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Abstract energy function of the form

Many computer vision applications rely on the efficient B(x) = 6. 9 9 1
optimization of challenging, so-called non-submodular, b (%) = Geonst + ) Op(2p) + D Opglp,24) . (1)
nary pairwise MRFs. A promising graph cut based ap-

proach for optimizing such MRFs known as “roof duality” Hereg = (1, £) is an undirected graph. The set of nodkes
was recently introduced into computer vision. We study two ysyally corresponds to pixels, ang € {0,1} denotes the
methods which extend this approach. First, we discuss anjapel of nodep. It is well-known that if the functior is
efficient implementation of the “probing” technique intro-  sypmodular, i.e. every pairwise terty, satisfies
duced recently by Borost al.[8]. It simplifies the MRF
while preserving the global optimum. Our code is 400-700 0pq(0,0) 4+ 6,4(1,1) < 0,4(0,1) + 0,4(1,0), (2)
faster on some graphs than the implementation of [8]. Sec-
ond, we present a new technique which takes an arbitrary then a global minimum of’ can be computed in polynomial
input labeling and tries to improve its energy. We give theo- time as a minimuns-¢ cut in an appropriately constructed
retical characterizations of local minima of this procedur ~ graph (“submodular graph cuts”). Submodular functions
We applied both techniques to many applications, in- are very important, for example, for the image segmentation
cluding image segmentation, new view synthesis, super{problem (see e.g. [9]). In many vision applications, how-
resolution, diagram recognition, parameter learning,-tex ever, condition (2) is not satisfied. We focus on the problem
ture restoration, and image deconvolution. For several ap- of minimizing non-submodular functions, which is a very
plications we see that we are able to find the global mini- challenging task (in general, NP-hard).
mum very efficiently, and considerably outperform the orig- A promising approach for this problem callexbf dual-
inal roof duality approach. In comparison to existing tech- ity was proposed in [15] (see a review in [18]). It produces
niques, such as graph cut, TRW, BP, ICM, and simulated partof an optimal solution. Borost al. [6] give an efficient
annealing, we nearly always find a lower energy. algorithm for computing a roof dual. It can be viewed as a
generalization of the standard graph cut algorithm used in
vision: for submodular functions the two methods give the
same answer and have exactly the same running time, ex-
Most early vision problems can be formulated in terms cept for a linear time overhead. We will refer to this method
of Markov random fields (MRFs). Algorithms for MRF in-  as theQPBOalgorithm, which stands fajuadratic pseudo-
ference therefore are of fundamental importance for com-boolean optimization this is what the minimization prob-
puter vision. The MAP-MRF approach (computing maxi- lem (1) is called in [15, 6]. Recently it was successfully ap-
mum a posteriori configurations in an MRF) has proven to plied to vision applications such as MR reconstruction [21]
be extremely successful for many vision applications suchand texture restoration [18].
as stereo, image segmentation, image denoising, superOur contributions In some cases the roof duality ap-
resolution, new view synthesis and others. We refer to [24] proach does not work very well, i.e. it leaves many nodes
for an overview of MRF optimization techniques in vision. unlabeled. We investigate two extensions of the roof dyalit
Binary MRFs In this paper we focus on a special class of approach. The first one is the “probing” method introduced
MRFs. Namely, we consider the problem of minimizing an recently in [8]. This is an exact technique: it simplifies the
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energy by contracting and fixing nodes while preserving the all these values into a single vectbe {0,, |« € Z} where

global optimum. We describe an efficient implementation

the index set is

and observe that our code is 400-700 times faster than the

software of [8] on several-connected grid graphs (such

grids are common in vision.) Our experiments show that

this makes the algorithm practical for vision applications
Second, we develop a new approximate technique:

takes an input solution and tries to improve its energy. The
energy is guaranteed not to increase, and experimentally of X ;
ten decreases. Both techniques can be combined: in som&Nergy functiond”

/ —
cases such combination outperformed other methods that/ (x) =
¢ we can subtract some constant from vectyysr ,,, and

we tested (simulated annealing, ICM, max-product belie
propagation, graph cut, and TRW).
Last but not least, we show the importance of the roo

duality approach and its extensions for many vision appli-
cations, such as image segmentation, diagram recognition

Z = {const} U {(p;i)} U {(pg; ij)} -

Note that(pg;ij) = (gp;ji), SObpqi; andby,.;; are the

jrsame element. We will use the notatityto denote a vector

of size 2 and),,, to denote a vector of size 4.

Vectorf' is called areparameterizatiomof vectorf if the
andF that they define are the same, i.e.
E(x) for all labelingsx. As a particular example,

add the same constant #,,,s;. Another possible trans-

¢ formation involves edgep, ¢) € € and labelj € {0, 1}:

we can subtract a constant from componehts;; for all
i € {0,1} and add the same constandjg;.

new view synthesis, and image deconvolution. Note, exper-Normal form We will say that the vectaf is in anormal

iments in [8] were outside computer vision.

Related work There is an extensive literature devoted to
minimizing energy (1). Exact methods for this problem
are usually branch-and-bound style methods, with differen

techniques for obtaining a lower bound. A large number of Normal form implies the following®,4.00 = 0

formif it satisfies the following:

(@)min{6,.0,0,.1} = 0 for all nodesp.
(b) min{6p,q.05, Opg:1; 1 =0 forall (p, ¢) €€ andj € {0, 1}.

pg;11 — 0,

heuristic ideas have also been applied to this problem, €.94,,,.01,6,,.10 > 0if edge(p, ¢) is submodular; and, .01 =

tabu search, scatter search, simulated annealing, emaluti

Opgi10 = 0, Opq:00, Opg:11 > 0 (p, ¢) is supermodular (see

ary algorithms. We refer to [3, 7] and references therein for fig. 1 in [18]).

an overview of different exact and approximate methods.

2. Optimizing Binary MRFs: Roof duality

In this section we give an overview of the roof duality ap-

proach for optimizing binary MRFs introduced in [15]. The
idea is to solve a particular linear programming (LP) relax-
ation of the energy where integer constraintse {0,1}
are replaced with linear constraints € [0, 1]. It can be
shown that this LP has a half-integer optimal solutiome.
z, € {0,1,1} for every nodep. It is convenient to define
the correspondinpartial labelingx of the integer problem
with z,, € {0,1, @} where valuez means that the node is
“unlabeled”.

Algorithm The first step of the QPBO algorithmis to repa-
rameterize vecta? into a normal form. This can be done in
linear time (see e.g. [18]). Then a directed weighted graph
G = (V, A) is constructed. For each noge V), two nodes
p, p are added té". (They correspond to variablg, and its
negationz, = 1 — z, respectively). In addition, there are
two special nodes - the sourge@nd the sink which corre-
spond to label andl. Thus,V = {p,p | p € V} U {s,t}.
For each non-zero elemeéy, (except forf.o,st) two di-
rected arcs are added to the graph with weightdetails
can be foundin [5, 18].

Finally, @ minimums-¢ cut (S, T") in G is computed by
computing a maximum flow frons to ¢. This cut gives

The LP relaxation above can be solved in several dif- 5 optimal solution to the LP relaxation and corresponding

ferent ways. The algorithm in [6] is perhaps the most ef-
ficient. We review this method, which we call QPBO, in

Section 2.1. As we mentioned, it produces a partial labeling

x. Properties of this labeling (in particularersistencyor
partial optimality) are discussed in Section 2.2.

2.1. The QPBO Algorithm

We describe the algorithm of [6] using the notion of
reparameterization
Reparameterization Let us introduce the following no-

partial labelingx as follows:

0 ifpeSpeT
fpeT,pesS
otherwise

(3)

Tp =41
[%)

It is worth noting that the maximum flow id: defines

a reparameterization of the energy. There are certain re-
lations between this reparameterization and partial tabel
ing x (complementary slacknessnditions - see e.g. Ap-

tation. The energy of eq. (1) is specified by the constant pendix A).

termfqonst, UNAry termd, (i) and pairwise term8,, (s, j)
(i,7 € {0,1}). It will be convenient to denote the last two
terms ad),,; andd,,,;;, respectively. We can concatenate

Choosing a minimum cut One technical issue is that
graphG may have several minimum cutS, 7). They may
correspond to different partial labelingsvith different sets



of labeled nodes. In general, there exist “extreme” cuts[P4] The algorithm is invariant with respect to “flipping”

(Gwin gminy gnd (Smax Tmax) sych that for any other a subset of node& C V, i.e. swapping the mean-
minimum cut(S, T') there holdslom(x™*) C dom(x) C ing of 0 and 1 for nodep < . (This flipping trans-
dom(x™* ) wherex™in  x™ax 'andx are the labelings de- forms submodular terms betwekrand V\U{ into non-
fined by these cuts antbm(x) denotes the set of labeled submodular, and vice versa).

nodes inx (“domain ofx”).

