example, G
k
vi

is similar toGvi

but restricted tok-uniform selectors, and similarlyOptSel(vi, s, k) are the optimalk-uniform selectors, see
Section 8 for complete details). We first argue that if we restrict Algorithm 2 such that every iteration yields
a k-uniform selector, fork > 0, then the algorithm terminates, i.e., Algorithm 3 terminates. The basic
argument that if Algorithm 2 is restricted tok-uniform selectors for player 1, fork > 0, then the algorithm
terminates, follows from the facts that (i) the sequence of strategies obtained are monotonic (Theorem 6)
(i.e., the algorithm does not cycle amongk-uniform selectors); and (ii) the number ofk-uniform selectors
for a givenk is finite. Givenk > 0, let us denote byzk

i the valuation of Algorithm 3 at iterationi.

Lemma 16 For all k > 0, there existsi ≥ 0 such thatzk
i = zk

i+1.

Convergence to optimalk-uniform memoryless strategies.We now argue that the valuation Algorithm 3
converges to is optimal fork-uniform selectors. The argument is as follows: if we restrict player 1 to
chose betweenk-uniform selectors, then a concurrent game structuresG can be converted to a turn-based
stochastic game structure, where player 1 first chooses ak-uniform selector, then player 2 chooses an action,
and then the transition is determined by the chosenk-uniform selector of player 1, the action of player 2
and the transition functionδ of the game structureG. Then by termination of turn-based stochastic games
it follows that the algorithm will terminate. It follows from Theorem 7 that upon termination we obtain
optimal strategy for the turn-based stochastic game. In other words, as discussed above for turn-based
stochastic game, the local iteration converges to a globally optimal strategy. Hence the valuation obtained
upon termination is the maximal value obtained over allk-uniform memoryless strategies. This gives us the
following lemma (also see appendix for a detailed proof).
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Lemma 17 For all k > 0, let i ≥ 0 be such thatzk
i = zk

i+1. Then we havezk
i =

max
π1∈ΠM,k

1
infπ2∈Π2 Prπ1,π2(Safe(F )).

Lemma 18 For all concurrent game structuresG, for all safety objectives Safe(F ), for F ⊆ S, for all
ε > 0, there existk > 0 andi ≥ 0 such that for alls ∈ S we havezk

i (s) ≥ 〈〈1〉〉val(Safe(F ))(s) − ε.

Proof. By Lemma 15, for allε > 0, there existsk > 0 such that there is ak-uniform memorylessε-
optimal strategy for player 1. By Lemma 16, for allk > 0, there exists ani ≥ 0 such thatzk

i = zk
i+1,

and by Lemma 17 it follows that the valuationzi
k represents the maximal value obtained byk-uniform

memoryless strategies. Hence it follows that there existsk > 0 andi ≥ 0 such that for alls ∈ S we have
zk
i (s) ≥ 〈〈1〉〉val(Safe(F ))(s) − ε. The desired result follows.

We now present the convergent strategy improvement algorithm for safety objectives as Algorithm 4 that
iterates overk-uniform strategy values. The algorithm iteratively callsAlgorithm 3 with largerk, unless the
termination condition of Algorithm 2 is satisfied.

Theorem 8 (MONOTONICITY, OPTIMALITY ON TERMINATION AND CONVERGENCE). Let vi be the
valuation obtained at iterationi of Algorithm 4. Then the following assertions hold.

1. For all i ≥ 0 we havevi+1 ≥ vi.

2. If the algorithm terminates, thenvi = 〈〈1〉〉val(Safe(F )).

3. For all ε > 0, there existsi such that for alls we havevi(s) ≥ 〈〈1〉〉val(Safe(F ))(s) − ε.

4. limi→∞ vi = 〈〈1〉〉val(Safe(F )).

Proof. We prove the results as follows.

