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Abstract

Optimization techniques based on graph cuts have become a standard tool for
many vision applications. These techniques allow to minimize efficiently certain energy
functions corresponding to pairwise Markov Random Fields (MRFs). Currently, there
is an accepted view within the computer vision community that graph cuts can only
be used for optimizing a limited class of MRF energies (e.g. submodular functions).

In this survey we review some results that show that graph cuts can be applied
to a much larger class of energy functions (in particular, non-submodular functions).
While these results are well-known in the optimization community, to our knowledge
they were not used in the context of computer vision and MRF optimization. We
demonstrate the relevance of these results to vision on the problem of binary texture
restoration.

Keywords: I.4.6.c Markov Random Fields, I.2.10.i Texture
Index terms: Energy minimization, Markov Random Fields, quadratic pseudo-
boolean optimization, min cut/max flow, texture restoration

1 Introduction

Many early vision problems can be naturally formulated in terms of energy minimization

where the energy function has the following form:

E(x) = θconst +
∑

p∈V

θp(xp) +
∑

(p,q)∈E

θpq(xp, xq) . (1)

Here G = (V, E) is an undirected graph. Set V usually corresponds to pixels; xp denotes

the label of pixel p ∈ V which must belong to a finite set of integers {0, 1, . . . , K − 1}.

For motion or stereo, the labels are disparities, while for image restoration they represent

intensities. The constant term of the energy is θconst, the unary terms θp(·) encode data

penalty functions, and the pairwise terms θpq(·, ·) are interaction potentials. This energy is

often derived in the context of Markov Random Fields [6,15]: a minimum of E corresponds

to a maximum a-posteriori (MAP) labeling x.

Minimizing energy (1) is a difficult problem (in general, it is NP-hard). Many ap-

proximate optimization methods have been developed, such as the augmenting DAG al-
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gorithm [25, 36], simulated annealing [21], iterated conditional modes [7], belief propaga-

tion [31], tree-reweighted message passing [35], or Swendsen-Wang Cuts [5]. We will focus

on a particular branch of algorithms that are based on graph cuts, or the s-t min cut/max flow

technique. They were introduced into computer vision in the late 80-s [17] and reintroduced

in the 90-s [12,20,24]. Graph cuts proved to be very successful for many vision applications

such as small baseline stereo, volumetric multi-view reconstruction, image segmentation,

image synthesis and others (see, for example, [11] and references therein).

In this survey we review some graph cut-based algorithms for minimizing energy (1). We

consider only the case when the variables are binary: xp ∈ {0, 1}. Note, however, that this

case is highly relevant for vision problems involving non-binary variables. Indeed, one of

the most successful MRF minimization algorithms, namely the expansion move method of

Boykov et al. [12], reduces the problem with multi-valued variables to a sequence of minimiza-

tion subproblems with binary variables1. There are also other ways to reduce the problem

to a sequence of binary subproblems, e.g. swap move and jump move algorithms [12, 33].

1.1 Minimizing functions of binary variables via graph cuts

There is an accepted view within the computer vision community popularized by [24] that

graph cuts can only be used for minimizing submodular energy functions, i.e. functions whose

pairwise terms satisfy θpq(0, 0) + θpq(1, 1) ≤ θpq(0, 1) + θpq(1, 0) .

For functions of multi-valued variables and the expansion move algorithm the corresponding

condition is θpq(β, γ)+θpq(α, α) ≤ θpq(β, α)+θpq(α, γ) which must hold for all labels α, β, γ ∈

{0, . . . , K − 1} 2. While many important energy functions in vision (e.g. Potts) do satisfy

these conditions, in some situations we get functions which are not submodular. For example,

they may arise when parameters of the energy function are learned from training data.

Rother et al. [32] suggested to deal with non-submodular terms by “truncating” them, i.e.

1Recall that the expansion move algorithm [12] iteratively applies α-expansion operations for labels α ∈
{0, . . . , K − 1} in a certain order, starting with some initial configuration. If x is the current configuration,
then during an α-expansion each pixel is allowed either to keep its old label xp or to switch to the new label
α. Since each pixel makes a binary decision, computing an optimal α-expansion move (i.e. a move with the
smallest energy) is equivalent to minimizing a function of binary variables: 0 corresponds to keeping the old
label, and 1 corresponds to the new label α. Upon convergence the algorithm produces a local minimum
whose energy is within a known approximation factor from the global minimum (for metric interactions) [12].

