
Optimizing Binary MRFs via Extended Roof Duality

Technical Report MSR-TR-2007-46

Carsten Rother1, Vladimir Kolmogorov2, Victor Lempitsky3, Martin Szummer1

1 Microsoft Research Cambridge
{carrot, szummer}@microsoft.com

2 University College London
vnk@adastral.ucl.ac.uk

3 Moscow State University
victorlempitsky@gmail.com

http://research.microsoft.com/vision/cambridge/

Abstract

Many computer vision applications rely on the efficient
optimization of challenging, so-called non-submodular, bi-
nary pairwise MRFs. A promising graph cut based ap-
proach for optimizing such MRFs known as “roof duality”
was recently introduced into computer vision. We study two
methods which extend this approach. First, we discuss an
efficient implementation of the “probing” technique intro-
duced recently by Boroset al. [8]. It simplifies the MRF
while preserving the global optimum. Our code is 400-700
faster on some graphs than the implementation of [8]. Sec-
ond, we present a new technique which takes an arbitrary
input labeling and tries to improve its energy. We give theo-
retical characterizations of local minima of this procedure.

We applied both techniques to many applications, in-
cluding image segmentation, new view synthesis, super-
resolution, diagram recognition, parameter learning, tex-
ture restoration, and image deconvolution. For several ap-
plications we see that we are able to find the global mini-
mum very efficiently, and considerably outperform the orig-
inal roof duality approach. In comparison to existing tech-
niques, such as graph cut, TRW, BP, ICM, and simulated
annealing, we nearly always find a lower energy.

1. Introduction

Most early vision problems can be formulated in terms
of Markov random fields (MRFs). Algorithms for MRF in-
ference therefore are of fundamental importance for com-
puter vision. The MAP-MRF approach (computing maxi-
mum a posteriori configurations in an MRF) has proven to
be extremely successful for many vision applications such
as stereo, image segmentation, image denoising, super-
resolution, new view synthesis and others. We refer to [24]
for an overview of MRF optimization techniques in vision.
Binary MRFs In this paper we focus on a special class of
MRFs. Namely, we consider the problem of minimizing an

energy function of the form

E(x) = θconst +
∑

p∈V

θp(xp) +
∑

(p,q)∈E

θpq(xp, xq) . (1)

HereG = (V , E) is an undirected graph. The set of nodesV
usually corresponds to pixels, andxp ∈ {0, 1} denotes the
label of nodep. It is well-known that if the functionE is
submodular, i.e. every pairwise termθpq satisfies

θpq(0, 0) + θpq(1, 1) ≤ θpq(0, 1) + θpq(1, 0), (2)

then a global minimum ofE can be computed in polynomial
time as a minimums-t cut in an appropriately constructed
graph (“submodular graph cuts”). Submodular functions
are very important, for example, for the image segmentation
problem (see e.g. [9]). In many vision applications, how-
ever, condition (2) is not satisfied. We focus on the problem
of minimizing non-submodular functions, which is a very
challenging task (in general, NP-hard).

A promising approach for this problem calledroof dual-
ity was proposed in [15] (see a review in [18]). It produces
part of an optimal solution. Boroset al. [6] give an efficient
algorithm for computing a roof dual. It can be viewed as a
generalization of the standard graph cut algorithm used in
vision: for submodular functions the two methods give the
same answer and have exactly the same running time, ex-
cept for a linear time overhead. We will refer to this method
as theQPBOalgorithm, which stands forquadratic pseudo-
boolean optimization- this is what the minimization prob-
lem (1) is called in [15, 6]. Recently it was successfully ap-
plied to vision applications such as MR reconstruction [21]
and texture restoration [18].
Our contributions In some cases the roof duality ap-
proach does not work very well, i.e. it leaves many nodes
unlabeled. We investigate two extensions of the roof duality
approach. The first one is the “probing” method introduced
recently in [8]. This is an exact technique: it simplifies the

1

energy by contracting and fixing nodes while preserving the
global optimum. We describe an efficient implementation
and observe that our code is 400-700 times faster than the
software of [8] on several4-connected grid graphs (such
grids are common in vision.) Our experiments show that
this makes the algorithm practical for vision applications.

Second, we develop a new approximate technique: it
takes an input solution and tries to improve its energy. The
energy is guaranteed not to increase, and experimentally of-
ten decreases. Both techniques can be combined; in some
cases such combination outperformed other methods that
we tested (simulated annealing, ICM, max-product belief
propagation, graph cut, and TRW).

Last but not least, we show the importance of the roof
duality approach and its extensions for many vision appli-
cations, such as image segmentation, diagram recognition,
new view synthesis, and image deconvolution. Note, exper-
iments in [8] were outside computer vision.
Related work There is an extensive literature devoted to
minimizing energy (1). Exact methods for this problem
are usually branch-and-bound style methods, with different
techniques for obtaining a lower bound. A large number of
heuristic ideas have also been applied to this problem, e.g.
tabu search, scatter search, simulated annealing, evolution-
ary algorithms. We refer to [3, 7] and references therein for
an overview of different exact and approximate methods.

2. Optimizing Binary MRFs: Roof duality
In this section we give an overview of the roof duality ap-

proach for optimizing binary MRFs introduced in [15]. The
idea is to solve a particular linear programming (LP) relax-
ation of the energy where integer constraintsxp ∈ {0, 1}
are replaced with linear constraintsxp ∈ [0, 1]. It can be
shown that this LP has a half-integer optimal solutionx̄, i.e.
x̄p ∈ {0, 1, 1

2} for every nodep. It is convenient to define
the correspondingpartial labelingx of the integer problem
with xp ∈ {0, 1, ∅} where value∅ means that the node is
“unlabeled”.

The LP relaxation above can be solved in several dif-
ferent ways. The algorithm in [6] is perhaps the most ef-
ficient. We review this method, which we call QPBO, in
Section 2.1. As we mentioned, it produces a partial labeling
x. Properties of this labeling (in particular,persistency, or
partial optimality) are discussed in Section 2.2.

2.1. The QPBO Algorithm

We describe the algorithm of [6] using the notion of
reparameterization.
Reparameterization Let us introduce the following no-
tation. The energy of eq. (1) is specified by the constant
termθconst, unary termsθp(i) and pairwise termsθpq(i, j)
(i, j ∈ {0, 1}). It will be convenient to denote the last two
terms asθp;i andθpq;ij , respectively. We can concatenate

all these values into a single vectorθ = {θα |α ∈ I} where
the index set is

I = {const} ∪ {(p; i)} ∪ {(pq; ij)} .

Note that(pq; ij) ≡ (qp; ji), so θpq;ij and θqp;ji are the
same element. We will use the notationθp to denote a vector
of size 2 andθpq to denote a vector of size 4.

Vectorθ′ is called areparameterizationof vectorθ if the
energy functionsE′ andE that they define are the same, i.e.
E′(x) = E(x) for all labelingsx. As a particular example,
we can subtract some constant from vectorsθp or θpq and
add the same constant toθconst. Another possible trans-
formation involves edge(p, q) ∈ E and labelj ∈ {0, 1}:
we can subtract a constant from componentsθpq;ij for all
i ∈ {0, 1} and add the same constant toθp;j .
Normal form We will say that the vectorθ is in anormal
form if it satisfies the following:

(a)min{θp;0, θp;1} = 0 for all nodesp.

(b)min{θpq;0j , θpq;1j}=0 for all (p, q)∈E andj∈{0, 1}.

Normal form implies the following:θpq;00 = θpq;11 = 0,
θpq;01, θpq;10 ≥ 0 if edge(p, q) is submodular; andθpq;01 =
θpq;10 = 0, θpq;00, θpq;11 ≥ 0 if (p, q) is supermodular (see
fig. 1 in [18]).
Algorithm The first step of the QPBO algorithm is to repa-
rameterize vectorθ into a normal form. This can be done in
linear time (see e.g. [18]). Then a directed weighted graph
G = (V, A) is constructed. For each nodep ∈ V , two nodes
p, p̄ are added toV . (They correspond to variablexp and its
negationx̄p = 1 − xp, respectively). In addition, there are
two special nodes - the sources and the sinkt which corre-
spond to labels0 and1. Thus,V = {p, p̄ | p ∈ V} ∪ {s, t}.
For each non-zero elementθα (except forθconst) two di-
rected arcs are added to the graph with weightθα; details
can be found in [5, 18].

Finally, a minimums-t cut (S, T) in G is computed by
computing a maximum flow froms to t. This cut gives
an optimal solution to the LP relaxation and corresponding
partial labelingx as follows:

xp =











0 if p ∈ S, p̄ ∈ T

1 if p ∈ T, p̄ ∈ S

∅ otherwise

. (3)

It is worth noting that the maximum flow inG defines
a reparameterization of the energy. There are certain re-
lations between this reparameterization and partial label-
ing x (complementary slacknessconditions - see e.g. Ap-
pendix A).
Choosing a minimum cut One technical issue is that
graphG may have several minimum cuts(S, T). They may
correspond to different partial labelingsx with different sets

of labeled nodes. In general, there exist “extreme” cuts
(Smin , T min) and (Smax , T max) such that for any other
minimum cut(S, T) there holdsdom(xmin) ⊆ dom(x) ⊆
dom(xmax) wherexmin ,xmax , andx are the labelings de-
fined by these cuts anddom(x) denotes the set of labeled
nodes inx (“domain ofx”).

Cut (Smin , T min) can be set as follows: nodes reach-
able froms through non-saturated arcs are inSmin , and
all other nodes are inT min . (Alternatively,T min can be
set to be the set of nodes from whicht can be reached
through non-saturated arcs. It will yield the same labeling
xmin). Computing cut(Smax , T max) is a bit more compli-
cated. It can be done, for example, by analyzing strongly
connected components of the residual graph (details are re-
viewed in [18]).

