An Analysis of Convex Relaxations for MAP Estimation

M. Pawan Kumar V. Kolmogorov P.H.S. Torr
Dept. of Computing Computer Science Dept. of Computing
Oxford Brookes University  University College London  Oxford Brookes University
pkmudigonda@brookes.ac.uk vnk@adastral.ucl.ac.uk phiptorr@brookes.ac.uk
Abstract

The problem of obtaining the maximum a posteriori estimdta general dis-
crete random field (i.e. a random field defined using a finite dincrete set of
labels) is known to beip-hard. However, due to its central importance in many
applications, several approximate algorithms have beepgsed in the litera-
ture. In this paper, we present an analysis of three suclritdges based on
convex relaxations: (i)P-s: the linear programming.@) relaxation proposed by
Schlesinger [20] for a special case and independently ibd423] for the general
case; (i)QP-RL: the quadratic programmin@§) relaxation by Ravikumar and
Lafferty [18]; and (iii) socrMs: the second order cone programmisegpp re-
laxation first proposed by Muramatsu and Suzuki [16] for tedodl problems and
later extended in [14] for a general label set.

We show that thesocrMsS and theQp-RL relaxations are equivalent. Further-
more, we prove that despite the flexibility in the form of tfomstraints/objective
function offered byQp andsocr theLp-s relaxationstrictly dominategi.e. pro-
vides a better approximation thaQp-rRL and socrMS. We generalize these
results by defining a large class bcpr(and equivalen§p) relaxations which is
dominated by theP-s relaxation. Based on these results we propose some novel
socprelaxations which strictly dominate the previous appresch

1 Introduction

Discrete random fields are a powerful tool to obtain a prdsiei formulation for various applica-
tions in Computer Vision and related areas [3]. Hence, dge accurate and efficient algorithms
for performing inference on a given discrete random fieldfifuadamental importance. In this
work, we will focus on the problem of maximum a posteriaviaP) estimation. MAP estimation

is a key step in obtaining the solutions to many applicatisush as stereo, image stitching and
segmentation [21]. Furthermore, it is closely related toyienportant Combinatorial Optimization
problems such agAxcuT [6], multi-way cut [5], metric labelling [3, 11] and 0-extsion [3, 9].

Given dataD, a discrete random field models the distribution (i.e. eittie joint or the con-
ditional probability) of a labelling for a set of random \albies. Each of these variables=

{vg, v1,+ -+, vn—1} can take a label from a discrete $et {lo, 11, --,ln—1}. A particular labelling
of variablesv is specified by a functiorf whose domain corresponds to the indices of the random
variables and whose range is the index of the label sef; t.€¢0,1,---,n—1} — {0,1,---,h—1}.

In other words, random variable, takes label,). For convenience, we assume the model to be
a conditional random fieldoRF) while noting that all the results of this paper also applarkov
random fields MIRF).

A cRF specifies a neighbourhood relationsiippetween the random variables, i(e,b) € & if,
and only if,v, andwv, are neighbouring random variables. Within this framewdink, conditional
probability of a labellingf given dataD is specified a®r(f|D, 0) = ﬁ exp(—Q(f; D, 0). Here

6 represents the parameters of twr andZ(6) is a normalization constant which ensures that the
probability sums to one (also known as the partition fungtiorhe energy)(f; D, 6) is given by

. — 1 2 1 i i
QUfsD.0) =3, ev 0 pa) T 2 avyes Vav (o) sy~ The termby . v is called a unary potential
since its value depends on the labelling of one random Vareta time. Similarlyeib,f(a)f(b) is
called a pairwise potential as it depends on a pair of randanables. For simplicity, we assume



that&ab Py = w(a, b)d(f(a), f(b)) wherew(a, b) is the weight that indicates the strength of
the pairwise relationship between variablgsandv,, with w(a,b) = 0 if (a,b) ¢ &, andd(-,-) is

a distance function on the labels. As will be seen later, filvisiulation of the pairwise potentials
would allow us to concisely describe our results.