Cut (§min Tmin) can be set as follows: nodes reach-
able froms through non-saturated arcs are §t'", and
all other nodes are ™. (Alternatively, 7™ can be
set to be the set of nodes from whi¢hcan be reached
through non-saturated arcs. It will yield the same labeling
x™min) Computing cu S™a*  T™ax) js a bit more compli-
cated. It can be done, for example, by analyzing strongly
connected components of the residual graph (details are repp31 If the energy does not have frustrated cycles then la-
viewed in [18]). _ belingsx™2* produced by QPBO are complete.

Note that nodes inlom(x™™) are labeled uniquely

by any minimum cut(S,7). The labeling of nodes in 3 Extended Roof Duality
dom(x™# ) — dom(x™" ), however, may depend on the

[P3] and [P4] imply that if there exists a flipping such that
all terms become submodular then the QPBO method will
label all nodes. By Harary’s theorem, such a flipping ex-
ists if and only if there are no frustrated cycles in the graph
(A cycle is calledfrustratedif it contains an odd number
of non-submodular terms). Thus, proper#y3] can be
strengthened as follows [15]:

cut. The roof duality works quite well in “simple” cases (e.g.
when the number of non-submodular terms is small), but
2.2. Properties of QPBO in more difficult cases it may leave many nodes unassigned

(Sec. 4). In this paper we study two extensions of the roof
duality approach and show that they outperform the basic
algorithm for many vision applications. The first exten-
sion is the “probing” method introduced in [8]. We call
[P1] (Weak autarky) ety be an arbitrary complete label- it QPBOP where "P” stands for “probing”. Its aim is to
ing, and letz=FUSHK(y, x) be the “fusion” ofy andx: find the global optimum for nodes which QPBO failed to
zp = xp if p € dom(x), andz, = y, otherwise. Then  label. Sec. 3.1 reviews this method and also describes an
E(z) < E(y). efficient implementation. Then in Sec. 3.2 we propose a
new algorithm which we call QPBOI, where "I” stands for
“improve”. Its aim is to efficiently improve a given refer-
ence solution. Unless noted otherwise, we will assume for

[P2] (Weak persistencyor partial optimality)There existsa ~ simplicity that QPBO produces the (unique) strongly per-
global minimumx* of energy(1) such thatr; = x, for sistent solutiorx =~Xmln , and write it asx = QPBQE).
all labeled nodeg € dom(x). Note, in practicec™™ andx™** are often the sanie
We will use an operation called “fixing a node”. Let=
Strong persistency Properties P1] and [P2] are valid  QPBQ(E), and consider unlabeled nogewith =, = &
for any partial labelingc prod.uced by QPBO. If we take  and given labet € {0,1}. Define energys’ = Ep — i
x = x™"  then these properties can be strengthened: as follows: E'(y) = E(y) + E,(y,) whereE, is a “hard

[P1] (Strong autarky).ety be a complete labeling, and let  constraint” term withEy, (i) = 0, E,(1 — i) = C, andC,
z=FUSHy x). If z # y thenE(z) < E(y). is a sufficiently large constant. If we run QPBO for energy
’ E’ then we obtain a new partial labeling in which more

nodes may have become labeled. We refer to this behaviour
as “spreading”. It is easy to show the “monotonicity” prop-
Which nodes are labeled? Clearly, the usefulness of the ~ erty, i.e. thatr = z, for ¢ € dom(x) andz;,, = i (see
algorithm depends on how many nodes are labeled. In genAppendix B).

eral, we cannot expect that the method will label all nodes  Instead of adding terni,, it is also possible to remove
since minimizing energy (1) is an NP-hard problem. In term¢, from the energy along with all incident pairwise
some special cases, however, the method is guaranteed t€rmsd,, while modifying unary term8,. Note that adding
label all nodes [15]:

We now review properties of partial labelisrgoroduced
by the QPBO method ([15], see also [5]). Perhaps the most
important one is the following:

If we takey to be a global minimum, then we see thkais
a part of some optimal solution:

[P2] (Strong persistency) Anglobal minimumx* of en-
ergy (1) satisfiese;, = =, for all nodesp € dom(x).

1This is not surprising. Indeed, QPBO may produce multipleigla

[733] If all terms of the energy are submodular then la- labelingsx only if the LP problem has multiple global minima; then there
ay are several extreme points of a linear polytope which hageséime cost.

belings x™** produced by QPBO are complete, i.e. i for example, cost®,, are generated uniformly at random from some
dom(x™**) =V, finite non-empty interval then the probability of this even®.
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Figure 1.Basic idea of QPBOPLeft: QPBO labeling for the cur-
rent energy, '?’ means unlabeled. Middle & right: labelirdter
fixing nodep (red). We can conclude thaf, = 0 andz; = =,
for any global minimumx™*. Therefore, node can be fixed to 0,
and nodeg andr can be contracted.

the hard constraint term and removing ned®e equivalent
operations (see Appendix B).

3.1. QPBOP: Preserving Global Optimality

The basic idea of probing [8] is illustrated in Fig. 1. Let
x = QPBQ(E), and consider unlabeled noge Let us
fix p to 0 and to 1 and run QPBO in each case. We will
obtain two partial labelings’ = QPBQE[p « 0]) and
x! = QPBQE[p « 1]). LetU be the set

U = [dom(x") Ndom(x")] — [dom(x) U {p}].

By the strong persistency property, we can draw the follow-
ing information about global minim=* of energyF:
T,=1 = xZ:IZ Vie{0,1}, g€ U.

Thus, nodes id/ can be excluded from the energy without
affecting the global minimum (or minima). Indeed, con-
sider node; € U. Two cases are possible:

i) ) =z} = j. Thena} = j for all global minimax*,
thereforer, can be fixed tg.

i) 20 # ). This means that either (af) = 0,2} = 1, or
(b) zy = 1,z = 0. In case (a) we know that, = z;
for all global minimax*, therefore we can “contract)
andg. In case (b) there holds, = 1 — z, for all global
minimax, therefore we can “flip” variable:, (change
the meaning of 0 and 1) and then contraeindg.

For details of the contract operation see Appendix B. In
this operation edgdg, ) are replaced with edgés, r),
self-loops are deleted, and parallel edges are merged.

If seti/ is nonempty, then the operations above will mod-

Proposition 1. (a) Functionf gives a one-to-one mapping
between the sets of optimal solutions of energieand E.

(b) For any labelingy € 2" there holdsE(f(y))=E' (y).

Adding directed constraints In practice it often happens
that fixing nodep to 0 and to 1 labels different sets of nodes:
dom(x?) # dom(x!). Consider node which is labeled in
x’ but not inx'~*. Running QPBO gave the information
that has not been exploited yet; namelyxjf = i for a
global minimumx* then there must hold; = azg

To incorporate this information, one could add a pairwise
term By (0, 2,4) to the energy wher&,,(i,1 — z,) = C
and all other entries are zeros. (Hérés a sufficiently large
constant; the exact value will not affect the correctness of
the procedure, as long @sis non-negative.) QPBOP with
directed constraints has the following properties whiah ca

be easily verified by induction:

Proposition 7. (a) (Same as in proposition 1).
(b) For any labelingy € 2V with £’ (y) < min, E’(z)+C
there holdsE(f(y)) = E'(y).

One disadvantage of adding all possible constraints is
that the graph might grow significantly. Unless noted oth-
erwise, for experiments in this paper we used the following
compromise: we add directed constraints only for already
existing edges. Thus, no new edges are allocated. We com-
pare this version with the full approach in Sec. 4.

In analogy with directed constraints, one could try to
implement the operation of contracting nogeand ¢ by
adding a pairwise ternk,,(z,, z,) which would enforce
the constraintr, = xz,. It is worth mentioning, how-
ever, that this can much weaker than the contraction de-
scribed above. For example, with “real” contraction pailall
edges may become merged, which could make LP relax-
ation much tighter.

Algorithm’s summary QPBOP algorithm first runs
QPBO for energyF. Then it repeats the following steps
until a certain stopping criterion:

e Pick unlabeled nodg.

ify the energy reducing the number of nodes; the new set of o Fix it to 0 and to 1, compute labelingd, x* and set/.

nodes isy — Y. Then we run QPBO again for the new en-
ergy obtaining a new partial labeling. A “monotonicity”
property holds, i.ex], = z, for ¢ € dom(x) (see Appendix
B). Thus, nodes irlom(x) — U are labeled ik’ (and in
fact other nodes may become labeled as well).