Note that nodes indom(xmin) are labeled uniquely
by any minimum cut(S, T). The labeling of nodes in
dom(xmax) − dom(xmin), however, may depend on the
cut.

2.2. Properties of QPBO

We now review properties of partial labelingx produced
by the QPBO method ([15], see also [5]). Perhaps the most
important one is the following:

[P1] (Weak autarky)Let y be an arbitrary complete label-
ing, and letz=FUSE(y,x) be the “fusion” ofy andx:
zp = xp if p ∈ dom(x), andzp = yp otherwise. Then
E(z) ≤ E(y).

If we takey to be a global minimum, then we see thatx is
a part of some optimal solution:

[P2] (Weak persistency, or partial optimality)There exists a
global minimumx∗ of energy(1) such thatx∗

p = xp for
all labeled nodesp ∈ dom(x).

Strong persistency Properties [P1] and [P2] are valid
for any partial labelingx produced by QPBO. If we take
x = xmin , then these properties can be strengthened:

[P1′] (Strong autarky)Lety be a complete labeling, and let
z=FUSE(y,x). If z 6= y thenE(z) < E(y).

[P2′] (Strong persistency) Anyglobal minimumx∗ of en-
ergy(1) satisfiesx∗

p = xp for all nodesp ∈ dom(x).

Which nodes are labeled? Clearly, the usefulness of the
algorithm depends on how many nodes are labeled. In gen-
eral, we cannot expect that the method will label all nodes
since minimizing energy (1) is an NP-hard problem. In
some special cases, however, the method is guaranteed to
label all nodes [15]:

[P3] If all terms of the energy are submodular then la-
belings xmax produced by QPBO are complete, i.e.
dom(xmax) = V .

[P4] The algorithm is invariant with respect to “flipping”
a subset of nodesU ⊆ V , i.e. swapping the mean-
ing of 0 and 1 for nodesp ∈ U . (This flipping trans-
forms submodular terms betweenU andV\U into non-
submodular, and vice versa).

[P3] and [P4] imply that if there exists a flipping such that
all terms become submodular then the QPBO method will
label all nodes. By Harary’s theorem, such a flipping ex-
ists if and only if there are no frustrated cycles in the graph.
(A cycle is calledfrustrated if it contains an odd number
of non-submodular terms). Thus, property [P3] can be
strengthened as follows [15]:

[P3′] If the energy does not have frustrated cycles then la-
belingsxmax produced by QPBO are complete.

3. Extended Roof Duality

The roof duality works quite well in “simple” cases (e.g.
when the number of non-submodular terms is small), but
in more difficult cases it may leave many nodes unassigned
(Sec. 4). In this paper we study two extensions of the roof
duality approach and show that they outperform the basic
algorithm for many vision applications. The first exten-
sion is the “probing” method introduced in [8]. We call
it QPBOP where ”P” stands for “probing”. Its aim is to
find the global optimum for nodes which QPBO failed to
label. Sec. 3.1 reviews this method and also describes an
efficient implementation. Then in Sec. 3.2 we propose a
new algorithm which we call QPBOI, where ”I” stands for
“improve”. Its aim is to efficiently improve a given refer-
ence solution. Unless noted otherwise, we will assume for
simplicity that QPBO produces the (unique) strongly per-
sistent solutionx = xmin , and write it asx = QPBO(E).
Note, in practicexmin andxmax are often the same1.

We will use an operation called “fixing a node”. Letx =
QPBO(E), and consider unlabeled nodep with xp = ∅

and given labeli ∈ {0, 1}. Define energyE′ = E[p ← i]
as follows:E′(y) = E(y) + Ep(yp) whereEp is a “hard
constraint” term withEp(i) = 0, Ep(1 − i) = Cp andCp

is a sufficiently large constant. If we run QPBO for energy
E′ then we obtain a new partial labelingx′ in which more
nodes may have become labeled. We refer to this behaviour
as “spreading”. It is easy to show the “monotonicity” prop-
erty, i.e. thatx′

q = xq for q ∈ dom(x) andx′
p = i (see

Appendix B).
Instead of adding termEp, it is also possible to remove

term θp from the energy along with all incident pairwise
termsθpq while modifying unary termsθq. Note that adding

1This is not surprising. Indeed, QPBO may produce multiple partial
labelingsx only if the LP problem has multiple global minima; then there
are several extreme points of a linear polytope which have the same cost.
If, for example, costsθα are generated uniformly at random from some
finite non-empty interval then the probability of this eventis 0.

Figure 1.Basic idea of QPBOP.Left: QPBO labeling for the cur-
rent energy, ’?’ means unlabeled. Middle & right: labelingsafter
fixing nodep (red). We can conclude thatx

∗
q = 0 andx

∗
r = x

∗
p

for any global minimumx
∗. Therefore, nodeq can be fixed to 0,

and nodesp andr can be contracted.

the hard constraint term and removing nodep are equivalent
operations (see Appendix B).

3.1. QPBOP: Preserving Global Optimality

The basic idea of probing [8] is illustrated in Fig. 1. Let
x = QPBO(E), and consider unlabeled nodep. Let us
fix p to 0 and to 1 and run QPBO in each case. We will
obtain two partial labelingsx0 = QPBO(E[p ← 0]) and
x1 = QPBO(E[p← 1]). LetU be the set

U =
[

dom(x0) ∩ dom(x1)
]

− [dom(x) ∪ {p}] .

By the strong persistency property, we can draw the follow-
ing information about global minimax∗ of energyE:

x∗
p = i ⇒ x∗

q = xi
q ∀ i ∈ {0, 1}, q ∈ U .

Thus, nodes inU can be excluded from the energy without
affecting the global minimum (or minima). Indeed, con-
sider nodeq ∈ U . Two cases are possible:

i) x0
q = x1

q = j. Thenx∗
q = j for all global minimax∗,

thereforexq can be fixed toj.
ii) x0

q 6= x1
q . This means that either (a)x0

q = 0, x1
q = 1, or

(b) x0
q = 1, x1

q = 0. In case (a) we know thatx∗
p = x∗

q

for all global minimax∗, therefore we can “contract”p
andq. In case (b) there holdsx∗

p = 1− x∗
q for all global

minima x, therefore we can “flip” variablexq (change
the meaning of 0 and 1) and then contractp andq.

For details of the contract operation see Appendix B. In
this operation edges(q, r) are replaced with edges(p, r),
self-loops are deleted, and parallel edges are merged.

If set U is nonempty, then the operations above will mod-
ify the energy reducing the number of nodes; the new set of
nodes isV − U . Then we run QPBO again for the new en-
ergy obtaining a new partial labelingx′. A “monotonicity”
property holds, i.e.x′

q = xq for q ∈ dom(x) (see Appendix
B). Thus, nodes indom(x) − U are labeled inx′ (and in
fact other nodes may become labeled as well).

We can repeat these operations for other nodes of the
new energy. In the end we obtain a new energyE′ defined
on a graph(V ′, E ′) and functionf : 2V

′

→ 2V which maps
configurationsy of energyE′ to configurationsx of the
original energy2.

2Functionf can be described via two mappingsα : V → V ′ ∪ {0},
σ : V → {0, 1}. For configurationy ∈ 2V

′

labeling x = f(y) is

Proposition 1. (a) Functionf gives a one-to-one mapping
between the sets of optimal solutions of energiesE′ andE.

(b) For any labelingy ∈ 2V
′

there holdsE(f(y))=E′(y).

Adding directed constraints In practice it often happens
that fixing nodep to 0 and to 1 labels different sets of nodes:
dom(x0) 6= dom(x1). Consider nodeq which is labeled in
xi but not inx1−i. Running QPBO gave the information
that has not been exploited yet; namely, ifx∗

p = i for a
global minimumx∗ then there must holdx∗

q = xi
q.

To incorporate this information, one could add a pairwise
termEpq(xp, xq) to the energy whereEpq(i, 1 − xi

q) = C
and all other entries are zeros. (HereC is a sufficiently large
constant; the exact value will not affect the correctness of
the procedure, as long asC is non-negative.) QPBOP with
directed constraints has the following properties which can
be easily verified by induction:

Proposition 1′. (a) (Same as in proposition 1).

(b) For any labelingy ∈ 2V
′

withE′(y) < minz E′(z)+C
there holdsE(f(y)) = E′(y).

One disadvantage of adding all possible constraints is
that the graph might grow significantly. Unless noted oth-
erwise, for experiments in this paper we used the following
compromise: we add directed constraints only for already
existing edges. Thus, no new edges are allocated. We com-
pare this version with the full approach in Sec. 4.

In analogy with directed constraints, one could try to
implement the operation of contracting nodesp and q by
adding a pairwise termEpq(xp, xq) which would enforce
the constraintxp = xq . It is worth mentioning, how-
ever, that this can much weaker than the contraction de-
scribed above. For example, with “real” contraction parallel
edges may become merged, which could make LP relax-
ation much tighter.
Algorithm’s summary QPBOP algorithm first runs
QPBO for energyE. Then it repeats the following steps
until a certain stopping criterion:

• Pick unlabeled nodep.

• Fix it to 0 and to 1, compute labelingsx0, x1 and setU .

• Fix or contract nodes inU thus removing them.

• For all edges(p, q) ∈ E with q ∈ dom(x0) − dom(x1)
or q ∈ dom(x1) − dom(x0) add a directed constraint,
unless such constraint has already been added.

• If the energy has changed, run QPBO again, update the
set of unlabeled nodes.