2There is one exception to this rule: it is also possible to include hard constraints Hpq(xp, xq) taking
values in {0, +∞} as long as Hpq(α, α) = 0 for all labels α [32].
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replacing a function with a submodular approximation and minimizing the latter. For multi-

valued variables and certain truncation schemes the energy is guaranteed not to increase

during one α-expansion [32]. For the application of image stitching [1,28,32] this technique

gives reasonable results, maybe because the number of non-submodular terms is very small

(see details in section 3). For some other problems, however, the number of non-submodular

terms is much higher, and truncation may not be appropriate. An example is binary texture

restoration as done by Cremers and Grady [14]. They propose to ignore non-submodular

terms during MRF learning in order to achieve efficient inference via graph cuts. We show

in section 3 that ignoring such terms decreases the performance. It is therefore desirable to

have a method which explicitly takes into account non-submodular terms instead of throwing

them away.

In this paper we will review the algorithm in [10,19] for minimizing functions with both

submodular and non-submodular terms3. We refer to it as the QPBO method (“quadratic

pseudo-boolean optimization”)4. Its output is a partial labeling x. In other words, xp ∈

{0, 1, ∅} for pixels p ∈ V; the value ∅ is interpreted as “unknown”. The algorithm has a

number of properties reviewed below. (All of them were given in [19]).

Properties of the QPBO method [19] Perhaps the most important one is the following:

[P1] (Persistency) Let y be a complete labeling, and let z be the “fusion” of x and y:

zp = xp if xp ∈ {0, 1}, and zp = yp otherwise. Then E(z) ≤ E(y).

We can take y to be a global minimum, then we get that x is a part of some optimal solution:

[P2] (Partial optimality) There exists global minimum x∗ of energy (1) such that xp = x∗
p

for all labeled pixels p (i.e. pixels with xp ∈ {0, 1}).

Clearly, the usefulness of the algorithm depends on how many pixels are labeled. In general,

we cannot expect that the method will label all nodes since minimizing energy (1) is an

NP-hard problem. It is a question of experimentation of how the algorithm performs for a

particular application, such as binary texture restoration as discussed in section 3.

In some special cases, however, the method is guaranteed to give a complete labeling:

3Algorithms in [19] and [10] compute the same answer, but the latter is more efficient.
4Energy (1) can be written as a quadratic polynomial: E(x) = const+

∑

p
αpxp +

∑

(p,q) αp,qxpxq , hence

the word quadratic. E is called pseudo-boolean since it maps boolean variables to R rather than to {0, 1}.
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[P3] If all terms of the energy are submodular, then the algorithm will label all nodes.

[P4] The algorithm is invariant with respect to “flipping” a subset of pixels U ⊆ V, i.e.

swapping the meaning of 0 and 1 for pixels p ∈ U . (This flipping transforms submodular

terms between U and V\U into non-submodular, and vice versa).

[P3] and [P4] imply that if there exists a flipping such that all terms become submodular

then the QPBO method will label all nodes [19]. This holds, in particular, for trees.

There remains a question of what to do with unlabeled pixels. This is a difficult question

which probably does not have a single answer. In the context of the expansion move algorithm

one possibility is to keep the old label for all such pixels. The persistency property then

implies that the energy never goes up.

Energy minimization methods and partial optimality It is known [23] that the tree-

reweighted message algorithm [35] also gives a part of an optimal solution when applied to

functions of binary variables. (This is not surprising: it solves the same linear programming

relaxation of the energy as the QPBO method). A different principle for obtaining partially

optimal solutions for MAP-MRF problems is given by Kovtun [26].

2 QPBO algorithm for functions of binary variables

We will describe the algorithm using the notion of reparameterization. This concept is

discussed in section 2.1. After that we will review the QPBO method for minimizing functions

of eq. (1). For completeness, we first consider the simpler case when all terms of the energy

are submodular (section 2.2). Then in section 2.3 we will review the QPBO method for

arbitrary functions of the form (1). For both cases the algorithm consists of the following

three steps: (i) construct the graph; (ii) compute the maximum flow and minimum cut; (iii)

assign labels based on the minimum cut.