We can repeat these operations for other nodes of the

new energy. In the end we obtain a new enefjydefined
on a graph)’, £’) and functionf : 2" — 2¥ which maps
configurationsy of energyE’ to configurationsx of the
original energy.

2Function f can be described via two mappings: V — V' U {0},
o :V — {0,1}. For configurationy € 2V labelingx = f(y) is

e Fix or contract nodes it¥ thus removing them.

e For all edgegp, q) € &€ with ¢ € dom(x°) — dom(x*)
or g € dom(x!) — dom(x”) add a directed constraint,
unless such constraint has already been added.

e If the energy has changed, run QPBO again, update the
set of unlabeled nodes.

The algorithm stops when there was a pass over all unla-
beled nodes but no changes to the energy were made. At

defined as follows: iy, = 0 for nodep € V thenz), = o}, otherwise
zp = (yq + op)mod 2 whereq = «,,. Note that mappingy defines a
partitioning of the sev.



this point no further contractions are possible, so the-algo heuristic to work well. We split the execution into itera-
rithm has converged. Clearly, the termination occurs ater tions; one iteration consists of processing nodes in a cer-
polynomial number of passes over the nodes. tain set. In a given iteration we record nodes which made
progress, i.e. whose processing resulted in changes to the
energy. We then dilate this set of nodes by a fixed amount
(3 rounds), and in the next iteration test only nodes in the
We now describe an efficient implementation of QPBOP. dilated set. When the set becomes empty, we process all
As noted in [8], it is important to reuse previous calcula- nodes again. Note, in the beginning all nodes are in the set.
tions when the graph is updated (e.g. when the nodes areComparison of implementations Results on 3 random 4-
contracted). A correct implementation of the update op- connected 00 x 100 grid graphs are shown below. (First
erations, however, requires some care: the graph and floncolumn corresponds to the implementation of [8], second
constructed by the QPBO method have a certain propertyand third - to our implementation with standard and opti-
which must be preserved. Boresal. [8] propose to main-  mized ordering, respectiveély Our implementation is 400-
tain thesymmetrycondition which says that each arc holds 700 times faster. It should be noted that there are many dif-
the same flow as its “mate”. This is achieved by modifying ferences between the implementations: maxflow algorithm
the maxflow algorithh We propose to maintain the “re- used, search tree recycling, symmetry vs. relaxed sym-
laxed symmetry condition” instead (see Appendix A). One metry condition, integer vs. floating point capacities,adat
advantage of this is that the algorithm can work with integer structures for storing the graph, and ordering of procegssin
capacities, whereas maintaining the symmetry condition re nodes. We believe that a major factor in the speed-up is
quires floating point numbers (even if the original costs are the maxflow algorithm in [10] together with reusing search
integers). trees [16], whose use is simplified because of the relaxed
We used the maxflow algorithm in [10], and reused flow symmetry condition. We make our code publicly available;
and search trees as described in [16]. We modified the codeve hope that this would have a significant practical impact
so that it maintains a list of visited nodes; thus,lgetan be in vision.
traversed without going through the entire graph. Using the | |unlabeled aftef unlabeled aftef  time (sec)
relaxedsymmetry condition makes the update operation for QPBO (%) QPBOP (%)
nodesp, ¢ quite fast: it involves only these nodes. In con- |1 92.1 5.8|5.8|5.8|718.9|2.00/1.72
trast, maintaining the symmetry condition using technique |2 97.9 42.2|142.2| 42.6|5098.910.3| 7.4
in [10, 16] appears more difficult. After every maxflow |3 99.5 73.6/62.7|62.9/9589.6 37.3| 21.4
computation we would need to go through all edges that
have been accessed and restore the symmetry property. Thi3.2. QPBOI: Improving a Given Solution

could affect many edges, which would make reusing the So far we have discussed exact methods (QPBO and QP-

search trees more compllca_ted. _ BOP) which give information about global minima of the
Our scheme also has a disadvantage: with the symmetryenergy' We now turn to the problem of obtaining a good

condition the lower bound on the function (repres_ente_d by approximate solution. Let us assume that we have an (com-
the amount of pushed .flow) never decreases, WhICh. is nOthete) input labeling obtained via some method (e.g. ran-
necessarily the case with the relaxed symmetry condition. dom or max-product BP). Our goal s to try to improve this
Order of processing nodes Experimentally, the order in  |apeling using QPBO.

which nodes are probed affects both the final result and the | et ys pick an arbitrary subset of nod§sc V and fix

running time. The difference in final results appears in- nodesins to labels given bk. We denote the obtained en-

significant in practice However, optimizing the order is ergy asE[S « x]. Now we can run QPBO for this energy
quite important for reducing the number of probed nodes obtaining partial labeling. Obviously,y, = z, for nodes

(and, thus, the running time). We found the following ), ¢ s. Property fP1'] immediately implies the following

3.1.1 Efficient Implementation

3The implementation of [8] is based on Dinic algorithm, bugvaug- Proposition 2 Letz — FUSE(X y) ie Zp = Up if p e
. 9 gy 1L b

mentation is performed on a pair of “mate” paths (personatroonica- .
tions with G, Tavares) dom(y), andz, = z, otherwise. Ifz # x thenE(z) <

“We ran QPBOP or200 random grid graphs of sizs0 x 50 with E(X)
two different random orders. After running QPB118.4 pixels were
unlabeled (on average), and after QPBOP the number of nodesergy Thus, we can set := z and repeat the procedure for a
E’ was1219.0. Partitionings of the se produced by the two runs were
compared as follows. Léf to be the minimal set of pixels so that (i) each 5To conform to the implementation of [8], all methods add akgible
partition belongs either X or to V — U, and (i) partitions ofy — U/ in directed constraints and use weakly persistent solutiodymed by QPBO
both runs are exactly the same. (Pixels fixed in one run butrtbe other in the main loop (but not in the probing operations). Wealdysistent

are included iid/; pixels fixed in both runs are excluded.) The average size solutions are not unique, which accounts for slightly défe percentages
of U was22.2 pixels. In 37% of the cases results were identical. of unlabeled nodes.



different subses. The construction guarantees that the en-
ergy of labelingx does not increase. We call this technique
QPBOI, where "I" stands for improve.

To achieve efficiency, we propose to use a nested se#,,(y,,y,) = 0 for all edges(p, q).

guence of subsetS according to some ordering of nodes
m:V —{1,...,|V|}. Then flow and search trees can be

reused as in [16]. One iteration of this procedure is given

below.

e Select an ordering of nodes
e Initialization: Computey

FUSEx,y), S :=dom(y).
e Fornode® € V do in the ordetr:

- If p ¢ S computey = QPBQE[S U {p} — x]),
setx := FUSEx,y), S :=dom(y).

QPBQE), setx

It is worth mentioning that the QPBOI procedure can be
generalized: rather than fixing nodes to values,ime can
(i) enforce hard constraints satisfied by current labelkng
via contracting nodes of the energy; (ii) Add non-negative
numbers to element%, such that the cost ot stays the
same. It is not difficult to see that proposition 2 still holds
We informally tested a particular vari&rtut found that it
performed worse than fixing nodes.
Local minima of QPBOI In order to understand the ca-
pabilities of QPBOI we now analyze local minima of this
procedure.

Definition 3. Labelingx is calledstable(or QPBO-stable

if no QPBOI operation can change it, i.e. for any subset
S C V there holdsy, = z, for p € dom(y) wherey =
QPBQE[S «+ x]).

The theorem below exhibits a large class of functions for
which stable labelings are essentially global minima.

Theorem 4. Suppose energ¥ and labelingx satisfy at
least one of the following conditions:

(a) FE does not have frustrated cycles.

(b) Oconst = 0, 0,,; > 0 for all indexes(p; i), Opq:i; €
{0, C?} for all indexes(pg;ij) whereC' is a positive
constant, and?(x) < C.

Thenx is stable iff it is a global minimum of’.

SWe tested contracting nodesg for existing edgegp, q). In the be-
ginning we flip a subset of nodes so that the current labetigecomes
0 for all nodes, and maintain this property afterwards. Ireotivords, if
after any of the following operations nogegets label 1 then we flip.

Next, we choose a random order in which edges are procesked.vile
iterate over all edges in the given order (possibly multiptees). Edges
which are supermodular are contracted, and edges whichuaracslu-
lar are not contracted; instead, they are moved to the rexdtion. The
algorithm terminates when all edges of the energy becommadblar.
(Clearly, this happens after a polynomial number of stepEaerefore,
conditions of propertyP3’] are satisfied.