The algorithm stops when there was a pass over all unla-
beled nodes but no changes to the energy were made. At

defined as follows: ifαp = 0 for nodep ∈ V thenxp = σp, otherwise
xp = (yq + σp)mod 2 whereq = αp. Note that mappingα defines a
partitioning of the setV .

this point no further contractions are possible, so the algo-
rithm has converged. Clearly, the termination occurs aftera
polynomial number of passes over the nodes.

3.1.1 Efficient Implementation

We now describe an efficient implementation of QPBOP.
As noted in [8], it is important to reuse previous calcula-
tions when the graph is updated (e.g. when the nodes are
contracted). A correct implementation of the update op-
erations, however, requires some care: the graph and flow
constructed by the QPBO method have a certain property
which must be preserved. Boroset al. [8] propose to main-
tain thesymmetrycondition which says that each arc holds
the same flow as its “mate”. This is achieved by modifying
the maxflow algorithm3. We propose to maintain the “re-
laxed symmetry condition” instead (see Appendix A). One
advantage of this is that the algorithm can work with integer
capacities, whereas maintaining the symmetry condition re-
quires floating point numbers (even if the original costs are
integers).

We used the maxflow algorithm in [10], and reused flow
and search trees as described in [16]. We modified the code
so that it maintains a list of visited nodes; thus, setU can be
traversed without going through the entire graph. Using the
relaxedsymmetry condition makes the update operation for
nodesp, q quite fast: it involves only these nodes. In con-
trast, maintaining the symmetry condition using techniques
in [10, 16] appears more difficult. After every maxflow
computation we would need to go through all edges that
have been accessed and restore the symmetry property. This
could affect many edges, which would make reusing the
search trees more complicated.

Our scheme also has a disadvantage: with the symmetry
condition the lower bound on the function (represented by
the amount of pushed flow) never decreases, which is not
necessarily the case with the relaxed symmetry condition.
Order of processing nodes Experimentally, the order in
which nodes are probed affects both the final result and the
running time. The difference in final results appears in-
significant in practice4. However, optimizing the order is
quite important for reducing the number of probed nodes
(and, thus, the running time). We found the following

3The implementation of [8] is based on Dinic algorithm, but every aug-
mentation is performed on a pair of “mate” paths (personal communica-
tions with G. Tavares).

4We ran QPBOP on200 random grid graphs of size50 × 50 with
two different random orders. After running QPBO2418.4 pixels were
unlabeled (on average), and after QPBOP the number of nodes in energy
E′ was1219.0. Partitionings of the setV produced by the two runs were
compared as follows. LetU to be the minimal set of pixels so that (i) each
partition belongs either toU or toV − U , and (ii) partitions ofV − U in
both runs are exactly the same. (Pixels fixed in one run but notin the other
are included inU ; pixels fixed in both runs are excluded.) The average size
of U was22.2 pixels. In 37% of the cases results were identical.

heuristic to work well. We split the execution into itera-
tions; one iteration consists of processing nodes in a cer-
tain set. In a given iteration we record nodes which made
progress, i.e. whose processing resulted in changes to the
energy. We then dilate this set of nodes by a fixed amount
(3 rounds), and in the next iteration test only nodes in the
dilated set. When the set becomes empty, we process all
nodes again. Note, in the beginning all nodes are in the set.
Comparison of implementations Results on 3 random 4-
connected100 × 100 grid graphs are shown below. (First
column corresponds to the implementation of [8], second
and third - to our implementation with standard and opti-
mized ordering, respectively5). Our implementation is 400-
700 times faster. It should be noted that there are many dif-
ferences between the implementations: maxflow algorithm
used, search tree recycling, symmetry vs. relaxed sym-
metry condition, integer vs. floating point capacities, data
structures for storing the graph, and ordering of processing
nodes. We believe that a major factor in the speed-up is
the maxflow algorithm in [10] together with reusing search
trees [16], whose use is simplified because of the relaxed
symmetry condition. We make our code publicly available;
we hope that this would have a significant practical impact
in vision.

unlabeled after unlabeled after time (sec)
QPBO (%) QPBOP (%)

1 92.1 5.8 5.8 5.8 718.9 2.00 1.72
2 97.9 42.2 42.2 42.6 5098.5 10.3 7.4
3 99.5 73.6 62.7 62.9 9589.6 37.3 21.4

3.2. QPBOI: Improving a Given Solution

So far we have discussed exact methods (QPBO and QP-
BOP) which give information about global minima of the
energy. We now turn to the problem of obtaining a good
approximate solution. Let us assume that we have an (com-
plete) input labelingx obtained via some method (e.g. ran-
dom or max-product BP). Our goal is to try to improve this
labeling using QPBO.

Let us pick an arbitrary subset of nodesS ⊂ V and fix
nodes inS to labels given byx. We denote the obtained en-
ergy asE[S ← x]. Now we can run QPBO for this energy
obtaining partial labelingy. Obviously,yp = xp for nodes
p ∈ S. Property [P1′] immediately implies the following

Proposition 2. Let z = FUSE(x,y), i.e. zp = yp if p ∈
dom(y), andzp = xp otherwise. Ifz 6= x thenE(z) <
E(x).

Thus, we can setx := z and repeat the procedure for a

5To conform to the implementation of [8], all methods add all possible
directed constraints and use weakly persistent solution produced by QPBO
in the main loop (but not in the probing operations). Weakly persistent
solutions are not unique, which accounts for slightly different percentages
of unlabeled nodes.

different subsetS. The construction guarantees that the en-
ergy of labelingx does not increase. We call this technique
QPBOI, where ”I” stands for improve.

To achieve efficiency, we propose to use a nested se-
quence of subsetsS according to some ordering of nodes
π : V → {1, . . . , |V|}. Then flow and search trees can be
reused as in [16]. One iteration of this procedure is given
below.

• Select an ordering of nodesπ.

• Initialization: Computey = QPBO(E), set x :=
FUSE(x,y), S := dom(y).

• For nodesp ∈ V do in the orderπ:

- If p /∈ S computey = QPBO(E[S ∪ {p} ← x]),
setx := FUSE(x,y), S := dom(y).

It is worth mentioning that the QPBOI procedure can be
generalized: rather than fixing nodes to values inx, we can
(i) enforce hard constraints satisfied by current labelingx

via contracting nodes of the energy; (ii) Add non-negative
numbers to elementsθα such that the cost ofx stays the
same. It is not difficult to see that proposition 2 still holds.
We informally tested a particular variant6 but found that it
performed worse than fixing nodes.
Local minima of QPBOI In order to understand the ca-
pabilities of QPBOI we now analyze local minima of this
procedure.

Definition 3. Labelingx is calledstable(or QPBO-stable)
if no QPBOI operation can change it, i.e. for any subset
S ⊂ V there holdsyp = xp for p ∈ dom(y) wherey =
QPBO(E[S ← x]).

The theorem below exhibits a large class of functions for
which stable labelings are essentially global minima.

Theorem 4. Suppose energyE and labelingx satisfy at
least one of the following conditions:

(a) E does not have frustrated cycles.

(b) θconst = 0, θp;i ≥ 0 for all indexes(p; i), θpq;ij ∈
{0, C} for all indexes(pq; ij) whereC is a positive
constant, andE(x) < C.

Thenx is stable iff it is a global minimum ofE.

6We tested contracting nodesp, q for existing edges(p, q). In the be-
ginning we flip a subset of nodes so that the current labelingx becomes
0 for all nodes, and maintain this property afterwards. In other words, if
after any of the following operations nodep gets label 1 then we flipp.

Next, we choose a random order in which edges are processed. Then we
iterate over all edges in the given order (possibly multipletimes). Edges
which are supermodular are contracted, and edges which are submodu-
lar are not contracted; instead, they are moved to the next iteration. The
algorithm terminates when all edges of the energy become submodular.
(Clearly, this happens after a polynomial number of steps.)Therefore,
conditions of property [P3′] are satisfied.

Note that since in case (b) there exists a solution whose cost
is smaller thanC, pairwise terms act as hard constraints;
for any solutiony with E(y) ≤ E(x) there must hold
θpq(yp, yq) = 0 for all edges(p, q). A proof of the the-
orem is given in Appendix C; it relies on characterization
[P3′].

In general, however, there may be stable solutions which
are not optimal. A simple example is the energy

E(x, y, z) = 3|x− y|+ 3|y − z|+ 2xy + (1− x)(1 − y).

(1, 1, 1) is a stable solution, and(0, 0, 0) is the optimum.
(Note thatE(1, 1, 1) is larger thanE(0, 0, 0) but smaller
than the cost of all other labelings. Also, running QPBOI
with the empty setS does not label any nodes.)

Using theorem 4 it is not difficult to show the following
negative result (see Appendix D):

Theorem 5. Testing whether a labeling is stable is a co-NP
complete problem (under Turing reductions).

Thus, obtaining good orderings in the QPBOI procedure is
a difficult task. Nevertheless, experimental results in Sec-
tion 4 show that in many cases random permutations do de-
crease the energy, at least during the first few iterations.

3.3. Summary of Algorithms

There are several options for using the techniques de-
scribed in Sec. 3. An important question for QPBOI is how
to initialize it. Furthermore, QPBOP and QPBOI can be
combined. We settled on the following four methods:
QPBOP This technique is designed for obtaining partial
optimal solutions. We demonstrate that in many cases it
significantly outperforms QPBO, i.e. it produces fewer un-
labeled nodes.
BP+I First we run QPBO, then max-product BP (only for
unlabeled nodes) and finally improve the solution using QP-
BOI with random permutations of nodes.

We used a “sequential” schedule of BP as in [17]. Be-
fore starting BP, we reparameterized the energy so that
θpq;00 = θpq;11, andθpq;01 = θpq;10 for each edge(p, q).
(Note that it does not make sense to start with the reparam-
eterization obtained after running QPBO, since such repa-
rameterization is a fixed point of BP).