2.1 Reparameterization

The term repameterization was introduced in the machine learning community [13, 34] (an

alternative term for this is equivalent transformations [25, 36]). It is a very useful tool for

analyzing MRF inference algorithms such as belief propagation [34] and tree-reweighted

message passing [35]. Reparameterization is also a convenient interpretation of maxflow-

based algorithms (see sections 2.2 and 2.3).

4



θp;0

θp;1

θq;0

θq;1

θpq;00

θpq;11

θpq;10θpq;01

− δ

− δ

+ δ

≥0 ≥0

a b

áá b́b́

≥0

≥0

c

ćć
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Figure 1: (a) Convention for displaying parameters θp, θpq, θq. (b) Example of a
reparameterization operation. (c) Normal form. Dotted lines denote links with
zero cost. The first term is submodular, the second is supermodular. Unary
parameters must satisfy min{a, a′} = min{b, b′} = min{c, c′} = 0.

Let us introduce the following notation. The energy of eq. (1) is specified by the constant

term θconst, unary terms θp(i) and pairwise terms θpq(i, j) (i, j ∈ {0, 1}). It will be convenient

to denote the last two terms as θp;i and θpq;ij, respectively. We can concatenate all these

values into a single vector θ = {θα | α ∈ I} where the index set I is

I = {const} ∪ {(p; i)} ∪ {(pq; ij)} .

Note that (pq; ij) ≡ (qp; ji), so θpq;ij and θqp;ji are the same element. We will use the notation

θp to denote a vector of size 2 and θpq to denote a vector of size 4.

The energy in eq. (1) is therefore completely specified by parameter vector θ. In cases

when the parameter vector of an energy is not clear from the context, we will write it

explicitly as E(x | θ). We will display parameters of the energy as shown in Fig. 1(a).

Definition 2.1. If two parameter vectors θ and θ′ define the same energy function (i.e.

E(x | θ) = E(x | θ′) for all configurations x), then θ is called a reparameterization of θ′, and

the relation is denoted by θ ≡ θ′.

As a particular example, we can subtract some constant from vectors θp or θpq and add the

same constant to θconst. Another possible transformation involves directed edge (p → q) ∈ E

and label j ∈ {0, 1}: we can subtract a constant from components θpq;ij for all i ∈ {0, 1} and

add the same constant to θp;j (Fig. 1(b)). It is easy to see that the cost of any configuration

x stays the same.

Normal form We will say that the vector θ is in a normal form if it satisfies the following:
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(a) min{θp;0, θp;1} = 0 for all pixels p.

(b) min{θpq;0j , θpq;1j} = 0 for all directed edges (p → q) and labels j ∈ {0, 1}.

Note that these conditions imply that all components of vector θ are non-negative (except

maybe for the constant term θconst). The normal form is not unique, i.e. many reparameter-

izations of the same energy function may satisfy (a)-(b).

We will need this definition when we describe the algorithms in sections 2.2 and 2.3. The

first step for both algorithms is to convert vector θ into a normal form. This can be done in

two phases as follows.

1. While there is edge (p → q) and label j violating condition (b), do the following:

Compute δ = min{θpq;0j , θpq;1j}; set θpq;0j := θpq;0j−δ, θpq;1j := θpq;1j−δ, θq;j := θq;j +δ.

2. For every pixel p compute δ = min{θp;0, θp;1} and set θp;0 := θp;0 − δ, θp;1 := θp;1 − δ,

θconst := θconst + δ.

Note that every operation above is a reparameterization. Furthermore, each operation in

the first phase decreases the number of elements violating condition (b), therefore we are

guaranteed to terminate in a finite number of steps (which is in fact linear in |V| + |E|).

Upon termination, for each edge (p, q) we will have either θpq;00 = θpq;11 = 0 or θpq;01 =

θpq;10 = 0 (Fig. 1(c)). In the former case the corresponding term is submodular, and in the

latter it is supermodular.

2.2 Algorithm for submodular functions

First we will review an algorithm for the case when all terms of energy (1) are submodular.

The method (reduction to min cut/max flow) has been known for at least 40 years [18].