Note that since in case (b) there exists a solution whose cost
is smaller thanC, pairwise terms act as hard constraints;
for any solutiony with E(y) < E(x) there must hold
A proof of the the-
orem is given in Appendix C; it relies on characterization
[P3].

In general, however, there may be stable solutions which
are not optimal. A simple example is the energy

E(x,y,2) =3lr —y| + 3|y — 2| + 22y + (1 — z)(1 — y).

(1,1,1) is a stable solution, anfl, 0,0) is the optimum.
(Note thatE(1,1,1) is larger thanE(0,0,0) but smaller
than the cost of all other labelings. Also, running QPBOI
with the empty sef does not label any nodes.)

Using theorem 4 it is not difficult to show the following
negative result (see Appendix D):

Theorem 5. Testing whether a labeling is stable is a co-NP
complete problem (under Turing reductions).

Thus, obtaining good orderings in the QPBOI procedure is
a difficult task. Nevertheless, experimental results in-Sec
tion 4 show that in many cases random permutations do de-
crease the energy, at least during the first few iterations.

3.3. Summary of Algorithms

There are several options for using the techniques de-
scribed in Sec. 3. An important question for QPBOI is how
to initialize it. Furthermore, QPBOP and QPBOI can be
combined. We settled on the following four methods:
QPBOP This technique is designed for obtaining partial
optimal solutions. We demonstrate that in many cases it
significantly outperforms QPBO, i.e. it produces fewer un-
labeled nodes.

BP+l First we run QPBO, then max-product BP (only for
unlabeled nodes) and finally improve the solution using QP-
BOI with random permutations of nodes.

We used a “sequential” schedule of BP as in [17]. Be-
fore starting BP, we reparameterized the energy so that
Opg:00 = Opgi11, andbpg.01 = bpq.10 for each edgép, q).
(Note that it does not make sense to start with the reparam-
eterization obtained after running QPBO, since such repa-
rameterization is a fixed point of BP).

QPBOI is stopped when the energy has not improved for
5 iterations, and BP is run for a large number of iterations
(here1000) and the best result is taken.

P+BP+| Firstwe run QPBOP obtaining new enerf{yand
mappingf : 2¥° — 2Y. Then we apply BP+l for energy
E’; this gives solutiony € 2¥". The output of P+BP+l is
the labelingx = f(y) ’

“Note that QPBOI applied to enerdy never increases the cast (y).
By property 1(b) costE(x) wherex = f(y) also does not increase,



P+l In some scenarios an input labelirgfor energy OPBOP (Global Min.) OPBO3(7.1% unlabeled)
E is available, and it is desirable that the method c
not increase it. (An example is the expansion move a : ;

rithm [11]; the input labeling0, . .., 0) corresponds to th u— L
current configuration.) We now show how to combine ( ‘
BOP and QPBOI to ensure this property. The basic —

of the QPBORP s to fix nodg to 0 and to 1 and compu
corresponding partial labelingg’ andx!. We propose t
update labelingk as follows: x := FUSHx, x’) where
i = x,. It can be seen that fix and contract operations pre-Figure 4.Diagram recognition. Given a raw unlabeled hand-
serve the “structure” ok, e.g. if nodeg is fixed to label d][awmg,t the t"E‘Skd's tg g'?j)s'fy whether teac(rl;l pe)n gg‘g;‘;pz
. H - Or a container (rea an (o] or a connector ue). n
{hgutrrlgrg\]s%frﬁgdpl ;E(Zﬂntgiﬁ r;nu:rtg;/c')iqlt is ]e'a:ye ttgr \E)eer- the global minimum and labels all strokes correctly .(Iem)uereas
. . . : . . o standard QPBO finds only part of the global solution and lsave
ify by induction that if Constarlﬂ’ in QPBOP is sufficiently 37.1% of the pen strokes unlabeled (dashed in the right diagram).
large (namely,F(x) < min, F(z) + C) then there holds _ .
E'(y) = E(f(y)) < E(x). After QPBOP we run QPBOI cI|_que. In contrast, QPBOP found the global minimum of
for energyE’ starting with labelingy. this problem ind.4 sec.

4.2. Applications

4. Experiments In the following we will compare a standard set of op-

In this section we will first investigate the performance of timization techniques [24] (ICM, BP, TRW-S, Graph Cut,
the methods described above with respect to various MRFQPBO, and Simulated Annealing) with the new methods
settings. Then we consider six different applications with on real world applications where binary non-submodular
non-submodular MRFs and compare them to a standard seMRFs occur. We are interested to see which method
of MRF optimization methods. Finally we show the use- achieves the best performance in a "reasonable” time, i.e.
fulness of our new P+l method within the standard alpha- up to several seconds depending on the application. There-
expansion procedure [11] to optimize a multi-labeled MRF. fore, we do not plot runtime versus energy but simply report

the energy and runtime of the best result for each method.
4.1. Performance of QPBOP and QPBOI Some notes on the competitive methods: Iterative Condi-

In the following we measure the improvement of QP- tional Modes (ICM) is run with a random traversal order
BOP over QPBO in terms of additionally labeled pixels. For until convergence. Details of Belief Propagation (BP) are
QPBOI the improvement, with respect to a given reference described in Sec. 3.3. Since graph cut (GC) cannot handle
solution, is measured in terms of lower energy. We are alsonon-submodular terms we truncated them as in [23]. Sim-
interested in the runtime overhead for both methods with re- ulated annealing (SA) is capable of producing high qual-
spect to QPBO. In general, the performance of QPBO (andity results with potentially long runtimes. We tweaked the
extended versions) strongly depends on three factors: numparameters of SA for eadhdividual problem, to achieve
ber of non-submodular terms (ideally, the number of frus- best results. Finally, TRW-S is guaranteed to give the same
trated cycles), connectivity (i.e. average degree of a jode answer as QPBO [19], therefore we omit it. (We verified
and strength of unary versus pairwise terms. This strengthexperimentally that the result for labeled nodes is identi-
is computed as: meand,,.;/mean , ; ;0,4.i;, after conver-  cal. Furthermore, running TRW-S until convergence of the
sion into normal form (similar to [7]). Fig. 2 shows several lower bound is much slower than QPBO in practice.)
variations of these factors. Table 1 lists the comparison of all methods for one or

QPBOP significantly extends QPBO in a way that is not two examples of each of the six applications.
achievable by common exact methods. To illustrate this, Diagram Recognition Shape recognition in hand-drawn
we took a random 4-connected graph of sif® x 100 diagrams is an application where the QPBOP method con-
for which QPBO failed to label 73% of nodes (runtime siderably outperforms standard QPBO. We tege dia-
was (.08 sec). We found that the unlabeled nodes induce gram problems, with an average@f nodes and connectiv-

a cligue of size 45 (treewidth 44), based on the min-fill ity of 4.1. The MRF model is described in [25]. QPBOP
method [4], with other triangulations being even larger. returned the global minimum foall problems, whereas
Thus the exact junction tree algorithm is completely in- QPBO failed to label all nodes 97 cases, with between
feasible here, requiring Terabytes of RAM just to store the 5% and56% of nodes unlabeled. One of those challeng-
, P - ing examples is shown in fig. 4. Another difficult example
B e e ) ing 1 lsted in table 1 where the new methods (P+BP+ and
y that satisfies this - see P+I. BP+I) attain the lowest energy, and QPBOP confirms that
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Figure 2.Performance of QPBOP and QPBOI.As default we use d-connected random graph in normal form of sl#® x 100 pixels
with 50% non-submodular terms and unary stren@th (a,b) compares QPBO and QPBOP with respect to varying nbmsdularity
(NS) and connectivity (con). The percentage of labeled satkrreases for: (i) a large number of non-submodular tefifdigh
connectivity, or (iii) a small unary strength. Note that thgprovement of QPBOP over QPBO differs betw&é&h and90% of additionally
labeled nodes depending on the MRF settings. (¢) compagasititime of QPBO and QPBOP. As to be expected, the runtinteases
significantly when QPBOP labels considerably more nodes @RBO. For practical use an important range is the unarggtinebetween
1.5 and 3, where QPBOP is able to compute (most of the time) the glolainmum with only a small runtime overhead. (d) illustrates

energy versus runtime for P+BP+1, BP+l, and both methodk witandom starting point (P+Rand+l, Rand+l), i.e. a refegesolution
with random labeling. Note, QPBOI was stopped when the gndidjnot increase for 5 iterations. We see that using BP asttréng
point consistently gives a better result. For this particpiroblem running QPBOP first gives a large improvement imime, however,
for certain applications the runtime overhead of QPBOP @odmsiderable and therefore BP+I may sometimes be préfiermractice.