The problem ofwAP estimation is well known to b&pP-hard in general. Since it plays a central
role in several applications, many approximate algorittmage been proposed in the literature. In
this work, we analyze three such algorithms which are basetbavex relaxations. Specifically,
we consider: (i)LP-s, the linear programming.p) relaxation of [4, 12, 20, 23]; (iiRP-RL, the
guadratic programming)P) relaxation of [18]; and (iii)socrMs, the second order cone program-
ming (soch relaxation of [14, 16]. In order to provide an outline of seaelaxations, we formulate
the problem ofvAP estimation as an Integer Prograrp)(

1.1 Integer Programming Formulation

We define a binary variable vectarof lengthnh. We denote the element &fat indexa - h + ¢

asz,; wherev, € v andl; € 1. These elements,,; specify a labellingf such thatz,,, = 1 if

f(a) = ¢ andz,,; = —1 otherwise. We say that the variabtg,; belongs tovariablev, since it
defines which label, does (or does not) take. L& = xx . We refertothda - h +4,b- h+ 5)t"

element of the matriX asX,;; wherev,, vy, € v andl;,l; € 1. Clearly, the followingP finds the
labelling with the minimum energy, i.e. it is equivalent keAP estimation problem:

. * : 1 (A4za;:) 2 (I4za;i+zo;+Xabsij)
IP: X = arg iy Z?),,,,li 9(1;1' 2 + E(a,b)es,l,;,lj gab;ij 4

s.t. x € {-1,1}"" (N}
Eliel Tay =2 — h, (2)
X =xx". (3

Constraints (1) and (3) specify that the variabteand X are binary such thaX.;.;; = %a;i%s;.

We will refer to them as thinteger constraints Constraint (2), which specifies that each variable
should be assigned only one label, is known aaihigueness constrainiote that one uniqueness
constraint is specified for each variable Solving the abover is in generaNp-hard. It is therefore
common practice to obtain an approximate solution usingeorelaxations. We describe four such
convex relaxations below.

1.2 Linear Programming Relaxation
TheLp relaxation (proposed by Schlesinger [20] for a special easkindependently in [4, 12, 23]
for the general case), which we ca#-s, is given as follows:

LP-S!  x* = argming Eya,z, 0, 7(1+—r“) + E(a,b)eé’,li,lj 9(211;;@ (Hmmﬁmi;ﬁxab;”)
s.t. x € [-1,1]"" X € [—1,1]nhxnh 4)
St Tasi =2~ h, (5)
leelXa,b;ij = (2 — h)xay, (6)
Xabiij = Xpayjis (7)
1+ 2a; + To5 + Xapij > 0. 8)

In the LP-s relaxation only those elements,;.;; of X are used for whiclfa, b) € £ andl;,; € L
Unlike the1p, the feasibility region of the above problem is relaxed stiet the variables:,;

and X5 lie in the interval[—1, 1]. Further, the constraint (3) is replaced by equation (6)cWwhi

is called themarginalization constrainf23]. One marginalization constraint is specified for each
(a,b) € £ andl; € 1. Constraint (7) specifies tha is symmetric. Constraint (8) ensures tlﬂ%bt

is multiplied by a number betwedéhand1 in the objective function. These constraints (7) and (8)
are defined for al(a,b) € £ andl;,l; € 1. Note that the above constraints are not exhaustive, i.e.
it is possible to specify other constraints for the probldnvap estimation (as will be seen in the
different relaxations described in the subsequent sesition

