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In recent years, graph cuts have emerged as a powerful optimization technique for

minimizing energy functions that arise in low-level vision problems. Graph cuts

avoid the problems of local minima inherent in other approaches (such as gradient

descent). The goal of this thesis is to apply graph cuts to a classical computer

vision problem — scene reconstruction from multiple views, i.e. computing the

3-dimensional shape of the scene.

This thesis provides a technical result which greatly facilitates the derivation

of the scene reconstruction algorithm. Our result should also be useful for devel-

oping other energy minimization algorithms based on graph cuts. Previously such

algorithms explicitly constructed graphs where a minimum cut also minimizes the

appropriate energy. It is natural to ask for what energy functions we can construct

such a graph. We answer this question for the class of functions of binary variables

that can be written as a sum of terms containing three or fewer variables. We give

a simple criterion for functions in this class which is necessary and sufficient, as

well as a necessary condition for any function of binary variables. We also give a

general-purpose graph construction for functions that satisfy our criterion.

Using this result, we develop several algorithms for the scene reconstruction

problem. We formulate this problem in an energy minimization framework. The



energy that we minimize encodes all the constraints of the problem: it treats

the input images symmetrically, handles visibility properly, and imposes spatial

smoothness while preserving discontinuities. We discuss several smoothness terms

that we can use. Experimental results show that our algorithms for two views are

among the top performers, and that the accuracy of the reconstruction is greatly

improved when more views are used.

In the last chapter of the thesis we address the issue of the efficiency of min-

cut/max-flow algorithms for computer vision applications. We compare the run-

ning times of several standard algorithms, as well as a new algorithm that we have

recently developed. We benchmark these algorithms on a number of typical graphs

arising in vision. In many cases our new algorithm works several times faster than

other methods.
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Chapter 1

Introduction

1.1 Energy minimization in vision

Energy minimization is a natural framework for many vision applications. It has

several advantages. It allows a clean specification of the problem to be solved,

as distinct from the algorithm used to solve it. In addition, energy minimization

naturally allows the use of soft constraints, such as spatial coherence. In an energy

minimization framework, it is possible to cause ambiguities to be resolved in a

manner that leads to a spatially smooth answer. Finally, energy minimization

avoids being trapped by early hard decisions.

The energy minimization approach is very popular in vision, and has been

widely applied to many problems. The amount of literature on the subject is

immense, see for example [HS81] for optical flow; [GG84] for image restoration;

[BZ87] for surface reconstruction; [Bar89] for stereo matching; [DE87] and [HPB98]

for texture segmentation; [TP86] for edge detection. For a brief overview of energy

minimization formulation for many vision problems see [PTK85].

Solving a problem via an energy minimization consists of two major steps. First

an objective function is formulated. It maps all possible solutions to real numbers,

and it shows how good (or bad) a candidate solution is. An objective function is

usually a sum of terms corresponding to different constraints of the problem, either

soft or hard. In this thesis, all objective functions will measure the badness of a

1
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candidate solution. We will refer to these objective functions as energy functions

The second step of the approach is to minimize the energy function. This is

often a very hard task. Energy functions that arise in vision usually have thousands

of dimensions and many local minima. Many researchers have tried to use some

general minimization techniques such as gradient descent or simulated annealing.

The former technique can be applied to almost any energy function of continuous

variables, and the latter to almost any function of discrete variables. However,

the price paid for this generality is that they often produce very poor results since

they get stuck in local minima, or they take an extremely long time to converge.

Moreover, because annealing is theoretically capable of finding the global minimum

of an arbitrary energy function, it requires exponential time.

Recently, new fast energy minimization techniques based on graph cuts have

emerged. These techniques can be applied to a restricted class of energy functions

of discrete variables. An advantage of these methods is that in certain cases they

can produce a global minimum of the energy, or in other cases a local minimum

with some strong properties. A brief overview and history of such techniques in

computer vision is given in the next section.

Although graph cuts are a powerful optimization technique, they can be applied

only to certain types of constraints. Two common constraints that researchers have

successfully incorporated into the graph cut framework are data and smoothness

constraints. The former constraint prefers solutions that explain well the observed

data, and the latter constraint prefers spatially smooth solutions.