QPBOI is stopped when the energy has not improved for
5 iterations, and BP is run for a large number of iterations
(here1000) and the best result is taken.
P+BP+I First we run QPBOP obtaining new energyE′ and
mappingf : 2V

′

→ 2V . Then we apply BP+I for energy
E′; this gives solutiony ∈ 2V

′

. The output of P+BP+I is
the labelingx = f(y) 7

7Note that QPBOI applied to energyE′ never increases the costE′(y).
By property 1′(b) costE(x) wherex = f(y) also does not increase,

P+I In some scenarios an input labelingx for energy
E is available, and it is desirable that the method does
not increase it. (An example is the expansion move algo-
rithm [11]; the input labeling(0, . . . , 0) corresponds to the
current configuration.) We now show how to combine QP-
BOP and QPBOI to ensure this property. The basic step
of the QPBOP is to fix nodep to 0 and to 1 and compute
corresponding partial labelingsx0 andx1. We propose to
update labelingx as follows: x := FUSE(x,xi) where
i = xp. It can be seen that fix and contract operations pre-
serve the “structure” ofx, e.g. if nodeq is fixed to label
j during QPBOP then there must holdxq = j. Let y be
the transformed labeling for energyE′. It is easy to ver-
ify by induction that if constantC in QPBOP is sufficiently
large (namely,E(x) < minz E(z) + C) then there holds
E′(y) = E(f(y)) ≤ E(x). After QPBOP we run QPBOI
for energyE′ starting with labelingy.

4. Experiments

In this section we will first investigate the performance of
the methods described above with respect to various MRF
settings. Then we consider six different applications with
non-submodular MRFs and compare them to a standard set
of MRF optimization methods. Finally we show the use-
fulness of our new P+I method within the standard alpha-
expansion procedure [11] to optimize a multi-labeled MRF.

4.1. Performance of QPBOP and QPBOI

In the following we measure the improvement of QP-
BOP over QPBO in terms of additionally labeled pixels. For
QPBOI the improvement, with respect to a given reference
solution, is measured in terms of lower energy. We are also
interested in the runtime overhead for both methods with re-
spect to QPBO. In general, the performance of QPBO (and
extended versions) strongly depends on three factors: num-
ber of non-submodular terms (ideally, the number of frus-
trated cycles), connectivity (i.e. average degree of a node),
and strength of unary versus pairwise terms. This strength
is computed as: meanp,iθp;i/meanp,q,i,jθpq;ij , after conver-
sion into normal form (similar to [7]). Fig. 2 shows several
variations of these factors.

QPBOP significantly extends QPBO in a way that is not
achievable by common exact methods. To illustrate this,
we took a random 4-connected graph of size100 × 100
for which QPBO failed to label 73% of nodes (runtime
was0.08 sec). We found that the unlabeled nodes induce
a clique of size 45 (treewidth 44), based on the min-fill
method [4], with other triangulations being even larger.
Thus the exact junction tree algorithm is completely in-
feasible here, requiring Terabytes of RAM just to store the

assuming that the output of BPy satisfiesE′(y) < minz E′(z) + C.
Note that if constantC is sufficiently large, then it is easy to find labeling
y that satisfies this - see P+I.

QPBOP (Global Min.) QPBO (37.1% unlabeled)

Figure 4.Diagram recognition. Given a raw unlabeled hand-
drawing, the task is to classify whether each pen stroke is part
of a container (red and bold) or a connector (blue). QPBOP finds
the global minimum and labels all strokes correctly (left),whereas
standard QPBO finds only part of the global solution and leaves
37.1% of the pen strokes unlabeled (dashed in the right diagram).

clique. In contrast, QPBOP found the global minimum of
this problem in0.4 sec.

4.2. Applications

In the following we will compare a standard set of op-
timization techniques [24] (ICM, BP, TRW-S, Graph Cut,
QPBO, and Simulated Annealing) with the new methods
on real world applications where binary non-submodular
MRFs occur. We are interested to see which method
achieves the best performance in a ”reasonable” time, i.e.
up to several seconds depending on the application. There-
fore, we do not plot runtime versus energy but simply report
the energy and runtime of the best result for each method.
Some notes on the competitive methods: Iterative Condi-
tional Modes (ICM) is run with a random traversal order
until convergence. Details of Belief Propagation (BP) are
described in Sec. 3.3. Since graph cut (GC) cannot handle
non-submodular terms we truncated them as in [23]. Sim-
ulated annealing (SA) is capable of producing high qual-
ity results with potentially long runtimes. We tweaked the
parameters of SA for eachindividual problem, to achieve
best results. Finally, TRW-S is guaranteed to give the same
answer as QPBO [19], therefore we omit it. (We verified
experimentally that the result for labeled nodes is identi-
cal. Furthermore, running TRW-S until convergence of the
lower bound is much slower than QPBO in practice.)

Table 1 lists the comparison of all methods for one or
two examples of each of the six applications.
Diagram Recognition Shape recognition in hand-drawn
diagrams is an application where the QPBOP method con-
siderably outperforms standard QPBO. We tested2700 dia-
gram problems, with an average of64 nodes and connectiv-
ity of 4.1. The MRF model is described in [25]. QPBOP
returned the global minimum forall problems, whereas
QPBO failed to label all nodes in97 cases, with between
5% and56% of nodes unlabeled. One of those challeng-
ing examples is shown in fig. 4. Another difficult example
is listed in table 1 where the new methods (P+BP+I and
BP+I) attain the lowest energy, and QPBOP confirms that

0 1 2 3
0

20

40

60

80

100

Unary Strength (a)

pe
rc

. u
nl

ab
el

le
d

QPBO; 0.1% NS
QPBOP; 0.1% NS
QPBO; 50% NS
QPBOP; 50% NS

0 5 10 15 20
0

20

40

60

80

100

Unary Strength (b)

pe
rc

. u
nl

ab
el

le
d

QPBO; 8con
QPBOP; 8con
QPBO; 24con
QPBOP; 24con

0.5 1 1.5 2 2.5 3
0

1

2

3

4

Unary Strength (c)

T
im

e
(s

ec
.)

QPBO
QPBOP
additional labeling
of QPBOP

83.2%

shown in
percentage

3%

0 0.05 1 168
52

67

82

97

Time (sec.) (d)

E
n

er
g

y

P+BP+I
P+Rand+I
BP+I
Rand+I

Figure 2.Performance of QPBOP and QPBOI.As default we use a4-connected random graph in normal form of size100× 100 pixels
with 50% non-submodular terms and unary strength0.8. (a,b) compares QPBO and QPBOP with respect to varying non-submodularity
(NS) and connectivity (con). The percentage of labeled nodes decreases for: (i) a large number of non-submodular terms,(ii) high
connectivity, or (iii) a small unary strength. Note that theimprovement of QPBOP over QPBO differs between0% and90% of additionally
labeled nodes depending on the MRF settings. (c) compares the runtime of QPBO and QPBOP. As to be expected, the runtime increases
significantly when QPBOP labels considerably more nodes than QPBO. For practical use an important range is the unary strength between
1.5 and3, where QPBOP is able to compute (most of the time) the global minimum with only a small runtime overhead. (d) illustrates
energy versus runtime for P+BP+I, BP+I, and both methods with a random starting point (P+Rand+I, Rand+I), i.e. a reference solution
with random labeling. Note, QPBOI was stopped when the energy did not increase for 5 iterations. We see that using BP as thestarting
point consistently gives a better result. For this particular problem running QPBOP first gives a large improvement in runtime, however,
for certain applications the runtime overhead of QPBOP can be considerable and therefore BP+I may sometimes be preferred in practice.

Applications Sim. An. ICM GC BP BP+I P+BP+I QPBO QPBOP

Diagram recognition (4.8con) 0 (0.28s) 999 (0s) 119 (0s) 25 (0s) 0 (0s) 0 (0s) 56.3% (0s) 0% (0s)GM

New View Synthesis (8con) - (-s) 999 (0.2s) 2 (0.3s) 18 (0.6s) 0 (2.3s) 0 (1.4s) 3.9%(0.7s) 0% (1.4s)GM

Super-resolution (8con) 7 (52s) 68 (0.02s) 999 (0s) 0.03 (0.01s) 0.001 (0.06s) 0 (0.047s) 0.5% (0.016s) 0% (0.047s)GM

Image Segm. 9BC + 1 Fgd Pixel (4con)983 (50s) 999 (0.07s) 0 (28s) 28 (0.2s) 0 (31s) 0 (10.5s) 99.9% (0.08s) 0% (10.5s)GM

Image Segm. 9BC; 4RC (4con) 900 (50s) 999 (0.04s) 0 (14s) 24 (0.2s) 0 (3s) 0 (1.48s) 1% (1.46s) 0% (1.48s)GM

Texture restoration (15con) 15 (165s) 636 (0.26) 999 (0.05s) 19 (0.18s) 0.01 (2.4s) 0 (14s) 16.5% (1.4s) 0% (14s)GM

Deconvolution3 × 3 kernel (24con) 0 (0.4s) 14 (0s) 999 (0s) 5 (0.5s) 3.6 (1s) 0 (0.4s) 45% (0.01s) 43% (0.4s)

Deconvolution5 × 5 kernel (80con) 0 (1.3s) 6 (0.03s) 999 (0s) 71 (0.9s) 8.1 (31s) 8.1 (31s) 80% (0.1s) 80% (9s)

Table 1.Comparison table for different applications. Results are given as: Energy (runtime in seconds). For each problem the energies
are scaled to the range of0 to 999. Note that an energy of0 in the last two rows does not mean that this is the global optimal solution. The
last two columns show the percentage of unlabeled nodes for QPBO and QPBOP, where GM means global minimum. For segmentation
BC means boundary constraint and RC region constraint. Also, for segmentation, graph cut was run2

n (n = number BC) times with flow
and search tree recycling to obtain the global minimum. Note, ICM and simulated annealing do not perform well for applications with hard
pairwise constraints (infinite links), such as segmentation and new view synthesis.