1. Letvi is the valuation of Algorithm 4 at iterationi. Fork > 0, we considerzk
i to denote the valuation

of Algorithm 3 with the restriction ofk-uniform selector at iterationi, and letzk
i∗(k) denote the least

fixpoint (i.e., i∗(k) is the least value ofi such thatzk
i = zk

i+1). Sincek-uniform selectors are a
subset ofk + 1-uniform selectors, it follows that the maximal value obtained over strategies that uses
k + 1-uniform selectors is at least the maximal value obtained over k-uniform selectors. Sincezk

i∗(k)
denote the maximal value obtained overk-uniform selectors (follows from Lemma 17), we have that
zk
i∗(k) ≤ zk+1

i∗(k+1) (note that we do not require thati∗(k) ≤ i∗(k + 1), i.e., the algorithm withk + 1-

uniform selectors may require more iterations to terminate). We havevk = zk
i∗(k) and hence the first

result follows.

2. The result follows from Theorem 7.

3. From Lemma 18 it follows that for allε > 0, there exists ak > 0 such that for alls we have
zk
i∗(k)(s) ≥ 〈〈1〉〉val(Safe(F ))(s) − ε. Hencevk ≥ 〈〈1〉〉val(Safe(F ))(s) − ε. Hence we have that for

all ε > 0, there existsk ≥ 0, such that for alls ∈ S we havevk(s) ≥ 〈〈1〉〉val(Safe(F ))(s) − ε.

4. By part (1) for alli ≥ 0 we havevi+1 ≥ vi. By part (3), for allε > 0, there existsi ≥ 0 such that for
all s ∈ S we havevi(s) ≥ 〈〈1〉〉val(Safe(F ))(s) − ε. Hence it follows that for allε > 0, there exists
i ≥ 0 such that for allj ≥ i and for alls ∈ S we havevj(s) ≥ 〈〈1〉〉val(Safe(F ))(s) − ε. It follows
that limi→∞ vi = 〈〈1〉〉val(Safe(F )).
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This gives us the following result.

Complexity. Algorithm 2 may not terminate in general; we briefly describethe complexity of every itera-
tion. Given a valuationvi, the computation ofPre1(vi) involves the solution of matrix games with rewards
vi; this can be done in polynomial time using linear programming. Givenvi, if Pre1(vi) = vi, the sets
OptSel(vi, s) andOptSelCount(vi, s) can be computed by enumerating the subsets of available actions ats
and then using linear-programming. For example, to check whether(A,B) ∈ OptSelCount(vi, s) it suffices
to check both of these facts:

1. (A is the support of an optimal selectorξ1). there is an selectorξ1 such that (i)ξ1 is optimal (i.e. for
all actionsb ∈ Γ2(s) we havePreξ1,b(vi)(s) ≥ vi(s)); (ii) for all a ∈ A we haveξ1(a) > 0, and for
all a 6∈ A we haveξ1(a) = 0;

2. (B is the set of counter-optimal actions againstξ1). for all b ∈ B we havePreξ1,b(vi)(s) = vi(s),
and for allb 6∈ B we havePreξ1,b(vi)(s) > vi(s).

All the above checks can be performed by checking feasibility of sets of linear equalities and inequalities.
Hence,TB(G, vi, F ) can be computed in time polynomial in size ofG andvi and exponential in the number
of moves. We observe that the construction is exponential only in the number of moves at a state, and
not in the number of states. The number of moves at a state is typically much smaller than the size of the
state space. We also observe that the improvement step 3.3.2requires the computation of the set of almost-
sure winning states of a turn-based stochastic safety game:this can be done both via linear-time discrete
graph-theoretic algorithms [4], and via symbolic algorithms [10]. Both of these methods are more efficient
than the basic step 3.4 of the improvement algorithm, where the quantitative values of an MDP must be
computed. Thus, the improvement step 3.3 of Algorithm 2 is inpractice should not be inefficient, compared
with the standard improvement steps 3.2 and 3.4. We now discuss the above steps for Algorithm 3. The
argument is similar as above, but in case ofk-uniform selectors, we need to ensure that the witness selectors
arek-uniform which can be achieved with integer constraints. Inother words, for Algorithm 3 the above
checks are performed by checking feasibility of sets of integer linear equalities and inequalities (which can
be achieved in exponential time). Again, the construction is exponential in the number of moves at a state,
and not in the number of states. Hence we enumerate over sets of moves at a state (exponential in number
of moves), and then need to solve integer linear constraints(the size of the integer linear constraints is
polynomial in the number of moves, and is achieved in time exponential in the number of moves). Thus
again the improvement step 3.3 of Algorithm 3 is polynomial in the size of the game, and exponential in the
number of moves.