Applications [sm.an] icMm | ec [ BP | BP+ [P+BP+I[[ QPBO | QPBOP |
Diagram recognition (4.8con) 0(0.28s)| 999 (0s) | 119 (0s) 25 (0s) 0 (0s) 0 (0s) 56.3% (0s) 0% (0s)GM
New View Synthesis (8con) -(-s) | 999 (0.2s)| 2(0.3s) 18 (0.6s) 0(2.3s) 0 (1.4s) 3.9%(0.7s) | 0% (1.4s)GM
Super-resolution (8con) 7 (52s) | 68(0.02s)| 999 (0s) |0.03 (0.01s) 0.001 (0.06s) 0 (0.047s)| 0.5% (0.016s) 0% (0.047sGM
Image Segm. 9BC + 1 Fgd Pixel (4cdr983 (50s) 999 (0.07s) 0 (28s) 28 (0.2s) 0 (31s) 0 (10.5s)|| 99.9% (0.08s) 0% (10.5s)GM
Image Segm. 9BC; 4RC (4con) | 900 (50s) 999 (0.04s) 0 (14s) 24 (0.2s) 0(3s) 0(1.48s)|| 1% (1.46s) | 0% (1.48s)GM
Texture restoration (15con) 15 (165s) 636 (0.26)| 999 (0.05s) 19 (0.18s)| 0.01(2.4s)| 0 (14s) || 16.5% (1.4s)| 0% (14s)GM
Deconvolution3 x 3 kernel (24con) | 0(0.4s)| 14 (0s) 999 (0s) 5(0.5s) 3.6 (1s) 0(0.4s) || 45% (0.01s) 43% (0.4s)
Deconvolution5 x 5 kernel (80con) | 0(1.3s)| 6 (0.03s) | 999 (0s) | 71(0.9s) 8.1(31s) | 8.1(31s)|| 80% (0.1s) 80% (9s)

Table 1.Comparison table for different applications. Results are given as: Energy (runtime in seconds). For eatigm the energies
are scaled to the range @to 999. Note that an energy dfin the last two rows does not mean that this is the global agtsulution. The
last two columns show the percentage of unlabeled nodesRP&GRand QPBOP, where GM means global minimum. For segmentati
BC means boundary constraint and RC region constraint., Adssegmentation, graph cut was r2ifi (n = number BC) times with flow
and search tree recycling to obtain the global minimum. N@® and simulated annealing do not perform well for apglimas with hard
pairwise constraints (infinite links), such as segmentadiod new view synthesis.

Ground Truth

o- exch E=41 {1sec)
Figure 3.Image deconvolution.Given a blurry and noisy input image wiff2 gray-levels, the task is to reconstruct the ground trutle Th
new P+l method within alpha-expansion improves resultspared to graph cut and QPBO-based alpha expansion bothrie térenergy
and visually. Note, for all alpha expansion based methaglstter is crucial. Energies of P+ differed betwe&érB and27.9 and runtime
betweenl2 and31 sec, best result shown. Also, to improve runtime of P+I wadlized it with standard graph cut based alpha expansion.
BP (E=103), TRW (E=112) and ICM (E=54) perform poorly. Simulated annealing achieved a similauitto P+l in60 sec.

Input Image .- exp QPBO; E=30 {1.3sec) o-exp P+l; E=26.3 {12sec)

Super-resolution and new view synthesis For super-
resolution we used the approach of [14] where a node la-
bel corresponds to a patch from a reference patch dictio-
nary. The MRF pairwise terms encode the compatibility
of overlapping patches of neighboring nodes. The amount
of non-submodularity can be high, e4(%. The unary
terms encode color consistency with the low-resolution im-
age. To make it suitable for our purpose we use two labels
and a5 x 5 patch size which correspond to an 8-connected
MRF (no overlap in they x 3 center as in [14]). For New

Ground Truth  Ground Truth (zoom) QPBO (0.7s) QPBOP (1.4s) Graph Cut (0.3s)
Figure 5.New View Synthesiswhere QPBO leaves731 pixels
(3.9%) unlabeled (black), QPBOP finds the global minimum, and
graph cut (best of all competitors) has visually noticeantéacts.

this is indeed the global minimum.



one Brodatz texture D103 (see [18]) where the test error (av-
eraged oveR0 examples) reduces frogb.4 to 25.1 when
using P+BP+l instead of QPBO. One example is listed in
table 1 where P+BP+I achieved the global minimum. For
this application BP+| achieved nearly the same result with
a speed-up factor df.
Image deconvolution In [22] image deconvolution was

{a) {b) {c)QPBO (3.81s) {d) QPBOP (3.84s) formulated as a labeling problem with a pairwise MRF and
Figure §.Interactive Se_gmenta?ion with Boundary and_Region solved using graph cut based alpha-expansion. Given an
Qopstramts. (a) Input image YVIth superimposed user inputs: one nxn convolution kernel the MRF connectivity {8n— 1) x
inside brush (red), one outside brush (blue) Qn_dp_connected (2n— 1) — 1. Fig. 3 shows an example of reconstructing an
boundary constraints (green), bold for better visibilifg) Zoom input image' Witl‘;32 different gray-scales and convolution

into a boundary constraint: Pixels on each line (light andkda ! )
green) are constrained to have the same labeling and omenexts ~ With @3 x 3 kernel. To solve thiS2 label problem we use

submodular link (red) constrains both lines to have oppdatiels,  alpha-expansion where the P+l method (Sec. 3.3) is used as
For optimal speed QPBOP first probes pixels at the red linkseN  the binary optimizer. Ragt al.[21] also use QPBO-based
that alternative formulations, e.g. a "fat” intelligenissors brush,  alpha expansion to reconstruct MR images, although with a
with no specific start and endpoints, are possible and gimézsi sparsely connected MRF.

results. The segmentation result of the penguin using QRBO ( We have also used the deconvolution MRF with only two
has26.7% of unlabeled pixels (red), where QPBOP (d) finds the |3pels to reconstruct binary images. Table 1 gives two re-
global minimum in about the same time as QPBO. sults with different convolution kernels. The main conclu-
View Synthesis as introduced in [13] we may use the samesion is that for highly connected MRFs, e.g. connectivity
MREF structure, where labels are now color modes derived80, simulated annealing outperforms all other methods in-
from depth images (details omitted). We have tested severatluding P+BP+1, and QPBOP performs similarly to QPBO.
examples and parameter settings for both applications an ;

may conclude that QPBO typically has a smaller number oqu' Conclusions and Future Work

unlabeled nodes, e.g. up 3% (in total 5731 pixels) for We presented an efficient implementation of the QPBOP
example in fig. 5. QPBOP is able to find the global min- method in [8] which is 2-3 orders of magnitude faster than
imum most of the time with very little extra runtime (See the imp|ementation of [8] on some vision related graphs_
examples in table 1). We introduced a new technique called QPBOI for optimiz-
Image segmentation An important issue for interactive  ing binary non-submodular MRFs, and proved theoretical
image segmentation is the combination of boundary con-properties of this method. We have verified experimentally
straints, as in intelligent scissors [20], and region con- that QPBOP finds the global minimum for many vision ap-
straints, as in [9]. Here we show that this is possible by plications and that QPBOI nearly always achieves a lower
including a few non-submodular terms, see fig. 6. We haveenergy with respect to any given reference solution that we
tested our system for many images, where two examples ardave tested. Both techniques are efficient due to graph cut
listed in table 1. The conclusion is that QPBOP is able to with flow and search tree recycling.

give the global minimum for all examples we have tested, We believe that the main impact of our work lies on
and outperforms QPBO considerably. The speed of QPBOPthe application side, where we plan to further investigate
is affected by the number of brush strokes, the more theMRFs with high order cliques and multiple labels. Also,
faster. All other methods perform very poorly for this appli most handcrafted MRFs in computer vision are submodu-
cation. Note, an alternative approach to compute the globallar, which is not necessarily true for learned MRFs. Con-
minimum is to run standard graph c2it times wheren is sequently we believe that the demand for efficient, but gen-
the number of unconnected boundary constraints. For theeral, optimizers both during MRF learning and inference,
example in fig. 6 where = 9, running512 graph cuts with  will increase considerably in the future. Finally, we will
flow and tree recycling [16] and an optimized order took make the code and energies publicly available, as a step to-
in the best casé6 sec 84 sec without recycling) whichis  wards a benchmarking system for optimizing challenging,
considerably more than tf%8 sec of QPBOP. non-submodular MRFs in computer vision, similar to [24].
Parameter learning for binary texture restoration In Acknowledgements We thank the anonymous reviewers
this application we restore a noisy test image of a texture,for pointing out the recent work [8], Gabriel Tavares for
based on an MRF model learned from a training image of running some tests on our datasets and sharing the imple-
the same texture type. We used the same learning procedurmentation of “probing” used in [8], and Oliver Woodford
as described in [18] based on [12] with the only difference for providing us with energies for the new view synthesis
that QPBO is replaced by P+BP+l. We have done this for problem.