In this thesis we develop a new graph cut approach to the problem of scene

reconstruction from images taken from multiple views. This problem has its own

additional constraints described later in the thesis. We show how to incorporate
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these constraints into a graph cut framework. As a result, we demonstrate that

the resulting algorithms give significantly more accurate reconstructions.

Note that because graph cuts can be applied only to a limited set of energy

functions, the two steps in solving a problem discussed earlier can no longer be

separated. The energy function that we design for the scene reconstruction problem

is chosen in a way that allows its efficient minimization via graph cuts. This design

was greatly facilitated by another result presented in this thesis: we give a partial

characterization of the class of energy functions of binary variables which can be

minimized using graph cuts.

1.2 Overview of graph cut methods in vision

Greig et. al. [GPS89] were first to discover that powerful min-cut/max-flow algo-

rithms from combinatorial optimization can be used to minimize certain important

energy functions in vision. The energies addressed by Greig et. al. and by most

later graph based methods (e.g. [RC98, IG98a, IG98b, BVZ98, BT99, BVZ01,

BH99, Vek00, KFT+00, SVZ00, TBRN00, BJ01, KZ01, KZ02a, Zal02, BGCM02,

LT03, GM03, KZG03, KSE+03, BK03]) can be represented as a posterior energy

in the well-known MAP-MRF1 framework [GG84, Li95],

E(f) =
∑
p∈P

Dp(fp) +
∑

{p,q}∈N
V{p,q}(fp, fq), (1.1)

where f = {fp |p ∈ P} is a labeling of image P, Dp(·) is a data penalty func-

tion, V{p,q} is an interaction potential, and N is a set of all pairs of neighboring

pixels. An example of image labeling is shown in Figure 1.1. Typically, data

penalties Dp(·) indicate individual label-preferences of pixels based on observed

1MAP-MRF stands for maximum a posteriori estimation of a Markov Random
Field.
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(a) An image (b) A labeling

Figure 1.1: An example of image labeling. An image in (a) is a set of pixels P

with observed intensities Ip for each p ∈ P. A labeling f shown in (b) assigns

some label fp ∈ {0, 1, 2} to each pixel p ∈ P. Such labels can represent depth (in

stereo), object index (in segmentation), original intensity (in image restoration),

or other pixel properties. Normally, graph based methods assume that the set of

possible labels at each pixel is finite. Thick lines in (b) show labeling discontinuities

between neighboring pixels.

intensities and pre-specified likelihood function. Interaction potentials V{p,q} en-

courage spatial coherence by penalizing discontinuities between neighboring pixels.

The papers above show that, to date, graph based energy minimization methods

provide arguably some of the most accurate solutions for the specified applica-

tions. For example, consider two recent evaluations of stereo algorithms using real

imagery with dense ground truth [SZ99, SS02]. Results from [SS02] are shown in

Figure 1.2.

Greig et.al. constructed a two terminal graph such that the minimum cost

cut of the graph gives a globally optimal labeling f in case when the number of

labels is two. Previously, exact minimization of energies like (1.1) was not possible

and such energies were approached mainly with iterative algorithms like simulated
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algorithm Tsukuba Sawtooth Venus Map
all untex disc all untex disc all untex disc all disc

*Layered 1.58 4 1.06 6 8.82 5 0.34 1 0.00 1 3.35 1 1.52 8 2.96 17 2.26 2 0.37 10 5.24 10

*alg. I 1.85 7 1.94 12 6.99 4 0.62 5 0.00 1 6.86 9 1.21 6 1.96 8 5.71 6 0.31 7 4.34 9

Belief prop. 1.15 1 0.42 2 6.31 1 0.98 7 0.30 12 4.83 5 1.00 4 0.76 4 9.13 11 0.84 17 5.27 11

*alg. II 1.19 2 0.23 1 6.71 2 0.73 6 0.11 7 5.71 7 1.64 11 2.75 15 5.41 5 0.61 13 6.05 12

Impr. Coop. 1.67 5 0.77 4 9.67 8 1.21 11 0.17 10 6.90 10 1.04 5 1.07 5 13.7 16 0.29 5 3.65 6