7.2 Termination for Approximation

In this subsection we present termination criteria for strategy improvement algorithms for concurrent games
for ε-approximation.

Termination for concurrent games. We apply the reachability strategy improvement algorithm (Algo-
rithm 1) for player 2, for a reachability objective Reach(T ), we obtain a sequence of valuations(ui)i≥0 such
that (a)ui+1 ≥ ui; (b) if ui+1 = ui, thenui = 〈〈2〉〉val(Reach(T )); and (c)limi→∞ ui = 〈〈2〉〉val(Reach(T )).
Given a concurrent gameG with F ⊆ S andT = S \ F , we apply Algorithm 1 to obtain the sequence
of valuation(ui)i≥0 as above, and we apply Algorithm 4 to obtain a sequence of valuation (vi)i≥0. The
termination criteria are as follows:
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1. if for some i we haveui+1 = ui, then we haveui = 〈〈2〉〉val(Reach(T )), and 1 − ui =
〈〈1〉〉val(Safe(F )), and we obtain the values of the game;

2. if for somei we havevi+1 = vi, then we have1−vi = 〈〈2〉〉val(Reach(T )), andvi = 〈〈1〉〉val(Safe(F )),
and we obtain the values of the game; and

3. for ε > 0, if for some i ≥ 0, we haveui + vi ≥ 1 − ε, then for alls ∈ S we havevi(s) ≥
〈〈1〉〉val(Safe(F ))(s) − ε andui(s) ≥ 〈〈2〉〉val(Reach(T ))(s) − ε (i.e., the algorithm can stop forε-
approximation).

Observe that since(ui)i≥0 and (vi)i≥0 are both monotonically non-decreasing and〈〈1〉〉val(Safe(F )) +
〈〈2〉〉val(Reach(T )) = 1, it follows that if ui + vi ≥ 1 − ε, then forallj ≥ i we haveui ≥ uj − ε and
vi ≥ vj − ε. This establishes thatui ≥ 〈〈1〉〉val(Safe(F )) − ε andvi ≥ 〈〈2〉〉val(Reach(T )) − ε; and the
correctness of the stopping criteria (3) forε-approximation follows. We also note that instead of applying
the reachability strategy improvement algorithm, a value-iteration algorithm can be applied for reachability
games to obtain a sequence of valuation with properties similar to (ui)i≥0 and the above termination criteria
can be applied.

Theorem 9 Let G be a concurrent game structure with a safety objective Safe(F ). Algorithm 4 and
Algorithm 1 for player 2 for the reachability objective Reach(S \ F ) yield two sequences of monotonic
valuations(vi)i≥0 and (ui)i≥0, respectively, such that (a) for alli ≥ 0, we havevi ≤ 〈〈1〉〉val(Safe(F )) ≤
1 − ui; and (b) limi→∞ vi = limi→∞ 1 − ui = 〈〈1〉〉val(Safe(F )).

Bounds for approximation. We now discuss the bounds for approximation for concurrent games with
reachability objectives, which follows from the results of[18, 17]. It follows from the results of [18] that
for all ε > 0, there existk-uniform memoryless optimal strategies for concurrent reachability and safety
gamesG, wherek is bounded by(1

ε
)2

O(|G|)
. It follows that for all ε > 0, if we consider our strategy

improvement algorithm (restricted tok-uniform selectors) for reachability games, then upon termination
the valuation obtained is anε-approximation of the value function of the game, wherek is bounded by
(1

ε
)2

O(|G|)
. Using the restriction tok-uniform memoryless strategies, along with the reduction of concurrent

games to turn-based stochastic game fork-uniform memoryless strategies and the termination bound for
turn-based stochastic games we obtain a double exponentialbound on the number of iterations required for
termination (note that ifk = (1

ε
)2

O(|G|)
, then the total number ofk-uniform memoryless strategies iskO(|G|),

which is double exponential) (also see [17] for details). Moreover, the recent result of [17] shows that the
double exponential bound is near optimal for the strategy improvment algorithm for concurrent games with
reachability objectives.