1.3 Quadratic Programming Relaxation
We now describe thep relaxation for themApP estimationiP which was proposed by Ravikumar
and Lafferty [18]. To this end, it would be convenient to mefailate the objective function of the

using a vector of unary potentials of length (denoted b)él) and a matrix of pairwise potentials



of sizenh x nh (denoted bﬁQ). The element of the unary potential vector at index i + 4) is
defined a9}, =01, — >, o, > c1102..:], Wherev, € vandl; € 1. The(a-h+1i,b- b+ j)™

element of the pairwise potential mat#X is defined such that

5 02 ikl if =b,i=j,
92 _{ ZUCEV z:2lk€1| (L(:,zk,| a ? J (9)

abij = Oop.ij otherwise,

wherev,, v, € v andl;,l; € 1. In other words, the potentials are modified by defining avpiag
potentialéfm;” and subtracting the value of that potential from the comwesing unary potential

0,.;- The advantage of this reformulation is that the mavis guaranteed to be positive semidefi-

N 2
nite, i.e.o92 > 0. Using the fact that fog,,; € {—1, 1}, (”g‘” = 1*;”‘“’", it can be shown that
the following is equivalent to theAP estimation problem [18]:

QP-RL:  x* = argminy (152) 70" + (122)7 97 (1) | (10)
s.t. Zliel Tayi = 2— h7vva cv, (11)
x € {—1,1}"", (12)

where1l is a vector of appropriate dimensions whose elements aregatl tol. By relaxing
the feasibility region of the above problem o€ [—1,1]™", the resultingQp can be solved in

polynomial time sinc& > 0 (i.e. the relaxation of thepr (10)-(12) is convex). We call the above
relaxationQpP-RL. Note thatin [18], thedpP-RL relaxation was described using the variaple 1#
However, the above formulation can easily be shown to bevatgiit to the one presented in [18].

1.4 Semidefinite Programming Relaxation

Thesbprrelaxation of thewAp estimation problem replaces the non-convex constdaiat xx ' by
the convex semidefinite constrat— xx " > 0 [6, 15] which can be expressed as

1 x'
(x % )=0 13)

using Schur’'s complement [2]. Further, like-s, it relaxes the integer constraints by allowing the
variablesz,;; and X5 to lie in the interval[—1, 1] with X,,.;; = 1 forallv, € v,l; € 1. The
sDPrelaxation is a well-studied approach which provides aateusolutions for theap estimation
problem (e.g. see [25]). However, due to its computatiometficiency, it is not practically useful
for large scale problems withh > 1000. See however [17, 19, 22].

1.5 Second Order Cone Programming Relaxation

We now describe theocprelaxation that was proposed by Muramatsu and Suzuki [16iHe
MAXCUT problem (i.e MAP estimation with, = 2) and later extended for a general label set [14].
This relaxation, which we cabocrwms, is based on the technique of Kim and Kojima [10] who
observed that theDp constraint can be further relaxed to second order cepe)(constraints. For
this purpose, it employs a set of matric8s= {C*|C* = U¥(U")T = 0,k = 1,2,...,nc}.
Using the fact that the Frobenius dot product of two semidefmatrices is non-negative, we get

= ||(Uk)TX||2 S Ck.Xvk: 17"‘,7LC- (14)

Each of the aboveoc constraints may involve some or all variables; and X ,;,;;. For example,
if Ck, .. =0, then thek'" socconstraint will not involveX ,;.;; (since its coefficient will be 0).

In order to describe theocrMs relaxation, we consider a pair of neighbouring variahlgand
w, 1.e.(a,b) € &, and a pair of label$; andl;. These two pairs define the following variables:
Tazir Tbijr Xaayis = Xobjj = 1 andXepi; = Xpayji (SinceX is symmetric). For each such pair of
variables and labels, tr@oCP-MS relaxation specifies tweoc constraints which involve only the
above variables [14, 16]. In order to specify the exact fofrthesesoc constraints, we need the
following definitions.

bij

Using the variables, andv, (where(a,b) € &) and labeld; andi;, we define the submatrices
x(a:0:4.7) andX(:b4.9) of x andX respectively as:

(@big) — [ Tasi | x(abig) _ [ Xaeaii  Xabij 15
x (xb;j ) ( baji - Xovbijj ) (13)
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The socrMs relaxation specifiesoc constraints of the form (14) for all pairs of neighbouring
variables(a, b) € £ and labeld;,l; € 1. To this end, it uses the following two matriceS}, ¢ =

. ,C2,5 = ( _11 _11 ) Hence, in thesockMs formulation, thevAP estimationp is

1 1
relaxed to
SOCPMS: x* = arg minx vali 9;&% + Z(a,l;)es,l,;,zj ggb;ij (1+5Ea;i+lni;j+xab;'ij)
s.t. x e [_17 1]n,h, X ¢ [_17 1]77,h><nh7 (16)
Zliel Layi = 2— h7 (17)
(xa;i - xb;j)Q S 2 - 2Xab;ija (18)
(xa;i + xb;j)Q < 2+ 2Xab;ija (19)
Xab;ij = Xba;ji~ (20)

We refer the reader to [14, 16] for detalils.

2 Comparing Relaxations

In order to compare the relaxations described above, wereetie following definitions. We say
that a relaxatiorn dominateghe relaxatiors (alternativelys is dominated by) if and only if

min  e(x,X;0)> min _e(x,X;0),V0, (22)

(x.X)eF(A) (x.X)eF(B)

whereF(a) andF(B) are the feasibility regions of the relaxationsandBs respectively. The term
e(x,X; 0) denotes the value of the objective function(at X) (i.e. the energy of the possibly
fractional labelling(x, X)) for themap estimation problem defined over th&F with paramete8.
Thus the optimal value of the dominating relaxatrois always greater than or equal to the optimal
value of relaxatiors. We note here that the concept of domination has been useibpsty in [4]
(to comparea.pP-s with the linear programming relaxation in [11]).

Relaxationsr andB are said to bequivalenif A dominates ands dominates;, i.e. their optimal
values are equal to each other for @itrs. A relaxationa is said tostrictly dominaterelaxation
B if A dominatess but B does not dominate. In other words there exists at least orwer with
paramete#d such that

min  e(x,X;0) > min _ e(x,X;6). (22)

(x,X)eF(A) (x,X)eF(B)

Note that, by definition, the optimal value of any relaxatiwould always be less than or equal to
the energy of the optimal (i.e. theap) labelling. Hence, the optimal value of a strictly domimagti
relaxationa is closer to the optimal value of theap estimationip compared to that of relaxation
B. In other wordsA provides a tighter lower bound farap estimation thars.

Our Results: We prove that p-s strictly dominatessocrMs (see section 3). Further, in sec-
tion 4, we show tha@yP-RL is equivalent tasoCP-MS. This implies that p-s strictly dominates the
QP-RL relaxation. In section 5 we generalize the above resultgtyimpg that a large class sfocp
(and equivalengP) relaxations is dominated hyr-s. Based on these results, we propose a novel
set of constraints which result Bocprrelaxations that dominater-s, QP-RL andSOCP-MS. These
relaxations introduceoc constraints on cycles and cliques formed by the neighbad helation-
ship of thecRF. Note that we will only provide the statement of the resuisehdue to page limit.
All the proofs are described in [13]

3 LP-Svs. SOCP-MS

We now show that for th&ApP estimation problem the linear constraintsLefs are stronger than
the socrMs constraints. In other words the feasibility regioniof-s is a strict subset of the
feasibility region ofsocrMs (i.e. F(LP-S) C F(SOCPMS)). This in turn would allow us to prove
the following theorem.

Theorem 1: TheLP-s relaxation strictly dominates treocr-Ms relaxation.