Figure 3.Image deconvolution.Given a blurry and noisy input image with32 gray-levels, the task is to reconstruct the ground truth. The
new P+I method within alpha-expansion improves results compared to graph cut and QPBO-based alpha expansion both in terms of energy
and visually. Note, for all alpha expansion based methods the order is crucial. Energies of P+I differed between26.3 and27.9 and runtime
between12 and31 sec, best result shown. Also, to improve runtime of P+I we initialized it with standard graph cut based alpha expansion.
BP (E=103), TRW (E=112) and ICM (E=54) perform poorly. Simulated annealing achieved a similar result to P+I in60 sec.

Figure 5.New View Synthesiswhere QPBO leaves5731 pixels
(3.9%) unlabeled (black), QPBOP finds the global minimum, and
graph cut (best of all competitors) has visually noticeableartifacts.

this is indeed the global minimum.

Super-resolution and new view synthesis For super-
resolution we used the approach of [14] where a node la-
bel corresponds to a patch from a reference patch dictio-
nary. The MRF pairwise terms encode the compatibility
of overlapping patches of neighboring nodes. The amount
of non-submodularity can be high, e.g.45%. The unary
terms encode color consistency with the low-resolution im-
age. To make it suitable for our purpose we use two labels
and a5 × 5 patch size which correspond to an 8-connected
MRF (no overlap in the3 × 3 center as in [14]). For New

Figure 6.Interactive Segmentation with Boundary and Region
Constraints. (a) Input image with superimposed user inputs: one
inside brush (red), one outside brush (blue) and9 unconnected
boundary constraints (green), bold for better visibility.(b) Zoom
into a boundary constraint: Pixels on each line (light and dark
green) are constrained to have the same labeling and one extra non-
submodular link (red) constrains both lines to have opposite labels.
For optimal speed QPBOP first probes pixels at the red links. Note
that alternative formulations, e.g. a ”fat” intelligent scissors brush,
with no specific start and endpoints, are possible and give similar
results. The segmentation result of the penguin using QPBO (c)
has26.7% of unlabeled pixels (red), where QPBOP (d) finds the
global minimum in about the same time as QPBO.

View Synthesis as introduced in [13] we may use the same
MRF structure, where labels are now color modes derived
from depth images (details omitted). We have tested several
examples and parameter settings for both applications and
may conclude that QPBO typically has a smaller number of
unlabeled nodes, e.g. up to3.9% (in total 5731 pixels) for
example in fig. 5. QPBOP is able to find the global min-
imum most of the time with very little extra runtime (see
examples in table 1).

Image segmentation An important issue for interactive
image segmentation is the combination of boundary con-
straints, as in intelligent scissors [20], and region con-
straints, as in [9]. Here we show that this is possible by
including a few non-submodular terms, see fig. 6. We have
tested our system for many images, where two examples are
listed in table 1. The conclusion is that QPBOP is able to
give the global minimum for all examples we have tested,
and outperforms QPBO considerably. The speed of QPBOP
is affected by the number of brush strokes, the more the
faster. All other methods perform very poorly for this appli-
cation. Note, an alternative approach to compute the global
minimum is to run standard graph cut2n times wheren is
the number of unconnected boundary constraints. For the
example in fig. 6 wheren = 9, running512 graph cuts with
flow and tree recycling [16] and an optimized order took
in the best case16 sec (84 sec without recycling) which is
considerably more than the3.8 sec of QPBOP.

Parameter learning for binary texture restoration In
this application we restore a noisy test image of a texture,
based on an MRF model learned from a training image of
the same texture type. We used the same learning procedure
as described in [18] based on [12] with the only difference
that QPBO is replaced by P+BP+I. We have done this for

one Brodatz texture D103 (see [18]) where the test error (av-
eraged over20 examples) reduces from25.4 to 25.1 when
using P+BP+I instead of QPBO. One example is listed in
table 1 where P+BP+I achieved the global minimum. For
this application BP+I achieved nearly the same result with
a speed-up factor of6.
Image deconvolution In [22] image deconvolution was
formulated as a labeling problem with a pairwise MRF and
solved using graph cut based alpha-expansion. Given an
n×n convolution kernel the MRF connectivity is(2n−1)×
(2n− 1)− 1. Fig. 3 shows an example of reconstructing an
input image with32 different gray-scales and convolution
with a 3 × 3 kernel. To solve this32 label problem we use
alpha-expansion where the P+I method (Sec. 3.3) is used as
the binary optimizer. Rajet al. [21] also use QPBO-based
alpha expansion to reconstruct MR images, although with a
sparsely connected MRF.

We have also used the deconvolution MRF with only two
labels to reconstruct binary images. Table 1 gives two re-
sults with different convolution kernels. The main conclu-
sion is that for highly connected MRFs, e.g. connectivity
80, simulated annealing outperforms all other methods in-
cluding P+BP+I, and QPBOP performs similarly to QPBO.

5. Conclusions and Future Work

We presented an efficient implementation of the QPBOP
method in [8] which is 2-3 orders of magnitude faster than
the implementation of [8] on some vision related graphs.
We introduced a new technique called QPBOI for optimiz-
ing binary non-submodular MRFs, and proved theoretical
properties of this method. We have verified experimentally
that QPBOP finds the global minimum for many vision ap-
plications and that QPBOI nearly always achieves a lower
energy with respect to any given reference solution that we
have tested. Both techniques are efficient due to graph cut
with flow and search tree recycling.

We believe that the main impact of our work lies on
the application side, where we plan to further investigate
MRFs with high order cliques and multiple labels. Also,
most handcrafted MRFs in computer vision are submodu-
lar, which is not necessarily true for learned MRFs. Con-
sequently we believe that the demand for efficient, but gen-
eral, optimizers both during MRF learning and inference,
will increase considerably in the future. Finally, we will
make the code and energies publicly available, as a step to-
wards a benchmarking system for optimizing challenging,
non-submodular MRFs in computer vision, similar to [24].
Acknowledgements We thank the anonymous reviewers
for pointing out the recent work [8], Gabriel Tavares for
running some tests on our datasets and sharing the imple-
mentation of “probing” used in [8], and Oliver Woodford
for providing us with energies for the new view synthesis
problem.

Appendix A: Relaxed symmetry condition

Recall that the QPBO method constructs a directed
weighed graphG = (V, A, c). The vertex set isV =
{p, p̄ | p ∈ V} ∪ {s, t} and arcs inA correspond to non-
zero components of vectorθ (see e.g. [18]). Each node
u ∈ V has a “mate”̄u ∈ V such that̄̄u = u; similarly, each
arca = (u → v) ∈ A has a “mate” arc̄a = (v̄ → ū) ∈ A.
GraphG with residual capacitiesc ≥ 0 defines an energy
functionE(· | θ) with the following parameter vectorθ:

θp;0 = cpt + csp̄ θp;1 = csp + cp̄t

θpq;00 = cpq̄ + cqp̄ θpq;01 = cpq + cq̄p̄

θpq;10 = cp̄q̄ + cqp θpq;11 = cp̄q + cq̄p

(4)

(We assume thatcuv = 0 if there is no arc(u→ v) in A.)
For convenience, we will assume thatA contains arcs

(s → u), (u → t), (u → s), (t → u) for every nodev ∈
V − {s, t}. Let us also define the following sets:

V int=V − {s, t} (set of “interior” nodes)

Aint={(u→v) ∈ A | u, v ∈ V int} (set of “interior” arcs)
Ast = {(u→v) ∈ A | u 6= t, v 6= s}

Boros et al. [8] maintain thesymmetry conditionwhich
says that each arca ∈ A has the same flow as its mate,
so ca = cā. This can be achieved by modifying the
maxflow algorithm, as in [8]. Alternatively, after every
maxflow computation one could go through arcs and set
c′a := 1

2 (ca + cā), c′ā := 1
2 (ca + cā). Both schemes re-

quire floating point numbers. The latter scheme also has the
following disadvantage: because of rounding errors, after
restoring the symmetry condition the flow is not necessarily
optimal, i.e. there may be augmenting paths froms to t of
very small capacity. (We observed this in practice). There
are several ways to handle this complication, e.g. iterate the
maxflow algorithm until a symmetric optimal flow is found.