Approximation of strategies. The previous method to solve concurrent reachability and safety games was
the value-iteration algorithm. The witness strategy produced by the value-iteration algorithm for concurrent
reachability games is not memoryless; and for concurrent safety games since the value-iteration algorithm
converges from above it does not provide any witness strategies. The only previous algorithm to approximate
memorylessε-optimal strategies, forε > 0, for concurrent reachability and safety games is the naive algo-
rithm that exhaustively searches over the set of allk-uniform memoryless strategies (such that thek-uniform
memoryless strategies suffices forε-optimality andk-depends inε). Our strategy improvement algorithms
for concurrent reachability and safety games are the first strategy search based approach to approximate
ε-optimal strategies.
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Algorithm 3 k-Uniform Restricted Safety Strategy-Improvement Algorithm

Input: a concurrent game structureG with safe setF , and numberk.
Output: a strategyγ for player 1.
0. ComputeW1 = {s ∈ S | 〈〈1〉〉val(Safe(F ))(s) = 1}; andk = max{k, |M |}.
1. Letγ0 = ξunif

1 andi = 0.
2. Computev0 = 〈〈1〉〉

γ0
val

(Safe(F )).
3. do {

3.1. LetIk = {s ∈ S \ (W1 ∪ T ) | supξ′1∈Λk(s) Pre1:ξ′1
(vi)(s) > vi(s)}.

3.2 if Ik 6= ∅, then
3.2.1 Letξ1 be ak-uniform player-1 selector such that for all statess ∈ I,

we havePre1:ξ1(vi)(s) = supξ′1∈Λk(s) Pre1:ξ′1
(vi)(s) > vi(s).

3.2.2 The player-1 selectorγi+1 is defined as follows: for each states ∈ S, let

γi+1(s) =

{
γi(s) if s 6∈ Ik;

ξ1(s) if s ∈ Ik.

3.3else

3.3.1 let(G
k
vi

, F ) = TB(G, vi, F, k)

3.3.2 letA
k
i be the set of almost-sure winning states inG

k
vi

for Safe(F ) and

π1 be a pure memoryless almost-sure winning strategy from the setA
k
i .

3.3.3if ((A
k
i ∩ S) \ W1 6= ∅)

3.3.3.1 letU = (A
k
i ∩ S) \ W1

3.3.3.2 The player-1 selectorγi+1 is defined as follows: fors ∈ S, let

γi+1(s) =






γi(s) if s 6∈ U ;

ξ1(s) if s ∈ U, ξ1(s) ∈ OptSel(vi, s, k),

π1(s) = (s,A,B), B = OptSelCount(s, v, ξ1, k).

3.4. Computevi+1 = 〈〈1〉〉
γi+1

val
(Safe(F )).

3.5. Leti = i + 1.

} until Ik = ∅ and(A
k
i−1 ∩ S) \ W1 = ∅.

4. return γi.
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Algorithm 4 Convergent Safety Strategy-Improvement Algorithm

Input: a concurrent game structureG with safe setF .
Output: a strategyγ for player 1.
0. k = |M | andi = 0.
1. do {

1.1γi+1 = Algorithm 3(G,F, k)

1.2 Computevi+1 = 〈〈1〉〉
γi+1

val
(Safe(F ))

1.3 LetI = {s ∈ S \ (W1 ∪ T ) | Pre1(vi)(s) > vi(s)}.
1.4 Let(Gvi , F ) = TB(G, vi, F )

1.4.1 letAi be the set of almost-sure winning states inGvi for Safe(F ).
1.5 Leti = i + 1 andk = k + 1.

} until I = ∅ and(Ai−1 ∩ S) \ W1 = ∅.
2. return γi.
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8 Technical Appendix

We now present the details of restriction tok-uniform selectors, and the details of the notations used in
Algorithm 3. The definitions are essentially same as for selectors and optimal selectors, but restricted to
k-uniform selectors.