4 QP-RLvs. SOCP-MS

We now prove thaP-RL andSoCcPMS are equivalent (i.e. their optimal values are equaiMapr
estimation problems defined over alkrs). Specifically, we consider a vecterwhich lies in the



feasibility regions of thepp-RL andsocr-Ms relaxations, i.ex € [—1,1]*". For this vector, we
show that the values of the objective functions of freRL and SOCP-MS relaxations are equal.
This would imply that ifx* is an optimal solution o§P-RL for someCRF with paramete® then
there exists an optimal solutidix*, X*) of the socpMs relaxation. Further, it? ande® are the
ogtimalsvalues of the objective functions obtained usirgy@ir-rRL and SOCP-MS relaxation, then
ev =e".

Theorem 2: TheQpP-RL relaxation and theocrMs relaxation are equivalent.

Theorems 1 and 2 prove that the-s relaxation strictly dominates thgr-RL andSOCP-MS relax-
ations. A natural question that now arises is whether théigedound ofQpP-RL (proved in [18])

is applicable to the P-s andsocrMs relaxations. Our next theorem answers this question in an
affirmative.

Theorem 3: Using the rounding scheme of [18]p-s and SOCPMS provide the same additive
bound as theP-RL relaxation, i.e.f whereS = D (anyes 2isiyer |02y (ie. the sum of the
absolute values of all pairwise potentials). Furthermtig,bound is tight.

The above bound was proved for the case of binary variablesHi= 2) in [8] using a slightly
different rounding scheme.

5 QP and SOCP Relaxations over Trees and Cycles

We now generalize the results of Theorem 1 by defining a lal@gs ofsocprelaxations which
is dominated by P-s. Specifically, we consider theocprelaxations which relax the non-convex
constrainfX = xx " using a set of second order cors) constraints of the form

||(Uk)TX||SCk.Xak:17"';nC (23)
whereCF = U*(U*)T = 0,forallk=1,--- nc.

Note that eaclsocPrelaxation belonging to this class would define an equivatgnrelaxation
(similar to the equivalenpP-RL relaxation defined by theocrms relaxation). Hence, all thesgp
relaxations will also be dominated by the-s relaxation. Before we begin to describe our results
in detail, we need to set up some notation as follows.

@.@ O—® ®@ ®
C—® O—© © ©
(a) (b) ©

Figure 1:(a) An exampleerFdefined over four variables which form a cycle. Note that theeoved
nodes are not shown for the sake of clarity of the imdggThe sett* specified by the matri€*
shown in equation (25), i.é2* = {(a,b), (b, c), (c,d)}. (c) The setV’* = {a,b,c,d}. See text for
definitions of these sets.

Notation: We consider asocconstraint which is of the form described in equation (28), i

[(U")Tx|| < C* e X, (24)
wherek € {1,---,nc}. In order to help the reader understand the notation betteruse an
examplecRrF shown in Fig. 1(a). Thi<RF is defined over four variablee = {v,, vy, v, v4}
(connected to form a cycle of length 4), each of which takéallfrom the set = {io, !, }. For this

CRFWwe specify a constraint using a mat@¢ > 0 which is 0 everywhere, except for the following
4 x 4 submatrix:

Céza;oo C(Igb;oo C(Izzc;oo C(Igd;oo 2 1 1 0
Cz;qa;oo Ct;cb;oo Ct;q};;oo Cz]acd;oo _[1 2 11 (25)
C(:a;OO ch;OO C(:(:;OO Ccd;OO L1121

01 1 2

k k k k
Cda;OO Cdb;OO Cdc;OO Cdd;OO

Using thesocconstraint shown in equation (24) we define the following s&ts: (i) The seE* is
defined such thdt, b) € E* if, and only if, it satisfies the following conditions:

(a,b) € &, (26)



3l;,1; € 1such thaCl, .. # 0. (27)

Recall that€ specifies the neighbourhood relationship for the giger. In other wordsE” is the
subset of the edges in the graphical model of ¢ such thatC* specifies constraints for the
random variables corresponding to those edges. For thepd&amF (shown in Fig. 1(a)) an€*
matrix (in equation (25)), the sé&* obtained is shown in Fig. 1(b). (ii) The s&¥ is defined as
a € V¥ if, and only if, there exists &, € v such that(a,b) € E*. In other words/’* is the subset
of hidden nodes in the graphical model of ttrerF such thailC* specifies constraints for the random
variables corresponding to those hidden nodes. Fig. 1@yshhe set’* for our examplesoc
constraint.