The first step is to convert the energy to a normal form (sec. 2.1). Then a directed

weighted graph G = (V, A, c) is created whose nodes correspond to pixels in V. In addition,

there are two special nodes - source s and sink t; they are called the terminals. Thus,

V = V ∪ {s, t}. For every non-zero component of θ an edge is added to A according to the

following rules:

component of θ corresponding edge a ∈ A capacity ca

θp;0 (p → t) θp;0

θp;1 (s → p) θp;1

θpq;01 (p → q) θpq;01

θpq;10 (q → p) θpq;10
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Figure 2: Graph construction. Left: input energy function (in a normal form)
with three nodes and two edges. Right: corresponding graph G. Note that in
the example in (b) graph G consists of two disjoint subgraphs. This is because we
can ”flip” a subset of pixels so that the energy becomes submodular (properties
[P3,P4]). Such flipping can always be done if graph G is a tree.

(For example, if θp;0 > 0 then we add edge (p → t) with weight θp;0). Note that the constant

term θconst is ignored in this construction. These rules are illustrated in Fig. 2(a). After

constructing the graph we compute a minimum s-t cut (S, T ) by computing maximum flow

from the source to the sink [2]. This cut defines configuration x as follows:

xp =

{

0 if p ∈ S

1 if p ∈ T
.

It can be seen that the cost of any cut is equal to the energy of the corresponding configuration

plus the constant term θconst. Therefore, a minimum s-t cut in G yields a global minimum

of the energy E.

It is worth noting that the maxflow algorithm can be regarded as performing a repara-

meterization of the energy function. Indeed, pushing flow updates residual capacities cuv for

edges (u → v) ∈ A (last column of the table above). This in turn corresponds to modifying

components of vector θ. The constant term of the energy changes as well: if we push flow of
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value C from the source to the sink, then we need to set θconst := θconst + C.

2.3 Algorithm for arbitrary functions: QPBO method

We now review the network model of [10] for solving the problem formulated in [19]. It

computes a part of an optimal solution for an arbitrary function of eq. (1). Similar to the

previous case, the problem is reduced to the computation of a minimum s-t cut in a certain

graph G = (V, A, c). However, the size of the graph is now doubled. For each pixel p ∈ V

there will be two nodes p and p̄; therefore, V = {p, p̄ | p ∈ V} ∪ {s, t}. For every non-zero

element of θ two edges are added to A according to the following rules (Fig. 2(b)):

component of θ corresponding edges a, ā ∈ A capacities ca = cā

θp;0 (p → t), (s → p̄) 1
2
θp;0

θp;1 (s → p), (p̄ → t) 1
2
θp;1

θpq;01 (p → q), (q̄ → p̄) 1
2
θpq;01

θpq;10 (q → p), (p̄ → q̄) 1
2
θpq;10

θpq;00 (p → q̄), (q → p̄) 1
2
θpq;00

θpq;11 (q̄ → p), (p̄ → q) 1
2
θpq;11

After computing a minimum s-t cut (S, T ) the partial labeling x is determined as follows:

xp =











0 if p ∈ S, p̄ ∈ T

1 if p ∈ T, p̄ ∈ S

∅ otherwise

.

This labeling x has the persistency property described in sec. 1 (see [9] or Appendix in [22]).

The graph construction can be motivated as follows [9]. Node p̄ can be associated with

variable xp̄ which ideally should be the negation of xp: xp̄ = 1−xp. Then the graph represents

energy E(x) expressed as a function of old variables {xp} and new variables {xp̄ = 1 − xp}.

Indeed, consider, for example, component θpq;11 which contributes term θpq;11xpxq to the

energy. The term can be rewritten as 1
2
θpq;11(xpx̄q̄ + x̄p̄xq), which corresponds to edges

(q̄ → p), (p̄ → q) added to the graph. An important observation is that the new energy

of variables {xp, xp̄} is submodular, and thus can be minimized in polynomial time. If in

addition we could enforce constraints xp̄ = 1 − xp during minimization (i.e. enforcing that

nodes p and p̄ belong to different sets of the cut) then we would obtain a global minimum

of the energy. Without these constraints only a part of an optimal solution is found.