Optimal k-uniform selectors. Fork > 0, a valuationv and a states, let

Prek
1(v)(s) = sup

ξ′1∈Λk
1 (s)

Pre1:ξ′1
(v)(s).

denote the optimal one-step value amongk-uniform selectors. Fork > 0, given a valuationv and a states,
we define by

OptSel(v, s, k) = {ξ1 ∈ Λk
1(s) | Pre1:ξ1(v)(s) = Prek

1(v)(s)}

the set of optimal selectors amongk-uniform selectors forv at states. For ak-uniform optimal selector
ξ1 ∈ OptSel(v, s, k), we define the set of counter-optimal actions as follows:

CountOpt(v, s, ξ1, k) = {b ∈ Γ2(s) | Preξ1,b(v)(s) = Prek
1(v)(s)}.

Observe that forξ1 ∈ OptSel(v, s, k), for all b ∈ Γ2(s) \ CountOpt(v, s, ξ1, k) we havePreξ1,b(v)(s) >
Prek

1(v)(s). We define the set ofk-uniform optimal selector support and the counter-optimalaction set as
follows:

OptSelCount(v, s, k) = {(A,B) ⊆ Γ1(s) × Γ2(s) | ∃ξ1 ∈ Λk
1(s). ξ1 ∈ OptSel(v, s, k)

∧ Supp(ξ1) = A ∧ CountOpt(v, s, ξ1, k) = B};

i.e., it consists of pairs(A,B) of actions of player 1 and player 2, such that there is ak-uniform optimal
selectorξ1 with supportA, andB is the set of counter-optimal actions toξ1.

Turn-based reduction. Given a concurrent gameG = 〈S,M,Γ1,Γ2, δ〉, a valuationv, and boundk for

k-uniformity we construct a turn-based stochastic gameG
k
v = 〈(S,E), (S1, S2, SR), δ〉 as follows:

1. The set of states is as follows:

S = S ∪ {(s,A,B) | s ∈ S, (A,B) ∈ OptSelCount(v, s, k)}
∪ {(s,A, b) | s ∈ S, (A,B) ∈ OptSelCount(v, s, k), b ∈ B}.

2. The state space partition is as follows:S1 = S; S2 = {(s,A,B) | s ∈ S, (A,B) ∈
OptSelCount(v, s, k)}; andSR = {(s,A, b) | s ∈ S, (A,B) ∈ OptSelCount(v, s, k), b ∈ B}.
In other words,(S1, S2, SR) is a partition of the state space, whereS1 are player 1 states,S2 are
player 2 states, andSR are random or probabilistic states.

3. The set of edges is as follows:

E = {(s, (s,A,B)) | s ∈ S, (A,B) ∈ OptSelCount(v, s, k)}

∪ {((s,A,B), (s,A, b)) | b ∈ B} ∪ {((s,A, b), t) | t ∈
⋃

a∈A

Dest(s, a, b)}.

4. The transition functionδ for all states inSR is uniform over its successors.
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Intuitively, the reduction is as follows. Given the valuation v, states is a player 1 state where player 1 can
select a pair(A,B) (and move to state(s,A,B)) with A ⊆ Γ1(s) andB ⊆ Γ2(s) such that there is ak-
uniform optimal selectorξ1 with support exactlyA and the set of counter-optimal actions toξ1 is the setB.
From a player 2 state(s,A,B), player 2 can choose any actionb from the setB, and move to state(s,A, b).
A state(s,A, b) is a probabilistic state where all the states in

⋃
a∈A Dest(s, a, b) are chosen uniformly at

random. Given a setF ⊆ S we denote byF = F ∪ {(s,A,B) ∈ S | s ∈ F} ∪ {(s,A, b) ∈ S | s ∈ F}.

We refer to the above reduction asTB, i.e.,(G
k
v , F ) = TB(G, v, F, k).

Proof. (of Lemma 17). The proof of the result is essentially identical as the proofof Theorem 7, and we
present the details for completeness. Letvi = zk

i . We show that for allk-uniform memoryless strategiesπ1

for player 1 we have〈〈1〉〉π1
val

(Safe(F )) ≤ vi.

Let π2 be a pure memoryless optimal strategy for player 2 inG
k
vi

for the objective complementary

to Safe(F ), where(G
k
vi

, Safe(F )) = TB(G, vi, F, k). Consider ak-uniform memoryless strategyπ1 for
player 1, and we define a pure memoryless strategyπ2 for player 2 as follows.