We also define a weighted gragf = (V*, E¥) whose vertices are specified by the &t and
whose edges are specified by the B&t The weight of an edgéz, b) € EF is given byw(a, b).
Recall thatw(a, b) specifies the strength of the pairwise relationship betweenneighbouring
variablesv, andv,. Thus, for our exampleoc constraint, the vertices of this graph are given in
Fig. 1(c) while the edges are shown in Fig. 1(b). This graphloaviewed as a subgraph of the
graphical model representation for the giveRF.

Theorem 4: socprrelaxations (and the equivaleQp relaxations) which define constraints only
using graph&* = (V*, E¥) which form (arbitrarily large) trees are dominated by tires relax-
ation.

We note that the above theorem can be proved using the re§[2% onmoment constraintsvhich
imply that LP-s provides the exact solution for theap estimation problems defined over tree-
structured random fields). However, our alternative praetpnted in [13] allows us to generalize
the results of Theorem 4 for certain cycles as follows.

Theorem 5: Whend(i, j) > 0 for all I;,1; € 1, thesocprelaxations which define constraints only
using non-overlapping grapli&® which form (arbitrarily large) even cycles with all posiior all
negative weights are dominated by ttre s relaxation.

The above theorem can be proved for cycles of any length wiliegghts are all negative by a similar
construction. Further, it also holds true foatd cyclegi.e. cycles of odd number of variables) which
have only one positive or only one negative weight. Howeasmill be seen in the next section,
unlike trees it is not possible to extend these results fgrgemeral cycle.

6 Some Useful SOC Constraints

We now describe twsocpPrelaxations which include all the marginalization consttespecified
in LP-S. Note that the marginalization constraints can be incagat within thesocprframework
but not in theQr framework.

6.1 The SOCP-C Relaxation
Thesocrc relaxation (where denotes cycles) defines second order ca@mer] constraints using
positive semidefinite matriceS such that the grapty (defined in section 5) form cycles. Let the
variables corresponding to vertices of one such cgtlef lengthc be denoted as¢c = {w|b €
{a1,az,---,a.}}. Further, leflc = {l;|j € {i1,i2,---,i.}} € 1° be a set of labels for the variables
ve. In addition to the marginalization constraints, thecrC relaxation specifies the following
socconstraint:

lUTx|[ < CeX, (28)

such that the grap@’ defined by the above constraint forms a cycle. The mé&iriz O everywhere
except the following elements:

Ae if k=1,
Can.arin.is = { D.(k,1) otherwise. (29)
HereD. is ac x ¢ matrix which is defined as follows:
1 if k-1l =1
D.(k,l) = (—1)c! if lk—1ll=c-1 (30)
0 otherwise,

and ). is the absolute value of the smallest eigenvalu®ef In other words the submatrix &
defined byvs andle has diagonal elements equal X and off-diagonal elements equal to the



elements oD... Clearly,C = U U > 0 since its only non-zero submatrix./ + D. (wherel is
ac x c identity matrix) is positive semidefinite. This allows usdefine a validsoc constraint as
shown in inequality (28). We choose to define fwc constraint (28) for only those set of labéfs
which satisfy the following:

Z DC(kJ)egkal;iki,, > Z Dc(k7l)egkal;jkjpv{jl’j%'"ajc}- (31)
(ak,a1)€E (ak,a1)€E

Note that this choice is motivated by the fact that the vaeslX,, ,,.;,;, corresponding to these
setsv¢ andle are assigned trivial values by the-s relaxation in the presence of non-submodular
terms.