As in the previous case, pushing flow through graph G can be regarded as a reparameter-

ization of energy E(x | θ). More precisely, the residual capacities c in G define the parameter

vector θ as follows: if component θα corresponds to edges a, ā ∈ A then θα = ca + cā.
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Efficient implementation Computation of maximum flow in graph G can be speeded up

using the following heuristics. First consider only edges in G corresponding to submodular

terms. These edges form two independent networks such that one is the “reversed” copy of

the other, i.e. the source and the sink are swapped and direction of all the edges is reversed.

Instead of solving the same problem twice, we can compute a maximum flow in one network

and then copy the result to the other network. After that we can add the remaining edges

corresponding to non-submodular terms and compute the maximum flow in G, starting from

the flow obtained in the first step. An advantage of this heuristics is that if all edges are

submodular, then the algorithm has exactly the same running time as the method described

in section 2.2, except for a linear time overhead.

Involution property It will be convenient to introduce the following notation. Each

node u in graph G has a corresponding node denoted as ū. (In particular, source and

sink correspond to each other, so s̄ = t and t̄ = s). It follows from the definition that

mapping ¯ : V → V is an involution, i.e. ¯̄u = u for all nodes u. An important property

of this involution is that for any edge a = (u → v) ∈ A there is a corresponding edge

ā = (v̄ → ū) ∈ A with the same initial capacity. We will assume without loss of generality

that the residual capacities of a and ā are also the same5.

Choosing a minimum cut We stated in the beginning that if all terms are submodular

then the algorithm will label all nodes (property [P3]). This holds, however, only if we pick

a particular minimum cut (S, T ). (Recall that a graph may have many minimum cuts of

the same cost). We now discuss how to choose a minimum cut that labels as many pixels as

possible. This is done by analyzing the residual graph G = (V, A, c) obtained after pushing

the maximum flow (and restoring the involution property). We assume that A contains only

edges with positive residual capacities, and there are no edges to the source or from the sink.

Consider pixel p ∈ V, and suppose that there exist paths in graph G from p to p̄ and from

p̄ to p (i.e. p to p̄ belong to the same strongly connected component). Then by the Ford-

Fulkerson theorem there is no minimum cut (S, T ) that separates these nodes. Therefore,

node p cannot be labeled. Let U0 ⊆ V be the set of all other pixels (i.e. pixels p such that

5The involution property can be restored as follows: given the residual graph with capacities c we compute
the corresponding reparameterization θ and then construct a new graph G = (V, A, c̃) for this reparameteri-
zation. This is equivalent to setting c̃a = c̃ā := 1

2 (ca + cā) for all pairs of corresponding edges a, ā.
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p and p̄ belong to different strongly connected components). It turns out that there exists

a minimum cut that labels all pixels in U0 [4]. This cut and corresponding labeling can be

found, for example, by the following algorithm:

• Add edge (t → s) to A.

• Compute strongly connected components in G, contract them to single nodes.

• Run the topological sort algorithm on the obtained directed acyclic graph. The result

is an ordering of nodes π : V → Z such that for all edges (u → v) ∈ A there holds

π(u) < π(v) (unless u and v belong to the same strongly connected component, in

which case π(u) = π(v)).

• Set cut (S, T ) as follows: if π(u) ≥ π(ū) then u ∈ S, otherwise u ∈ T . The correspond-

ing partial labeling x is determined as follows: (i) If π(p) > π(p̄) then xp = 0. (ii) If

π(p) < π(p̄) then xp = 1. (iii) If π(p) = π(p̄) then xp = ∅.

Note that adding edge (t → s) does not affect strongly connected components of G since

there is no path from s to t. The presence of this edge ensures that s ∈ S and t ∈ T .

Decomposition into strongly connected components Let us consider a strongly

connected component U ⊂ V such that u, ū ∈ U for some node u. The involution property

then implies that for any node v ∈ U there holds v̄ ∈ U . Therefore, strongly connected

components of G partition the set of pixels V\U0 into disjoint regions U1, . . . ,Uk.

Recall that the QPBO algorithm does not label pixels in U1 ∪ . . .∪ Uk. If the number of

unlabeled pixels is small, then we could try to use some other algorithm for the remaining

pixels, e.g. exhaustive search. This can be speeded up by the method in [8] reviewed below.