Appendix A: Relaxed symmetry condition

Recall that the QPBO method constructs a directed

weighed graphG = (V,A,¢). The vertex set i/ =
{p,p|p € V} U{s,t} and arcs inA correspond to non-
zero components of vector (see e.g. [18]). Each node
u € V has a “mate’s € V such thati = u; similarly, each
arca = (u — v) € Ahasa“mate” ar@ = (v — u) € A.
GraphG with residual capacities > 0 defines an energy
function E(- | #) with the following parameter vectdr

Opi1 = Csp + Cpt
Opg;01 = Cpq + Cgp
Opgi11 = Cg + Cap

Opi0 = Cpt + Csp
Opg;00 = Cpg + Cqp
Opgi10 = Cpg + Cop

(4)

(We assume that,,, = 0 if there is no arqu — v) in A.)

For convenience, we will assume thatcontains arcs
(s = u), (u—1t), (u—s), (t — u) for every nodev €
V — {s,t}. Let us also define the following sets:

yint—_y _ {s,t} (set of “interior” nodes)
AM={(u—v) € A|u,v € V™} (setof “interior” arcs)
A ={(u—v) € Alu#tv+#s}

Boros et al. [8] maintain theymmetry conditiomvhich

says that each arc € A has the same flow as its mate,

S0 ¢, = cg. This can be achieved by modifying the
maxflow algorithm, as in [8]. Alternatively, after every

maxflow computation one could go through arcs and set

/ 1

), = 3(ca + ca), ¢4 := 3(ca + ca). Both schemes re-

Proof. The antisymmetry property for af@ — v) € At

follows from (5b):

2(fuv + fvu)

- Cvu)
(Cuv +Cvu) =0

(cva — Cuv) + (Caw
= (coa +cas) —
Let us verify the flow conservation property. For nade
Vint we have

2 Z fuv:2 _fsu+fut+ Z fuv
(u—v)eA (u—v)€Aint
- _(Cﬂt - Csu) + (Csﬁ - Cut) + Z (Cﬂﬁ - Cuv)
(u—wv)eAlnt _
cat+ Y. Ca| — |-t D cuw| =0
(v—u)eAint (u—v)€Aint

To show flow conservation at the sourgelet us sum ex-
pression (5a) for all nodes € V"t and subtract half of the
sum of (5b) for all arcgu — v) € A™™*. Then we obtain

§ —Cy = § Cq
weVint weVint

The expression on the LHS is the negation of the expression
on the RHS, so it must equal zero. Thus,

2 Z fsu = Z (Cﬁt - Csu)
(s—u)eA ueVint
= Z (Cut - Csu) = Z —Cy = 0
ueVint ugVint

quire floating point numbers. The latter scheme also has theconservation at the sirican be shown in a similar way. (In
following disadvantage: because of rounding errors, after fact, it follows from the conservation at other nodes.)d

restoring the symmetry condition the flow is not necessarily

optimal, i.e. there may be augmenting paths froto ¢ of

This proposition together with results in [5] imply the

very small capacity. (We observed this in practice). There correctness of the relaxed symmetry condition. For com-

are several ways to handle this complication, e.g. itetege t
maxflow algorithm until a symmetric optimal flow is found.

We maintain the followingelaxed symmetry condition
instead:

—Cy + Z Cuv = Ca + Z Csa Vue Vit (5a)
(u—v)eAlnt (v—u)eAlnt
Cuv + Cou = Coa + Cas V(u—wv) € A"t (5b)
wherec, = cq, — ¢y fOor nodeu € Virt, These condi-

tions essentially say thaV, A, ¢) can be obtained by push-
ing flow in a graph satisfying the symmetry condition:

Proposition 6. Forarca = (u — v) € A" letc], = $(cq +
cg)andf, =c, —c, = %(Ca —¢q)- Also, letf, = — f, for

a € A— At. Thenf is a circulation inG, i.e. it satisfies

fuv:_fvu V(’U/—>U)€A

S fuw=0 YueV
(u—v)eA

(antisymmetry)
(flow conservation)

pleteness, let us state and prove main properties.

Proposition 7. Suppose that residual capacitietn graph
G satisfy equationgs). Let E(- | #) be the energy defined
by (4). Let (S,T) be a minimum cut irG and x be the
corresponding partial labeling defined I6$).

(a) Pushings-t flow of valueC' through graphG main-
tains the relaxed symmetry conditigh). Further-
more, it corresponds to a reparameterization of energy
E(- | 0) if component.ons is increased by’

(b) Property [P1] (“weak autarky”) holds forx and E.

(c) If there are no augmenting paths fromo ¢, then the
following complimentary slackness conditions hold:

Vo e — {const}

zp) =0 YV p € dom(x)
= Vp ¢ dom(x),i € {0,1} (6)

Vp,q € dom(x)

Vp € dom(x),q ¢ dom(x),j € {0,1}



(Note, by a “cut” we always mean ant cut). source component, respectively. Both of these cuts define
) . _ _ the labelingx™™ [5]. Indeed, property (7) and the fact
Proof. Checking (a) is a straightforward calculation [5]. 1S*| = [V| — |S| imply that((S°)*, (V — $°)*) is themax-
Part (b) follows easily from (a) and (c). Indeed, by (2) imal minimum cut, soV — T° = (S°)*. Thus, for node
we can assume without loss of generality that we have € V we have(u € S°) < (a € T°). This implies that
a maximum flow inG, and thus (c) can be applied. If (S°,V — S°), (V —T°, T°) define the same labeling™" .
y is a complete labeling anéd = FUSHy,x) then The “extremality” ofx™* can be easily verified. Sup-
E(z | 0) < E(y | 0) since by (6) each term in t_he SUM  5se node has labelz™® — 0, ie. p € S°,p € T°.
E(z) = Oconst + 32, 00(2p) + 3,4 Opa(2p:24) 1S e Tpen;, « go ¢ g 5 T° C T for any other minimum
same or smaller than the corresponding term in the Sumcut(S T), so labelingx defined by(S, T) satisfiesr, = 0
) ’ I p — Y-
E(x) = Oconst + 32, Op(p) + Z%uq) Opq(Tp, zq). ) The case:]' = 1 is analogous.
Let us prove part (). For subsetC V, definelU” = For a proof of the strong autarky and persistency proper-
V —{u|u € U}. The relaxed symmetry condition implies ties ofx™" we refer to [5].

the following key property: Computing x™#*  Let us show that partial labeling™>*

cost(S,T) = cost(S*,T*) foranycut(S,T) (7) with the maximum number of labeled nodes can be com-
puted fromG without restoring the symmetry condition
In particular, if(S, 7') is a minimum cut then so is5*, 7). Consider the following algorithm:

Indeed, (7) clearly holds if capacitiesn graphG are sym-
metric. Pushing flow irz preserves the cost of a cut, so by
proposition 6 property (7) holds if capacitiesatisfy the
relaxed symmetry condition. e Compute strongly connected components(ih A),
Considerara = (u — v) € A, u € S,v € T. We have contract them to single nodes.
veS*,ueT* a=(v— u) € A. Bythe Ford-Fulkerson
theorem, arca anda are saturatede, = ¢; = 0. Using
this property, checking part (¢c) amounts to considering all
possible cases. Consider, for example, npde ). Three
cases are possible:

o Compute sel/ = Vi — §° — 7°. TakeA to be the
set of non-saturated ar¢s — v) € A, u,v € V.

e Run a topological sort algorithm on the obtained di-
rected acyclic graph. The resultis an ordering of nodes
7 : V. — Z such that for all arc§u — v) € A
there holdsr(u) < 7(v) (unlessu andwv belong to
the same strongly connected component, in which case
e pe S peT,x,=0.Thenb,(x,) = cpt + csp = 0. m(u) = 7(v)).

e peT,pe Sz, =1 Thend,(z,) = csp + cp = 0. e Extendr to all nodes inV: setr(u) = +ooif u € S°,

- - andr(u) = —oo if u € T°.
e p,peSorp,pe S, sox, =a.Ineachcasé,(0) =

ept +csp =0,0,(1) = csp + ¢ = 0. e Setcut(S™a* T™ax) gs follows: ifr(u) > m(a) then
u € S™* | otherwiseu € T™**. The corresponding
partial labelingx™#* is determined as follows: (i) If
m(p) > w(p) thenz, = 0. (i) If =(p) < =(p) then
xp = 1. (iii) If 7(p) = =(p) thenzx, = @.