We maintain the followingrelaxed symmetry condition
instead:

−cu +
∑

(u→v)∈Aint

cuv = cū +
∑

(v̄→ū)∈Aint

cv̄ū ∀u ∈ V int (5a)

cuv + cvu = cv̄ū + cūv̄ ∀ (u→ v) ∈ Aint (5b)

wherecu = csu − cut for nodeu ∈ V int. These condi-
tions essentially say that(V, A, c) can be obtained by push-
ing flow in a graph satisfying the symmetry condition:

Proposition 6. For arc a = (u→ v)∈Ast let c′a = 1
2 (ca +

cā) andfa = c′a− ca = 1
2 (cā− ca). Also, letfa = −fa for

a ∈ A−Ast. Thenf is a circulation inG, i.e. it satisfies

fuv = −fvu ∀ (u→ v) ∈ A (antisymmetry)
∑

(u→v)∈A

fuv = 0 ∀u ∈ V (flow conservation)

Proof. The antisymmetry property for arc(u→ v) ∈ Aint

follows from (5b):

2(fuv + fvu) = (cv̄ū − cuv) + (cūv̄ − cvu)
= (cv̄ū + cūv̄)− (cuv + cvu) = 0

Let us verify the flow conservation property. For nodeu ∈
V int, we have

2
∑

(u→v)∈A

fuv = 2

[

−fsu + fut +
∑

(u→v)∈Aint

fuv

]

= −(cūt − csu) + (csū − cut) +
∑

(u→v)∈Aint

(cv̄ū − cuv)

=

[

cū +
∑

(v̄→ū)∈Aint

cv̄ū

]

−

[

−cu +
∑

(u→v)∈Aint

cuv

]

= 0

To show flow conservation at the sources, let us sum ex-
pression (5a) for all nodesu ∈ V int and subtract half of the
sum of (5b) for all arcs(u→ v) ∈ Aint. Then we obtain

∑

u∈V int

−cu =
∑

u∈V int

cū

The expression on the LHS is the negation of the expression
on the RHS, so it must equal zero. Thus,

2
∑

(s→u)∈A

fsu =
∑

u∈V int

(cūt − csu)

=
∑

u∈V int

(cut − csu) =
∑

u∈V int

−cu = 0

Conservation at the sinkt can be shown in a similar way. (In
fact, it follows from the conservation at other nodes.)

This proposition together with results in [5] imply the
correctness of the relaxed symmetry condition. For com-
pleteness, let us state and prove main properties.

Proposition 7. Suppose that residual capacitiesc in graph
G satisfy equations(5). Let E(· | θ) be the energy defined
by (4). Let (S, T) be a minimum cut inG and x be the
corresponding partial labeling defined by(3).

(a) Pushings-t flow of valueC through graphG main-
tains the relaxed symmetry condition(5). Further-
more, it corresponds to a reparameterization of energy
E(· | θ) if componentθconst is increased byC.

(b) Property [P1] (“weak autarky”) holds forx andE.

(c) If there are no augmenting paths froms to t, then the
following complimentary slackness conditions hold:

θα ≥ 0 ∀ α ∈ I − {const}
θp(xp) = 0 ∀ p ∈ dom(x)
θp(i) = 0 ∀ p /∈ dom(x), i ∈ {0, 1}
θpq(xp, xq) = 0 ∀ p, q ∈ dom(x)
θpq(xp, j) = 0 ∀ p ∈ dom(x), q /∈ dom(x), j ∈ {0, 1}

(6)

(Note, by a “cut” we always mean ans-t cut).

Proof. Checking (a) is a straightforward calculation [5].
Part (b) follows easily from (a) and (c). Indeed, by (a)
we can assume without loss of generality that we have
a maximum flow inG, and thus (c) can be applied. If
y is a complete labeling andz = FUSE(y,x) then
E(z | θ) ≤ E(y | θ) since by (6) each term in the sum
E(z) = θconst +

∑

p θp(zp) +
∑

(p,q) θpq(zp, zq) is the
same or smaller than the corresponding term in the sum
E(x) = θconst +

∑

p θp(xp) +
∑

(p,q) θpq(xp, xq).
Let us prove part (c). For subsetU ⊆ V , defineU⋆ =

V − {u | ū ∈ U}. The relaxed symmetry condition implies
the following key property:

cost(S, T) = cost(S⋆, T ⋆) for any cut(S, T) (7)

In particular, if(S, T) is a minimum cut then so is(S⋆, T ⋆).
Indeed, (7) clearly holds if capacitiesc in graphG are sym-
metric. Pushing flow inG preserves the cost of a cut, so by
proposition 6 property (7) holds if capacitiesc satisfy the
relaxed symmetry condition.

Consider arca = (u→ v) ∈ A, u ∈ S, v ∈ T . We have
v̄ ∈ S⋆, ū ∈ T ⋆, ā = (v̄ → ū) ∈ A. By the Ford-Fulkerson
theorem, arcsa and ā are saturated:ca = cā = 0. Using
this property, checking part (c) amounts to considering all
possible cases. Consider, for example, nodep ∈ V . Three
cases are possible:

• p ∈ S, p̄ ∈ T, xp = 0. Thenθp(xp) = cpt + csp̄ = 0.

• p ∈ T, p̄ ∈ S, xp = 1. Thenθp(xp) = csp + cp̄t = 0.

• p, p̄ ∈ S or p, p̄ ∈ S, soxp = ∅. In each caseθp(0) =
cpt + csp̄ = 0, θp(1) = csp + cp̄t = 0.

The last two equations in (6) for edge(p, q) ∈ E can be
verified in a similar way.

Computing solutionsxmin and xmax In general, graph
G may have several minimum cuts(S, T) yielding solutions
x with different number of labeled nodes. As discussed in
section 2.1, there exist “extreme” cuts(Smin , T min) and
(Smax , T max) such that for any other minimum cut(S, T)
there holdsdom(xmin) ⊆ dom(x) ⊆ dom(xmax) where
xmin ,xmax ,x are the labelings defined by these cuts. Be-
low we review how these cuts can be computed. We assume
thatG = (V, A, c) is a residual graph satisfying the relaxed
symmetry condition (5) in which there are no augmenting
paths froms to t, i.e. a maximum flow has been found.
Computing xmin Let S◦ ⊂ V be the set nodes reachable
from s via non-saturated arcs, andT ◦ ⊂ V be the set of
nodes from whicht can be reached via non-saturated arcs.
It is well-known thatS◦, T ◦ are disjoint, and(S◦, V −S◦),
(V − T ◦, T ◦) are theminimal and themaximalminimum
cuts, i.e. minimum cuts with the smallest and the largest

source component, respectively. Both of these cuts define
the labelingxmin [5]. Indeed, property (7) and the fact
|S⋆| = |V |− |S| imply that((S◦)⋆, (V − S◦)⋆) is themax-
imal minimum cut, soV − T ◦ = (S◦)

⋆. Thus, for node
u ∈ V we have(u ∈ S◦) ⇔ (ū ∈ T ◦). This implies that
(S◦, V −S◦), (V −T ◦, T ◦) define the same labelingxmin .

The “extremality” ofxmin can be easily verified. Sup-
pose nodep has labelxmin

p = 0, i.e. p ∈ S◦, p̄ ∈ T ◦.
Thenp ∈ S◦ ⊆ S, p̄ ∈ T ◦ ⊆ T for any other minimum
cut(S, T), so labelingx defined by(S, T) satisfiesxp = 0.
The casexmin

p = 1 is analogous.
For a proof of the strong autarky and persistency proper-

ties ofxmin we refer to [5].
Computing xmax Let us show that partial labelingxmax

with the maximum number of labeled nodes can be com-
puted fromG without restoring the symmetry condition.
Consider the following algorithm:

• Compute set̂V = V int − S◦ − T ◦. TakeÂ to be the
set of non-saturated arcs(u→ v) ∈ A, u, v ∈ V̂ .

• Compute strongly connected components in(V̂ , Â),
contract them to single nodes.

• Run a topological sort algorithm on the obtained di-
rected acyclic graph. The result is an ordering of nodes
π : V̂ → Z such that for all arcs(u → v) ∈ Â
there holdsπ(u) < π(v) (unlessu andv belong to
the same strongly connected component, in which case
π(u) = π(v)).

• Extendπ to all nodes inV : setπ(u) = +∞ if u ∈ S◦,
andπ(u) = −∞ if u ∈ T ◦.

• Set cut(Smax , T max) as follows: ifπ(u) ≥ π(ū) then
u ∈ Smax , otherwiseu ∈ T max . The corresponding
partial labelingxmax is determined as follows: (i) If
π(p) > π(p̄) thenxp = 0. (ii) If π(p) < π(p̄) then
xp = 1. (iii) If π(p) = π(p̄) thenxp = ∅.

If the symmetry property is satisfied, then this procedure is
equivalent to the method in [2]. Let us show that the al-
gorithm works correctly if the relaxed symmetry condition
holds.

Lemma 8. Definec′ andf as in proposition 6.

(a) If ca >0 for arc a=(u→v)∈Ast thenπ(u) ≤ π(v).

(b) If fa 6=0 for arc a=(u→v)∈A thenπ(u) = π(v).

(c) If c′a >0 for arc a=(u→v)∈Ast thenπ(u) ≤ π(v).

Proof. Part (a) follows from the construction of mapping
π. Together with part (b) it implies part (c) since for arc
a ∈ Ast eitherca = c′a or fa 6= 0. Let us prove part (b).

By the flow decomposition theorem [1], circulationf
can be written asf = f1 + . . . , f r where eachf j is a flow

in a simple cycle and for all arcsa ∈ A elementsf1
a , . . . , fr

a

are either all non-positive or all non-negative. Consider arc
a ∈ A with fa < 0. Arc a must belong to a cycle de-
fined by one of the flowsf j . Suppose that the cycle con-
tains arcsa1, a2, . . . , ak with fai

< 0, ai = (ui → ui+1),
uk+1 = u1. We claim thatπ(u1) = . . . = π(uk). Indeed,
for arcai ∈ Ast we have1

2 (cāi
−cai

) = fai
< 0, cāi

≥ 0,
thereforecai

> 0. Now consider four possible cases:

• The cycle does not contains, t. Then all arcsai in the
cycle belong toAst, socai

> 0. Using part (a), we obtain
π(u1) ≤ . . . ≤ π(uk) ≤ π(u1), which implies our claim.

• The cycle containss but nott. By renaming indexes we
can ensure thatu1 = s. All arcs ai exceptak belong to
Ast, so all nodesui in the cycle can be reached froms via
non-saturated arcs. Thus,π(ui) = +∞.