For each region U r consider the part of the energy E(x | θ) that involves only pixels and

edges inside U r. (We assume that θ is the reparameterization computed from the residual

graph, not the original parameter vector). Suppose that somehow we computed a global

minimum xr of this part of the energy (note that computing such a minimum is an NP-hard

problem). [8] showed that solutions x1, . . . ,xk can be combined in linear time to obtain a

complete optimal solution x∗ for the full energy E. The first step is to modify the vector

θ as follows: for each edge (p, q) inside region U r set θpq(x
r
p, x

r
q) := 0. After that we can
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(a) Test image (no noise) (b) Test image (60% noise)

(c) Submodular graph cuts (error 18.1) (d) QPBO (error 16.0)

Figure 3: The task is to restore a noisy test image (b) of a binarized Brodatz
texture (D21) (a). The result of submodular graph cuts (c) is worse than QPBO
(d), where learning gave 6 submodular terms for SGC and 3 submodular and 9
non-submodular for QPBO.

run the algorithm described earlier (“Choosing a minimum cut”). It will label all nodes and

produce a global minimum of E(x)6.

3 Experimental results

So far, vision researchers have used only the standard graph cuts method for minimizing

submodular functions described in section 2.2. (We will refer to it as the SGC method -

“submodular graph cuts”). To ensure that the function is submodular, two techniques were

employed: (i) enforce submodularity constraint while learning parameters of the energy [3,14,

27]; (ii) “Truncate” non-submodular terms during inference [32]. A natural idea is to use the

QPBO method instead, which means in the first case that we allow arbitrary terms during

learning. Here we consider two application areas with non-submodular energies: texture

restoration and image stitching. The main conclusion we can draw is that if a substantial

amount of pairwise terms are non-submodular the QPBO method outperforms SGC, as for

texture restoration. If only a small fraction of the terms are non-submodular both methods

produce close to identical results, as for the application of image stitching.

Texture restoration The field of texture restoration and texture modeling has received

considerable attention in the past. We refer to [29] for a survey of several MRF models of

6Note that this “stitching” of solutions can be applied even if xr are approximate rather than global
minima for regions Ur.
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texture such as auto-binomial, auto-normal, multi-level logistics. Gimel’farb [16] and Zhu et

al. [37, 38] proposed non-parametric MRF models and methods for their learning. Cremers

and Grady [14] focussed on efficient learning and inference via graph cuts for binary texture

restoration. In this paper we closely follow [14]. We tested MRFs with pairwise terms only.

This rather simple texture model is probably not the best, but it serves as a good testbed for

QPBO (see [14, 37, 38] for texture models with higher-order cliques). Note that QPBO can

potentially be extended to more sophisticated models: gray-scale textures can potentially

be handled via α-expansion [12], and any higher-order clique can be reduced to pairwise

terms [9], although the complexity grows exponentially with the clique size.

We binarized 10 Brodatz textures7 where fig. 3 shows an example. Each texture image

was split into three equally-sized subimages which were used later for training, validation

and testing. The same amount of noise was added to all three (60% salt-and pepper noise,

i.e. 60% of the pixels are replaced by a random value). We utilized the following MRF

from [14]. The unary potentials are defined as
∑

p∈V
−λ

1+|Ip−xp|
where Ip is the color of pixel

p and xp the binary output label of pixel p. The value λ trades off the importance of

the unary versus pairwise potentials and has to be learned for each texture individually

as described later. The pairwise potentials for an edge with shift (sx, sy) were learned by

computing the joint histograms of all pixel pairs with the same shift from the training

data: θpq(xp, xq) = − log Pr(xp, xq). We considered only edges with max{|sx|, |sy|} ≤ w.

The neighborhood size w has to be large enough to capture the repetitive structure of the

pattern and was set by hand for each texture. In order to avoid over-fitting we learned a

subset of pairwise potentials which gave the lowest error rate on a validation image, which

has the same noise statistic as a potential test image. As error rate we used the number of

misclassified pixels, where unlabeled pixels of the QPBO method are counted as misclassified.