Since marginalization constraints are included inglkecr-C relaxation, the value of the objective
function obtained by solving this relaxation would at |dasequal to the value obtained by tire s
relaxation (i.esocprc dominatea pP-s, see Case Il in section 2). We can further show that in the
case whergl| = 2 and the constraint (28) is defined over a frustrated cyate &é.cycle with an
odd number of non-submodular terns)cp-c strictly dominates.P-s. One such example is given
in [13]. Note that if the givercrRr contains no frustrated cycle, then it can be solved exasilyqu
the method described in [7].

The constraint defined in equation (28) is similar to thesir) cycle inequality constraints [1] which
are given by

> De(ke,l)Xapasini, > 2 —c. (32)

k.l
We believe that the feasibility region defined by cycle inadies is a strict subset of the feasibility
region defined by equation (28). In other words a relaxatigimed by adding cycle inequalities to
LP-swould strictly dominatessocr-c. We are not aware of a formal proof for this. We now describe
the socrkQ relaxation.

6.2 The SOCP-Q Relaxation

In this previous section we saw that-s dominatesocPrelaxations whose constraints are defined
on trees. However, theocprC relaxation, which defines its constraints using cyclegtstrdom-
inatesLP-S. This raises the question whether matri€svhich result in more complicated graphs
G, would provide an even better relaxation for thep estimation problem. In this section, we
answer this question in an affirmative. To this end, we defme@cprrelaxation which specifies
constraints such that the resulting graghfrom a clique. We denote this relaxation BpcrQ
(whereq indicates cliques).

The socrQ relaxation contains the marginalization constraint areldycle inequalities (defined
above). In addition, it also definesbc constraints on graph§ which form a clique. We denote
the variables corresponding to the vertices of cligi@svg = {u|b € {a1,a92,---,a4}}. Let
lo = {l;|j € {i1,42,---,iq}} be a set of labels for these variables. Given this set of variables
v and labeldg, we define arsoc constraint using a matriC of sizenh x nh which is zero
everywhere except for the elemeits, ,,.;,;, = 1. Clearly,C is a rankl matrix with eigenvalud
and eigenvectan which is zero everywhere except, .;, = 1 wherev,, € vg andl;, € lg. This
implies thatC > 0, which enables us to obtain the followiisgc constraint:

2
<Z Ia%;z@») <q+ Z Kagaysinii- (33)
k

k,l

We choose to specify the above constraint only for the sedlwlsly which satisfy the following

condition:
Z eikﬂrlﬂkil 2 Z eikﬂrli,jkjl ) V{j1,j2, T ’jq}' (34)
(ak,a1)EE (ak,a1)EE
Again, this choice is motivated by the fact that the variabtg, ,.;,;, corresponding to these sets
vg andlg are assigned trivial values by the-s relaxation in the presence of non-submodular
pairwise potentials.

When the clique contains a frustrated cycle, it can be shbatsbcrQ dominates thep-srelax-
ation (similar tosocr-c). Further, using a counter-example, it can proved thatehsibility region
given by cycle inequalities is not a subset of the feasjbikitgion defined by constraint (33). One
such example is given in [13].



7 Discussion

We presented an analysis of approximate algorithmsifgr estimation which are based on convex
relaxations. The surprising result of our work is that desttie flexibility in the form of the objective
function/constraints offered bgpr and socr, the LP-s relaxation dominates a large class @b
andsocprelaxations. It appears that the authors who have prewiasddsocrp relaxations in
the Combinatorial Optimization literature [16] and thoskoahave reportecp relaxation in the
Machine Learning literature [18] were unaware of this resWfe also proposed two nesocCP
relaxations §ocrCc andsocrQ) and presented some examples to prove that they provideex bet
approximation thampP-s. An interesting direction for future research would be ttedmine the best
socconstraints for a givemAP estimation problem (e.g. with truncated linear pairwisteptals).

Acknowledgments: We thank Pradeep Ravikumar and John Lafferty for carefulingpof the manuscript and
for pointing out an error in our description of ts®@crms relaxation.
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