• The cycle containst but nots. By renaming indexes we
can ensure thatuk = t. All arcs ai exceptak belong to
Ast, sot can be reached from all nodesui in the cycle via
non-saturated arcs. Thus,π(ui) = −∞.

• The cycle containss, t. Then there is a path froms to
t containing arcsai ∈ Ast. Arcs in this path are non-
saturated, which contradicts to the fact that we have a max-
imum flow inG.

Now let us prove that(Smax , T max) is a minimum cut
in (V, A, c′) (and, thus, in(V, A, c)). Suppose thatu ∈
Smax , v ∈ T max , (u → v) ∈ A. We need to show that
c′uv = 0. Suppose this is not the case:c′uv = c′v̄ū > 0. Then
we arrive at a contradiction:

π(u) ≥ π(ū) ≥ π(v̄) > π(v) ≥ π(u)

(This first inequality holds sinceu ∈ Smax , the third one
holds sincev ∈ T max , the second and fourth follow from
part (c) of lemma 8.)

It remains to show the “extremality” of the correspond-
ing solutionxmax . Suppose that nodep is not labeled in
xmax , i.e. π(p) = π(p̄). This means thatp, p̄ ∈ V̂ and
p, p̄ belong to the same strongly connected component in
(V̂ , Â), i.e. there exists non-saturated paths fromp to p̄ and
from p̄ to p. By the Ford-Fulkerson theorem a minimum
cut(S, T) cannot separatep andp̄, sop is unlabeled by any
minimum cut.

Appendix B: Implementational details

In this section we describe details of our implementa-
tion. We use an adjacency list representation for storing
the graph. Nodes are stored in a single array so that there
is a constant memory shift between a node and its mate.
A similar scheme is used for arcs. This allows to obtain

efficiently the mate of a given node or arc without using
additional pointers. The source and sink are not stored ex-
plicitly; instead, one number per nodecu is stored. With our
data structure, removing arc(u→ v) takesO(deg(u)) time
wheredeg(u) is the degree of nodeu. Removing nodev
takesO(

∑

(u→v)∈Aint deg(u)) time. In vision applications
nodes typically have a small degree, so such operations are
quite efficient.

Let us describe details of “fix” and “contract” operations
in QPBOP. As discussed in Appendix A, we need to update
the graph and residual capacities so that the relaxed sym-
metry condition (5) is preserved and the reparameterization
given by (4) gives the desired energy. We will use the fol-
lowing operation for arc(u→ v) ∈ Aint:

cu := cu − δ, cuv := cuv − δ,
cvu := cvu + δ, cv := cv + δ

(8)

This operation can be viewed as sending a flow inG be-
tween the terminals, possibly fromt to s. Therefore, it pre-
serves invariant (5) and corresponds to a reparameterization
of the energy. When pushing such a flow, we will always
ensure that capacities of all arcs inAint stay non-negative.

We consider fixing nodep to only one of the labels, say
0. (Fixing p to label1 can be reduced to this operation by
“flipping” p, i.e. swapping the meaning of 0 and 1. Flipping
simply means renaming nodesp↔ p̄.)
Fixing nodep ∈ V to label 0 This is done by adding arcs
(s→ p) and(p̄→ t) with a large weightC, or setting

cp := cp + C, cp̄ := cp̄ − C

After that flow is pushed inG using operations (8) so that all
arcs(p → v), (v̄ → p̄) ∈ Aint become saturated (i.e. their
residual capacities become zeros),cp becomes positive, and
cp̄ becomes negative. Clearly, these conditions can always
be ensured ifC is sufficiently large.

It is easy to verify by induction that from now no aug-
menting path froms to t will go through nodesp, p̄. (In-
deed, there are no non-saturated outgoing arcs fromp other
than tos, and there no non-saturated incoming arcs top̄
other than fromt). Therefore, removing nodesp, p̄ together
with incident edges will not affect the output of QPBO. This
implies our claim that adding a hard constraint termEp(xp)
and removing termθp along with incident pairwise terms
θpq are equivalent operations.
Contracting nodes p, q ∈ V First, all arcs involving
nodeq are reassigned top (e.g. arc(q → u) is replaced with
the arc(p → u) with the same weight), and arcs involving
nodeq̄ are reassigned to nodēp. This includes, in particular,
arcs froms and tot; in other words, we setcp := cp + cq,
cp̄ := cp̄ + cq̄. After that we scan arcs(p→ u) ∈ A and do
the following:

• Suppose there are two arcs fromp to u whereu = r or
u = r̄ for some noder ∈ V − {p}. Then there must be

three other pairs of parallel arcs (fromu to p, from ū to
p̄, and fromp̄ to ū). For each such pair one of the arcs is
removed and its capacity is added to the other arc.

These operations are equivalent to adding two pairwise
termsθpr andθ′pr which are either both submodular or
both supermodular.
• Suppose there are arcs(p → r) and (p → r̄) where

r ∈ V − {p}. Then we need to merge a submodular
and a supermodular term. First, we push flow inG using
operations (8) to ensure that

cpr = cr̄p̄, cpr̄ = crp̄ (9)

(this will imply that crp = cp̄r̄, cr̄p = cp̄r because
of (5b)). These arcs now contribute to the energy one
submodular termθ1

pr = [0, 2cpr, 2cqr, 0] and one su-
permodular termθ2

pr = [2cpr̄, 0, 0, 2cr̄p]. (We use
the following convention for pairwise terms:θpr =
[θpr;00, θpr;01, θpr;10, θpr;11].) We compute the sum
θpr = θ1

pr + θ2
pr and remove arcs between{p, p̄} and

{r, r̄}. Invariant (5a) will still hold because of condi-
tion (9).

The final step is to convert termθpr into a normal form
(thus, unary termsθp andθr may appear) and add two
arcs for each non-zero component ofθp, θpr, θr, as de-
scribed e.g. in [18].

• Suppose there is an arc(p → u) whereu ∈ {p, p̄}; then
there is a corresponding arc(ū → p̄). These arcs ap-
peared because there was an edge(p, q) ∈ E beforep
andq were contracted. First, we send flow inG using
operations (8) to ensure thatcpu = cūp̄. If u = p̄ then
we setcp := cp + (cpp̄ − cp̄p), cp̄ := cp̄ + (cpp̄ − cp̄p).
Finally, we remove arcs(p→ u), (ū→ p̄).

This can be justified as follows. Suppose that before
contraction the arcs contributed termθpq. (We assume
that the symmetry condition holds for arcs correspond-
ing to (p, q)). Label xp = i in the new energy corre-
sponds to the labelsxp = xq = i in the old energy
(i ∈ {0, 1}). Therefore we need to add unary termθp

whereθp;0 = θpq;00, θp;1 = θpq;11. This is done by set-
ting cp := cp + 1

2 (θp;0− θp;1), cp̄ := cp̄−
1
2 (θp;0− θp;1).

It remains to check thatθp;0 = θp;1 = 0 if u = p, and
θp;0 = 2cpp̄, θp;1 = 2cp̄p if u = p̄.

Adding directed constraints To add constraint(xp =
0)⇒ (xq = 0) for an existing edge(p, q) ∈ E , we add arcs
(p → q), (q̄ → p̄) with a large capacityC representing the
term [0, 2C, 0, 0], and then merge it with the existing term
as described above. An important practical question is how
to recognize whether a constraint has already been added,
and how to choose a capacity which would not cause an
overflow but would be sufficiently large to enforce a “hard”
constraint. We use the following approach. First, we select

a constantC0 which is larger than the maximum capacity
in the graph. After probing nodep, we check whether the
current termθpq satisfies

θpq;01 + θpq;10 − θpq;00 − θpq;11 ≥ C0 (10)

If not, the constraint has not been added yet; then we add a
directed constraint with the value ofC so that an equality
would hold in (10). (This could happen at most once for this
particular constraint, since the expression in (10) is invariant
to reparameterization).

These operations, however, do not guarantee that we re-
ally enforce the “hard” constraint. To get such a guarantee,
after updating the graph we compute a maximum flow inG
and check arcs(p → q), (q̄ → p̄). If at least one of them
is saturated then we addC0 to their residual capacities, and
continue with the probing algorithm.
“Monotonicity” property Let us show the “monotonic-
ity” property mentioned in Section 3. Letx = QPBO(E)
whereE is the original energy. Assume for simplicity of
notation thatxp = 0 for all nodesp ∈ dom(x) (this con-
dition can be ensured by flipping variables). Since QPBO
is invariant to reparameterization, we also assume without
loss of generality that before fix/contract operations we had
a maximum flow in graphG, i.e. there was no path froms
to t via non-saturated arcsa ∈ A with ca > 0.

Consider cut(S◦, V −S◦) whereS◦ = {p ∈ dom(x)}∪
{s}. According to the discussion in Appendix A, the fol-
lowing properties hold:

(a) All nodes inS◦ can be reached from the source via
non-saturated arcs.

(b) All arcs fromS◦ − {s} to V − S◦ are saturated.

(By the Ford-Fulkerson theorem, (b) follows from the fact
that(S◦, V − S◦) is a minimum cut). “Fix” and “contract”
operations are applied only to currently unlabeled nodes;
therefore, properties (a,b) still hold after the graph is mod-
ified. Note that the set of nodes in the new graph may
change; however, nodes inS◦ are preserved.

It follows from (a,b) that an augmenting path froms to t
cannot contain nodes inS◦ − {s}. Therefore, pushing flow
from s to t will not violate (a,b). Using a straightforward
induction, we obtain that after a maximum flow is computed
properties (a,b) still hold.

Let (S◦′, V − S◦′) be the minimal minimum cut in the
new graph which defines the strongly persistent solutionx′.
It follows from (a) thatS◦ ⊆ S◦′, which implies the mono-
tonicity property:x′

p = xp for all nodesp ∈ dom(x).