The learning is a greedy search: the optimal subset is build by picking sequentially the best

pairwise terms, among all terms, where for each potential term a full search over λ ∈ [0, 100]

with step-size 0.5 was conducted. Since SGC can only deal with submodular terms we

ran the learning procedure twice: (i) over all pairwise terms and (ii) all submodular terms

only. This brute-force learning approach took 12 hours per texture on a 3GHerz machine

7http://research.microsoft.com/vision/cambridge/i3l/segmentation/DATA/TextureRestoration.zip
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and alternative MRF learning approaches could be considered, which is however beyond the

scope of this paper. The learning yield on average 6.8 pairwise potentials when restricted to

submodular terms only, and 10.1 pairwise potentials without restriction where 34.7% of the

terms are non-submodular.

The error rate on the validation set over all textures was 18.28% for SGC and 17.24% for

QPBO, and on the test set - 19.96% for SGC and 19.18% for QPBO. (For each texture in

the test set we generated 20 instances of random noise). Fig. 3(c,d) shows one example (all

results available online7). It is worth mentioning that the optimal setting for QPBO was often

close to a “critical” settings, i.e. reducing λ by a small amount results in many unlabeled

pixels on the validation image. It happened, for 3 textures, that QPBO reconstructed test

images with many unlabeled pixels. We used an automated procedure which increased λ by

a small amount until most pixels of the test images are fully labeled.

To summarize, for texture restoration it is important to model non-submodular terms

and QPBO can handle these terms to a certain extent. A further observation is that an

MRF with only submodular terms has a bias towards a solution with uniform labels, i.e.

a black or white image. In the absence of unary terms the optimal solution is a uniform

labeling. In terms of runtime, the QPBO method was on average about 8 times slower (e.g.

1.8 sec. SGC versus 14.3 sec. QPBO on a 3GHerz machine). Also, as expected the runtime

of QPBO is close to identical to SGC if only submodular terms are provided.

Image stitching The problem of image stitching is to merge a set of input images into one

output image, e.g. a panoramic view. Several methods [1,28,32] have approached this task as

a labeling problem, where each pixel in the output image is assigned a label which corresponds

to an input image. Several of the proposed energies (depending on the application) contain

non-submodular terms. Since these methods utilize SGC we pose the question if QPBO

will improve the results. We have tested the energy defined in [28] (eq. 5) for 5 different

scenarios of merging 20 images into one output image (similar to fig. 6 [32]). When running

SGC the energy is made submodular by truncating the terms θpq(0, 0) (see details in [32]).

The percentage of non-submodular terms was on average 0.004% for one alpha-expansion

move. The number of differently labeled pixels was between 0% (4 examples) and 6.5% (1

example) and the minimum energy was also close to identical. We may conclude that SGC

13



and QPBO perform very similar when the percentage of non-submodular terms is small.

4 Conclusions and future work

In this survey we reviewed the method in [10,19] for minimizing functions of binary variables

with unary and pairwise terms. We believe that this algorithm can make a significant impact

for certain vision applications. We demonstrated that the QPBO method improves the

results for the binary texture restoration problem. We hope that this positive result will

encourage research in other areas such as recognition, e.g. [27], or super resolution, e.g. [30],

to exploit energies with non-submodular terms and utilize the QPBO method for inference.

(In the past such terms were either disallowed during learning or ”truncated” during the

inference via graph cuts). It is also interesting to incorporate higher-order cliques of binary

variables, as in [14]: it is known that any such clique can be reduced to pairwise terms [9],

however, the number of terms grows exponentially with the clique size.

Acknowledgements We thank D. Cremers and L. Grady for communicating the recent

paper [14] and providing images, E. Boros for pointing out reference [8], Y. Boykov, V.

Lempitsky and anonymous reviewers for suggestions that helped to improve the presentation.

References

[1] A. Agarwala, M. Dontcheva, M. Agrawala,
S. Drucker, A. Colburn, B. Curless,
D. Salesin, and M. Cohen. Interactive digi-
tal photomontage. SIGGRAPH, 2004.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Or-
lin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993.

[3] D. Anguelov, B. Taskar, V. Chatalbashev,
D. Koller, D. Gupta, G. Heitz, and A. Ng.
Discriminative learning of Markov Random
Fields for segmentation of 3D scan data. In
CVPR, 2005.

[4] B. Aspvall, M. F. Plass, and R. E. Tar-
jan. A linear time algorithm for testing the
truth of certain quantified boolean formu-
las. Inform. Process. Lett, 8:121–123, 1979.
Erratum, Inform. Process. Lett. 14(4), 195
(1982).