The last two equations in (6) for eddg, q) € £ can be
verified in a similar way. O

Computing solutionsx™™ and x™** In general, graph

G may have several minimum cuts, 7') yielding solutions  |f the symmetry property is satisfied, then this procedure is
x with different number of labeled nodes. As discussed in equivalent to the method in [2]. Let us show that the al-

section 2.1, there exist “extreme” cuts™" , 7" ) and  gorithm works correctly if the relaxed symmetry condition
(Smax max) gych that for any other minimum cg$, 7') holds.

there holdslom(x™*) C dom(x) C dom(x™**) where ] . N

x™in_ xmax x are the labelings defined by these cuts. Be- Lemma 8. Definec’ and f as in proposition 6.

low we review how these cuts can be computed. We assumeq) |f ¢,
thatG = (V, A, ¢) is a residual graph satisfying the relaxed
symmetry condition (5) in which there are no augmenting (0) If fa
paths froms to ¢, i.e. @ maximum flow has been found. (c) If ¢, >0forarca=(u—wv)€ A thenm(u) < 7(v).
Computing x™*  Let S° C V be the set nodes reachable

from s via non-saturated arcs, ad® C V be the set of  Proof. Part (a) follows from the construction of mapping
nodes from whicht can be reached via non-saturated arcs. =. Together with part (b) it implies part (c) since for arc
Itis well-known thatS°, T° are disjoint, andS°, V — 5°), a € A eitherc, = ¢, or f, # 0. Let us prove part (b).

(V. —T°,T°) are theminimaland themaximalminimum By the flow decomposition theorem [1], circulatigh
cuts, i.e. minimum cuts with the smallest and the largest can be written ag = f' + ..., f” where eaclf’ is a flow

>0 forarca=(u—v)€ A" thenm(u) < 7(v).
#0forarca=(u—v) € Athenn(u) = w(v).



in a simple cycle and for all aresc A elementsf}, ..., fr
are either all non-positive or all non-negative. Consider a
a € Awith f, < 0. Arc a must belong to a cycle de-
fined by one of the flowg’. Suppose that the cycle con-
tains arcsuy, as, . .., a With f,, < 0, a; = (u; — wit1),
ug1 = up. We claim thatr(uq) = ... = w(ux). Indeed,
forarca; € A" we haves(ca, —cq,) = fa, <0, ca, > 0,
thereforec,, > 0. Now consider four possible cases:

e The cycle does not containt¢. Then all arcsz; in the
cycle belong taA*t, soc,, > 0. Using part (a), we obtain
m(ur) < ... <m(ur) < 7(up), which implies our claim.

e The cycle contains but nott. By renaming indexes we
can ensure that; = s. All arcs a; excepta; belong to
A, so all nodes:; in the cycle can be reached fronvia
non-saturated arcs. Thus(u;) = +oc.

e The cycle contains but nots. By renaming indexes we
can ensure that;, = t. All arcs a; excepta belong to
A, sot can be reached from all nodegin the cycle via
non-saturated arcs. Thus(u,;) = —oc.

e The cycle containg,t. Then there is a path fromto
t containing arcsi; € A, Arcs in this path are non-

efficiently the mate of a given node or arc without using
additional pointers. The source and sink are not stored ex-
plicitly; instead, one number per nodgis stored. With our
data structure, removing ate — v) takesO(deg(u)) time
wheredeg(u) is the degree of node. Removing node
takesO (3, .y ame deg(u)) time. In vision applications
nodes typically have a small degree, so such operations are
quite efficient.

Let us describe details of “fix” and “contract” operations
in QPBOP. As discussed in Appendix A, we need to update
the graph and residual capacities so that the relaxed sym-
metry condition (5) is preserved and the reparameterizatio
given by (4) gives the desired energy. We will use the fol-
lowing operation for ar¢u — v) € At

Cyvy ‘= Cyp — 51
Cp:i=Cy+90

Cy 1= Cy — 0,
Coy '= Cyy + 51

(8)

This operation can be viewed as sending a flovirbe-
tween the terminals, possibly frotio s. Therefore, it pre-
serves invariant (5) and corresponds to a reparametenizati
of the energy. When pushing such a flow, we will always
ensure that capacities of all arcsAf stay non-negative.
We consider fixing node to only one of the labels, say

saturated, which contradicts to the fact that we have a max-0. (Fixing p to labell can be reduced to this operation by

imum flow inG.

Now let us prove thatS™a* , 7™*) js a minimum cut
in (V, A, ¢) (and, thus, in(V, 4,c¢)). Suppose that €
Smax y e TW* (v — v) € A. We need to show that
¢, = 0. Suppose this is not the casg; = c;; > 0. Then
we arrive at a contradiction:

m(u) >

w(a) > w(v) > n(v) > w(u)

(This first inequality holds since € S™#*, the third one
holds sincev € T™?*, the second and fourth follow from
part (c) of lemma 8.)

“flipping” p, i.e. swapping the meaning of 0 and 1. Flipping
simply means renaming nodgs— p.)

Fixing nodep € Vtolabel0 Thisis done by adding arcs
(s — p) and(p — t) with a large weight”, or setting

cp=cp,+C, cpi=c; —C

After that flow is pushed id7 using operations (8) so that all
arcs(p — v), (v — p) € A" become saturated (i.e. their
residual capacities become zeraes)becomes positive, and
¢y becomes negative. Clearly, these conditions can always
be ensured i€ is sufficiently large.

It is easy to verify by induction that from now no aug-
menting path froms to ¢ will go through node, p. (In-
deed, there are no non-saturated outgoing arcs frother

It remains to show the “extremality” of the correspond- than tos, and there no non-saturated incoming arcg to

ing solutionx™**. Suppose that nodeis not labeled in
xm** j.e. w(p) = w(p). This means thap,p € V and

other than front). Therefore, removing nodesp together
with incident edges will not affect the output of QPBO. This

p,p belong to the same strongly connected component injmpjies our claim that adding a hard constraint teffp{z,, )

(V,A), i.e. there exists non-saturated paths froto j and

and removing tern#,, along with incident pairwise terms

from p to p. By the Ford-Fulkerson theorem a minimum 0,, are equivalent operations.

cut (S, T) cannot separateandp, sop is unlabeled by any
minimum cut.

Appendix B: Implementational details

In this section we describe details of our implementa-
tion. We use an adjacency list representation for storing
the graph. Nodes are stored in a single array so that ther

Contracting nodesp,q € V First, all arcs involving
nodeq are reassigned fo(e.g. ard¢ — ) is replaced with
the arc(p — w) with the same weight), and arcs involving
nodeg are reassigned to nogeThis includes, in particular,
arcs froms and tot; in other words, we set, := ¢, + ¢,

¢p := ¢p + cg. After that we scan arg® — u) € A and do

éhe following:

is a constant memory shift between a node and its mate.e Suppose there are two arcs frgnto u whereu = r or

A similar scheme is used for arcs. This allows to obtain

u = 7 for some node: € V — {p}. Then there must be



three other pairs of parallel arcs (fromto p, from « to
p, and fromp to w). For each such pair one of the arcs is
removed and its capacity is added to the other arc.

These operations are equivalent to adding two pairwise
termsd,, and 9;:77” which are either both submodular or
both supermodular.

Suppose there are ar¢g — r) and (p — 7) where

r € V — {p}. Then we need to merge a submodular
and a supermodular term. First, we push flovGiusing
operations (8) to ensure that

(9)

(this will imply that ¢,,, = cpr,crp = cpr because
of (5b)). These arcs now contribute to the energy one
submodular tern®), = [0,2c,,, 2¢,-,0] and one su-
permodular termd2. = [2¢,7,0,0,2¢5]. (We use
the following convention for pairwise termsf,, =
[0pr:00, Opr:01, Opri10, Opri11].)  We compute the sum
Opr = H;T + Hf)r and remove arcs betwedmp, p} and
{r,7}. Invariant (5a) will still hold because of condi-
tion (9).

The final step is to convert terfl),,. into a normal form
(thus, unary term#,, and 6, may appear) and add two
arcs for each non-zero componenttf 6,,., 6,, as de-
scribed e.g. in [18].

Suppose there is an afg — u) whereu € {p, p}; then
there is a corresponding af@ — p). These arcs ap-
peared because there was an eflge) € £ beforep
andq were contracted. First, we send flow @ using
operations (8) to ensure thaf, = cgp. If u = p then
we setcy, = ¢, + (¢pp — Cpp)s Cp = p + (Cop — Cpp)-
Finally, we remove arc§ — u), (a — p).