1. If π1(s) 6∈ OptSel(vi, s, k), thenπ2(s) = b ∈ Γ2(s), such thatPreπ1(s),b(vi)(s) < vi(s); (such ab
exists sinceπ1(s) 6∈ OptSel(vi, s, k)).

2. If π1(s) ∈ OptSel(vi, s, k), then let A = Supp(π1(s)), and considerB such thatB =
OptSelCount(vi, s, π1(s), k). Then we haveπ2(s) = b, such thatπ2((s,A,B)) = (s,A, b).

Observe that by construction ofπ2, for all s ∈ S \ (W1 ∪ T ), we havePreπ1(s),π2(s)(vi)(s) ≤ vi(s). We
first show that in the Markov chain obtained by fixingπ1 andπ2 in G, there is no closed connected recurrent
set of statesC such thatC ⊆ S \ (W1 ∪ T ). Assume towards contradiction thatC is a closed connected
recurrent set of states inS \ (W1 ∪ T ). The following case analysis achieves the contradiction.

1. Suppose for every states ∈ C we haveπ1(s) ∈ OptSel(vi, s, k). Then consider the strategy

π1 in G
k
vi

such that for a states ∈ C we haveπ1(s) = (s,A,B), where π1(s) = A, and
B = OptSelCount(vi, s, π1(s), k). SinceC is closed connected recurrent states, it follows by

construction that for all statess ∈ C in the gameG
k
vi

we havePrπ1,π2
s (Safe(C)) = 1, where

C = C ∪ {(s,A,B) | s ∈ C} ∪ {(s,A, b) | s ∈ C}. It follows that for all s ∈ C in G
k
vi

we

havePrπ1,π2
s (Safe(F )) = 1. Sinceπ2 is an optimal strategy, it follows thatC ⊆ (A

k
i ∩S) \W1. This

contradicts that(A
k
i ∩ S) \ W1 = ∅.

2. Otherwise for some states∗ ∈ C we haveπ1(s
∗) 6∈ OptSel(vi, s

∗, k). Let r = min{q |
Uq(vi) ∩ C 6= ∅}, i.e., r is the least value-class with non-empty intersection withC. Hence it
follows that for all q < r, we haveUq(vi) ∩ C = ∅. Observe that since for alls ∈ C we have
Preπ1(s),π2(s)(vi)(s) ≤ vi(s), it follows that for alls ∈ Ur(vi) either (a)Dest(s, π1(s), π2(s)) ⊆
Ur(vi); or (b)Dest(s, π1(s), π2(s))∩Uq(vi) 6= ∅, for someq < r. SinceUr(vi) is the least value-class
with non-empty intersection withC, it follows that for alls ∈ Ur(vi) we haveDest(s, π1(s), π2(s)) ⊆
Ur(vi). It follows thatC ⊆ Ur(vi). Consider the states∗ ∈ C such thatπ1(s

∗) 6∈ OptSel(vi, s, k).
By the construction ofπ2(s), we havePreπ1(s∗),π2(s∗)(vi)(s

∗) < vi(s
∗). Hence we must have

Dest(s∗, π1(s
∗), π2(s

∗)) ∩ Uq(vi) 6= ∅, for someq < r. Thus we have a contradiction.

It follows from above that there is no closed connected recurrent set of states inS \ (W1 ∪ T ), and hence
with probability 1 the game reachesW1 ∪ T from all states inS \ (W1 ∪ T ). Hence the probability to
satisfy Safe(F ) is equal to the probability to reachW1. Since for all statess ∈ S \ (W1 ∪ T ) we have
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Preπ1(s),π2(s)(vi)(s) ≤ vi(s), it follows that given the strategiesπ1 andπ2, the valuationvi satisfies all the
inequalities for linear program to reachW1. It follows that the probability to reachW1 from s is atmost
vi(s). It follows that for alls ∈ S \ (W1 ∪ T ) we have〈〈1〉〉π1

val
(Safe(F ))(s) ≤ vi(s). This completes the

proof.
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