Appendix C: proof of theorem 4

One direction of the theorem follows immediately from
proposition 2: ifx is optimal then it must be stable. Assume

now thatx is stable. In this section̄S = V − S denotes the
complement of subsetS ⊆ V , andx[S̄] : S̄ → {0, 1} is the
restriction ofx to S̄. The definition of stability implies the
following useful fact:

Proposition 9. LetE′ = E[S ← x] be the energy obtained
by fixing nodes inS ⊆ V to values inx, and letx′ = x[S̄].
If x is stable forE, thenx′ is stable forE′.

Case (a) First we consider the case when energyE has
a unique global minimum. Let us run QPBOI with the
empty setS, i.e. compute the strongly persistent solution
y = QPBO(E). We claim that the graph constructed by
QPBO has a unique minimum cut(S, T). Indeed, let us flip
a subset of nodes of functionE so that it becomes submod-
ular. Analyzing the graph constructed in the QPBO method
one can see that it consists of two independent networks.
The first one contains nodes{p | p ∈ V} ∪ {s, t} and rep-
resents energyE, while the second network contains nodes
{p̄ | p ∈ V} ∪ {s, t} and represents energyE where all
nodes are flipped. Therefore, each network (and thus the
whole graph) has the unique minimum cut.

Thus, partial labelingsy and ymax defined by cuts
(Smin , T min) = (Smax , T max) are the same, so by prop-
erty [P3′] y is a complete labeling. Sincex is stable, there
holdsx = FUSE(x,y) = y sox a global minimum ofE.

Now consider a more general case whenE may have
multiple global minima. Let us choose an optimal solution
x∗ which maximizes|{p ∈ V | x∗

p = xp}|. Let S = {p ∈
V | x∗

p = xp}, and consider energyE′ = E[S ← x]. It
is easy to see thatE′ has a unique global minimumx∗[S̄].
(Indeed, ifx∗∗[S̄] is another global minimum ofE′ with
x∗∗

p = x∗
p for p ∈ S thenx∗∗ is a global minimum ofE and

produces a larger set{p ∈ V | x∗∗
p = xp}.) Furthermore,

x[S̄] is stable forE′. As we have shown above, this implies
thatx[S̄] is optimal forE′, and thusx is optimal forE.
Case (b) We can assume without loss of generality that
there are no edges(p, q) with θpq = 0 (they can be removed
without affecting the LP relaxation and, thus, the definition
of stability). Letx∗ be a global minimum ofE, and letS =
{p ∈ V | x∗

p = xp}. We will prove below that energyE′ =
E[S ← x] does not have frustrated cycles. Theorem 4(a)
will then imply thatx[S̄] is optimal forE′ and, thus,x is
optimal forE.

Lemma 10. Consider pathP in graph G from nodep
to nodeq whose nodes lie in̄S. Let N(P) be the num-
ber of non-submodular edges inP . ThenN(P) = xq −
xp (mod 2).

Proof. We will use induction on the length of the path|P |.
The base case (|P | = 0, p = q) is trivial. Suppose that the
lemma holds for all paths of lengthk ≥ 0, and consider path
P ′ = (p, . . . , q, r) of lengthk + 1 obtained by appending
edge(q, r) to pathP . Sinceq, r ∈ S̄ we havex∗

q = 1− xq ,

x∗
r = 1 − xr. Costs of labelingsx,x∗ is smaller thanC,

therefore

θqr(xq, xr) = θqr(x
∗
q , x

∗
r) = θqr(1−xq, 1−xr) = 0. (11)

Two cases are possible:

• xq = xr . From (11) we getθqr(0, 0) = θqr(1, 1) = 0.
Thus, edge(q, r) is submodular, so

N(P ′) = N(P) = xq − xp = xr − xp (mod 2).

• xq 6= xr . From (11) we getθqr(0, 1) = θqr(1, 0) = 0.
Thus, edge(q, r) is non-submodular, so

N(P ′) = N(P)+1 = xq−xp+1 = xr−xp (mod 2).

It follows from the lemma that every cycle whose nodes
lie in S̄ contains an even number of non-submodular terms,
i.e. energyE′ does not have frustrated cycles, as claimed.

Appendix D: proof of theorem 5

Let (P) be a procedure which computes whether a given
labelingx for energyE is stable or not. Using a polynomial
number of calls to(P) we can determine a setS ⊂ V which
decreases the energy, assuming that labelingx is not stable.
Indeed, we can use the following greedy method. Start with
the empty setS. Pick a nodep ∈ V , fix it to label xp and
run (P) for the new energy. If labelingx is still not stable
thenp is added to setS. Otherwise other nodes are tested.
Clearly, the method terminates in a polynomial number of
steps and produces the desired setS.

It is clear that the decision problem in theorem 5 belongs
to the class co-NP: if the answer is negative (i.e.x is not
stable) then there exists a certificate (subsetS) which can
be used for verifying in polynomial time thatx is indeed
not stable. Thus, in order to prove the theorem we need to
show that a certain NP-hard problem can be solved via a
polynomial number of calls to(P).

We consider the minimum vertex cover (VC) problem
which is NP-hard. The instance of VC is given by an undi-
rected graph(V , E). SetS ⊆ V is called avertex coverif
for each edge(p, q) ∈ E at least one of the nodesp, q is in
S. The goal is to compute a vertex cover of minimum car-
dinality. SetS can be described by labelingx : V → {0, 1}
such thatxp = 1 if p ∈ S. The following energy func-
tion E represents the objective function of VC:θp;1 = 1,
θpq;00 = |V|+ 1, all other entries are 0.

Let us use the following method for minimizingE. We
start with solutionx = (1, . . . , 1) whose cost is|V|. Using
procedure(P) we test whetherx is stable or not. If not,
we compute a corresponding subsetS and apply QPBOI

method with subsetS. It gives labelingx with smaller en-
ergy. We repeat this procedure until convergence. Clearly,
there are at most|V| steps.

Upon convergence we obtain a stable labelingx. By the-
orem 4 such a labeling is a global minimum ofE. Thus, we
have solved the VC problem.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993.

[2] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear time algo-
rithm for testing the truth of certain quantified boolean for-
mulas. Inform. Process. Lett, 8:121–123, 1979. Erratum,
Inform. Process. Lett. 14(4), 195 (1982).

[3] J. E. Beasley. Heuristic algorithms for the unconstrained
binary quadratic programming problem. Technical report,
Management School, Imperial College, London, UK, 1998.

[4] H. Bodlaender. Discovering treewidth. InConf. Current
Trends in Theory and Practice of Informatics (SOFSEM),
pages 1–16, 2005.

[5] E. Boros and P. L. Hammer. Pseudo-boolean optimization.
Discrete Applied Mathematics, 123(1-3):155 – 225, 2002.

[6] E. Boros, P. L. Hammer, and X. Sun. Network flows and
minimization of quadratic pseudo-Boolean functions. Tech-
nical Report RRR 17-1991, RUTCOR, May 1991.

[7] E. Boros, P. L. Hammer, and G. Tavares. Local search heuris-
tics for unconstrained quadratic binary optimization. Tech-
nical Report RRR 9-2005, RUTCOR, Feb. 2005.

[8] E. Boros, P. L. Hammer, and G. Tavares. Preprocessing of
unconstrained quadratic binary optimization. Technical Re-
port RRR 10-2006, RUTCOR, Apr. 2006.

[9] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal
boundary and region segmentation of objects in N-D images.
In ICCV, 2001.

[10] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. PAMI, 26(9), Sept. 2004.

[11] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts.PAMI, 23(11), Nov. 2001.

[12] D. Cremers and L. Grady. Learning statistical priors for ef-
ficient combinatorial optimization via graph cuts. InECCV,
2006.

[13] A. W. Fitzgibbon, Y. Wexler, and A. Zisserman. Image-based
rendering using image-based priors. InICCV, 2003.

[14] W. Freeman, E. Pasztor, and O. Carmichael. Learning low-
level vision. IJCV, 40(1):24–57, 2000.

[15] P. L. Hammer, P. Hansen, and B. Simeone. Roof duality,
complementation and persistency in quadratic 0-1 optimiza-
tion. Mathematicl Programming, 28:121–155, 1984.

[16] P. Kohli and P. H. S. Torr. Efficiently solving dynamic
Markov random fields using graph cuts. InICCV, Oct. 2005.

[17] V. Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization.PAMI, 28(10):1568–1583, Oct.
2006.

[18] V. Kolmogorov and C. Rother. Minimizing non-submodular
functions with graph cuts - a review.PAMI, 2007. To appear.
Online version at http://research.microsoft.com/c̃arrot.

[19] V. Kolmogorov and M. Wainwright. On the optimality of
tree-reweighted max-product message passing. InUAI, July
2005.

[20] E. Mortensen and W. Barrett. Intelligent scissors for image
composition.SIGGRAPH, 1995.

[21] A. Raj, G. Singh, and R. Zabih. MRF’s for MRI’s: Bayesian
reconstruction of MR images via graph cuts. InCVPR, 2006.

[22] A. Raj and R. Zabih. A graph cut algorithm for generalized
image deconvolution. InICCV, 2005.

[23] C. Rother, S. Kumar, V. Kolmogorov, and A. Blake. Digital
tapestry. InCVPR, 2005.

[24] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kol-
mogorov, A. Agarwala, M. Tappen, and C. Rother. A com-
parative study of energy minimization methods for Markov
random fields. InECCV, May 2006.

[25] M. Szummer and Y. Qi. Contextual recognition of hand-
drawn diagrams with conditional random fields. In9th Intl.
Wkshp. Frontiers in Handwriting Recognition, 2004.