Cpr = Crp, Cpir = Crp

This can be justified as follows. Suppose that before
contraction the arcs contributed tedp,. (We assume
that the symmetry condition holds for arcs correspond-
ing to (p,q)). Labelz, = i in the new energy corre-
sponds to the labels, = z, = 4 in the old energy

(¢ € {0,1}). Therefore we need to add unary teéin
whereb,.o = 0pq:00, Op;1 = pg;11. This is done by set-
ting ¢, := ¢+ 5(0p0 — Opi1), €5 = ¢ — 5030 — pi1).

It remains to check that,.c = 0,1 = 0if u = p, and
Op:0 = 2¢pp, Op1 = 2¢pp if u = p.

Adding directed constraints To add constrainfz, =

0) = (z4 = 0) for an existing edgép, ¢) € £, we add arcs

(p — q), (7 — p) with a large capacity’ representing the
term[0,2C, 0, 0], and then merge it with the existing term
as described above. An important practical question is how
to recognize whether a constraint has already been adde
and how to choose a capacity which would not cause an
overflow but would be sufficiently large to enforce a “hard”
constraint. We use the following approach. First, we select

d

a constant which is larger than the maximum capacity
in the graph. After probing node, we check whether the
current ternmy,,, satisfies

epq;()l + epqslo - epq;OO - 9pq;11 = Co (10)
If not, the constraint has not been added yet; then we add a
directed constraint with the value 6f so that an equality
would hold in (10). (This could happen at most once for this
particular constraint, since the expression in (10) isrilawd
to reparameterization).

These operations, however, do not guarantee that we re-
ally enforce the “hard” constraint. To get such a guarantee,
after updating the graph we compute a maximum flowin
and check arcép — q), (7 — p). If at least one of them
is saturated then we add, to their residual capacities, and
continue with the probing algorithm.

“Monotonicity” property  Let us show the “monotonic-
ity” property mentioned in Section 3. Let = QPBQE)
where I/ is the original energy. Assume for simplicity of
notation thatr,, = 0 for all nodesp € dom(x) (this con-
dition can be ensured by flipping variables). Since QPBO
is invariant to reparameterization, we also assume without
loss of generality that before fix/contract operations we ha
a maximum flow in graplts, i.e. there was no path from

to ¢ via non-saturated arese A with ¢, > 0.

Consider cufS°, V —S°) whereS° = {p € dom(x)}U
{s}. According to the discussion in Appendix A, the fol-
lowing properties hold:

(&) All nodes inS° can be reached from the source via
non-saturated arcs.

(b) Allarcs fromS® — {s} to V' — S° are saturated.

(By the Ford-Fulkerson theorem, (b) follows from the fact
that(S°,V — S°) is a minimum cut). “Fix” and “contract”
operations are applied only to currently unlabeled nodes;
therefore, properties (a,b) still hold after the graph isdmo
ified. Note that the set of nodes in the new graph may
change; however, nodes §it are preserved.

It follows from (a,b) that an augmenting path fronto ¢
cannot contain nodes i$° — {s}. Therefore, pushing flow
from s to ¢ will not violate (a,b). Using a straightforward
induction, we obtain that after a maximum flow is computed
properties (a,b) still hold.

Let (S°',V — S°") be the minimal minimum cut in the
new graph which defines the strongly persistent solution
It follows from (a) thatS® C S°’, which implies the mono-
tonicity property:r;, = x,, for all nodegp € dom(x).

Appendix C: proof of theorem 4

One direction of the theorem follows immediately from
proposition 2: ifx is optimal then it must be stable. Assume



now thatx is stable. In this sectiof = V — S denotes the
complement of subs& C V, andx[S] : S — {0,1} is the
restriction ofx to S. The definition of stability implies the
following useful fact:

Proposition 9. Let £’ = E[S « x| be the energy obtained
by fixing nodes its C V to values inx, and letx’ = x[S].

If x is stable forE, thenx’ is stable forE".

Case (a) First we consider the case when energyhas

a unique global minimum. Let us run QPBOI with the
empty setS, i.e. compute the strongly persistent solution
y = QPBQE). We claim that the graph constructed by
QPBO has a unique minimum c(#, T'). Indeed, let us flip

a subset of nodes of functidii so that it becomes submod-
ular. Analyzing the graph constructed in the QPBO method

zr = 1 — z,. Costs of labelingx, x* is smaller than,

therefore
Opr (Tq, ) = qu(xz, zy) =04 (1—xg,1—2,) = 0. (11)

Two cases are possible:

e 1, = x,. From (11) we ge#,,(0,0) = 6,,(1,1) = 0.
Thus, edgéq, r) is submodular, so

N(P")=N(P)=z4—xp =2, — 2, (mod 2).

o 1, # x,. From (11) we ge#,,(0,1) = 6,,(1,0) = 0.
Thus, edgég, r') is non-submodular, so

N(P") = N(P)+1 =z,—zp+1 = z,—x, (mod 2).

one can see that it consists of two independent networks.

The first one contains noddg | p € V} U {s,t} and rep-
resents energ¥, while the second network contains nodes
{p|p € V}U{s,t} and represents energy where all
nodes are flipped. Therefore, each network (and thus th
whole graph) has the unique minimum cut.

Thus, partial labelingsy and y™#* defined by cuts
(Gmin gminy — (gmax max) gre the same, So by prop-
erty [P3'] y is a complete labeling. Sinceis stable, there
holdsx = FUSEx, y) = y sox a global minimum off.

Now consider a more general case whgmmay have
multiple global minima. Let us choose an optimal solution
x* which maximizeg{p € V |z, = z,}|. LetS = {p €
V |z = x,}, and consider energh’ = E[S « x]. It
is easy to see thdf’ has a unique global minimusa* [S].
(Indeed, ifx**[S] is another global minimum of’ with
x,* =z, forp € S thenx™* is a global minimum of’ and

P
produces a larger s¢p € V | x;* = z,}.) Furthermore,

x[S] is stable forE’. As we have shown above, this implies
thatx[S] is optimal for £/, and thusx is optimal forE.

Case (b) We can assume without loss of generality that
there are no edgép, ¢) with 6,,, = 0 (they can be removed
without affecting the LP relaxation and, thus, the defimitio
of stability). Letx* be a global minimum of?, and letS =

{p € V |z = x,}. We will prove below that energy’ =
E[S «— x] does not have frustrated cycles. Theorem 4(a)

will then imply thatx[S] is optimal for E’ and, thusx is
optimal for E.

Lemma 10. Consider pathP in graph G from nodep
to nodeq whose nodes lie i5. Let N(P) be the num-
ber of non-submodular edges . ThenN(P) = z, —
zp (mod 2).

Proof. We will use induction on the length of the pat|.
The base casef| = 0, p = q) is trivial. Suppose that the
lemma holds for all paths of length> 0, and consider path
P’ = (p,...,q,r) of lengthk + 1 obtained by appending
edge(q, r) to pathP. Sinceg,r € S we haver; =1 — g,

O

It follows from the lemma that every cycle whose nodes

e|ie in S contains an even number of non-submodular terms,

i.e. energyF’ does not have frustrated cycles, as claimed.

Appendix D: proof of theorem 5

Let (P) be a procedure which computes whether a given
labelingx for energyF is stable or not. Using a polynomial
number of calls td’P) we can determine a s&tC V which
decreases the energy, assuming that labsliisgnot stable.
Indeed, we can use the following greedy method. Start with
the empty seS. Pick a node € V, fix it to label z,, and
run (P) for the new energy. If labeling is still not stable
thenp is added to sef. Otherwise other nodes are tested.
Clearly, the method terminates in a polynomial number of
steps and produces the desiredS$et

Itis clear that the decision problem in theorem 5 belongs
to the class co-NP: if the answer is negative (kds not
stable) then there exists a certificate (suli®etvhich can
be used for verifying in polynomial time that is indeed
not stable. Thus, in order to prove the theorem we need to
show that a certain NP-hard problem can be solved via a
polynomial number of calls t¢P).

We consider the minimum vertex cover (VC) problem
which is NP-hard. The instance of VC is given by an undi-
rected graph{V, £). SetS C V is called avertex coveif
for each edgép, q) € £ at least one of the nodesgq is in
S. The goal is to compute a vertex cover of minimum car-
dinality. SetS can be described by labeling: V — {0,1}
such thatz, = 1if p € S. The following energy func-
tion E represents the objective function of V&, = 1,
Opq:00 = [V| + 1, all other entries are 0.

Let us use the following method for minimizing. We
start with solutionx = (1, ..., 1) whose cost i$V|. Using
procedure(P) we test whethex is stable or not. If not,
we compute a corresponding subsetind apply QPBOI
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