[5] A. Barbu and S.-C. Zhu. Generalizing
Swendsen-Wang to sampling arbitrary pos-
terior probabilities. PAMI, 27(8):1239–
1253, August 2005.

[6] J. Besag. Spatial interaction and the sta-
tistical analysis of lattice systems. J. of the
Royal Statistical Society, Series B, 36:192–
236, 1974.

[7] J. Besag. On the statistical analysis of dirty
pictures. J. of the Royal Statistical Society,
Series B, 48(3):259–302, 1986.

[8] A. Billionnet and B. Jaumard. A decom-
position method for minimizing quadratic
pseudo-boolean functions. Operation Re-
search Letters, 8:161–163, 1989.

[9] E. Boros and P. L. Hammer. Pseudo-
boolean optimization. Discrete Applied
Mathematics, 123(1-3):155 – 225, 2002.

[10] E. Boros, P. L. Hammer, and X. Sun. Net-
work flows and minimization of quadratic
pseudo-Boolean functions. Technical Re-
port RRR 17-1991, RUTCOR Research Re-
port, May 1991.

[11] Y. Boykov and V. Kolmogorov. An experi-
mental comparison of min-cut/max-flow al-
gorithms for energy minimization in vision.
PAMI, 26(9), September 2004.

14



[12] Y. Boykov, O. Veksler, and R. Zabih. Fast
approximate energy minimization via graph
cuts. PAMI, 23(11), November 2001.

[13] R. G. Cowell, A. P. Dawid, S. L. Lauritzen,
and D. J. Spiegelhalter. Probabilistic Net-
works and Expert Systems. Springer-Verlag,
1999.

[14] D. Cremers and L. Grady. Learning statis-
tical priors for efficient combinatorial opti-
mization via graph cuts. In ECCV, 2006.

[15] S. Geman and D. Geman. Stochastic relax-
ation, Gibbs distributions, and the Bayesian
restoration of images. PAMI, 6:721–741,
1984.

[16] G. L. Gimel’farb. Texture modeling by
multiple pairwise pixel interactions. PAMI,
18(11), 1996.

[17] D. Greig, B. Porteous, and A. Seheult. Ex-
act maximum a posteriori estimation for bi-
nary images. J. of the Royal Statistical So-
ciety, Series B, 51(2):271–279, 1989.

[18] P. L. Hammer. Some network flow problems
solved with pseudo-boolean programming.
Operations Research, 13:388–399, 1965.

[19] P. L. Hammer, P. Hansen, and B. Simeone.
Roof duality, complementation and persis-
tency in quadratic 0-1 optimization. Math-
ematicl Programming, 28:121–155, 1984.

[20] H. Ishikawa. Exact optimization for Markov
Random Fields with convex priors. PAMI,
25(10):1333–1336, October 2003.

[21] S. Kirkpatrick, C. D. Gelatt Jr., and M. P.
Vecchi. Optimization by simulated anneal-
ing. Science, 220, 4598:671–680, 1983.

[22] V. Kolmogorov and C. Rother. Minimizing
non-submodular functions with graph cuts -
a review. Technical Report MSR-TR-2006-
100, Microsoft Research, July 2006.

[23] V. Kolmogorov and M. Wainwright. On the
optimality of tree-reweighted max-product
message passing. In UAI, July 2005.

[24] V. Kolmogorov and R. Zabih. What energy
functions can be minimized via graph cuts?
PAMI, 26(2):147–159, February 2004.

[25] V. K. Koval and M. I. Schlesinger. Two-
dimensional programming in image analy-
sis problems. USSR Academy of Science,
Automatics and Telemechanics, 8:149–168,
1976.

[26] I. V. Kovtun. Image segmentation based
on sufficient conditions of optimality in NP-
complete classes of structural labelling prob-
lems. PhD thesis, IRTC ITS National
Academy of Sciences, Ukraine, 2004. (In
Ukranian).

[27] S. Kumar and M. Herbert. Discriminative
fields for modeling spatial dependencies in
natural images. In NIPS, 2004.

[28] V. Kwatra, A. Schödl, I. Essa, G. Turk,
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