*Disc. pres. 1.78 6 1.22 8 9.71 9 1.17 9 0.08 6 5.55 6 1.61 10 2.25 11 9.06 10 0.32 8 3.33 5

*alg. II 1.27 3 0.43 3 6.90 3 0.36 2 0.00 1 3.65 2 2.79 19 5.39 20 2.54 1 1.79 20 10.1 19

*Graph cuts 1.94 9 1.09 7 9.49 7 1.30 13 0.06 5 6.34 8 1.79 14 2.61 14 6.91 7 0.31 6 3.88 7

Symbiotic 2.87 12 1.71 10 11.9 10 1.04 8 0.13 8 7.32 12 0.51 2 0.23 2 7.88 8 0.50 12 6.54 13

Var. win. 2.35 10 1.65 9 12.2 12 1.28 12 0.23 11 7.09 11 1.23 7 1.16 6 13.4 15 0.24 3 2.98 3

Adapt.Fuzzy 2.86 11 1.87 11 13.8 16 1.21 10 0.02 4 7.72 13 0.40 1 0.11 1 4.11 3 0.68 15 8.89 16

*Graph cuts 1.86 8 1.00 5 9.35 6 0.42 3 0.14 9 3.76 3 1.69 13 2.30 12 5.40 4 2.39 23 9.35 17

*Multiw.cut 8.08 24 6.53 21 25.3 25 0.61 4 0.46 15 4.60 4 0.53 3 0.31 3 8.06 9 0.26 4 3.27 4

Comp. win. 3.36 15 3.54 15 12.9 15 1.61 16 0.45 14 7.87 14 1.67 12 2.18 9 13.2 14 0.33 9 3.94 8

Realtime 4.25 19 4.47 19 15.1 20 1.32 14 0.35 13 9.21 15 1.53 9 1.80 7 12.3 12 0.81 16 11.4 22

Cooperative 3.49 16 3.65 16 14.8 18 2.03 17 2.29 21 13.4 20 2.57 18 3.52 18 26.4 24 0.22 2 2.37 1

Bay. diff. 6.49 23 11.6 26 12.3 13 1.45 15 0.72 16 9.29 16 4.00 21 7.21 23 18.4 20 0.20 1 2.49 2

Stock. diff. 3.95 17 4.08 18 15.5 22 2.45 21 0.90 18 10.6 17 2.45 16 2.41 13 21.8 22 1.31 19 7.79 15

Genetic 2.96 13 2.66 14 15.0 19 2.21 19 2.76 23 14.0 21 2.49 17 2.89 16 23.0 23 1.04 18 10.9 21

SSD+MF 5.23 22 3.80 17 24.7 24 2.21 18 0.72 17 14.0 22 3.74 20 6.82 22 12.9 13 0.66 14 9.35 17

*Max flow 2.98 14 2.00 13 15.1 21 3.47 22 3.00 24 14.2 23 2.16 15 2.24 10 21.7 21 3.13 24 16.0 25

Pix-to-pix 5.12 21 7.06 24 14.6 17 2.31 20 1.79 19 14.9 24 6.30 24 11.4 25 14.6 17 0.50 11 6.83 14

Scanl. opt. 5.08 20 6.78 22 11.9 11 4.06 23 2.64 22 11.9 18 9.44 26 14.6 26 18.2 19 1.84 21 10.2 20

Dyn. prog. 4.12 18 4.63 20 12.4 14 4.84 26 3.71 26 13.3 19 10.1 27 15.0 27 17.1 18 3.33 25 14.0 24

Shao 9.67 25 7.04 23 35.6 26 4.25 24 3.19 25 30.1 27 6.01 23 6.70 21 43.9 27 2.36 22 33.0 27

MMHM 9.76 26 13.9 27 24.4 23 4.76 25 1.87 20 22.5 25 6.48 25 10.4 24 31.3 25 8.42 27 12.7 23

Max. surf. 11.1 27 10.7 25 42.0 27 5.51 27 5.56 27 27.4 26 4.36 22 4.78 19 41.1 26 4.17 26 27.9 26

Figure 1.2: Evaluation of stereo algorithms [SS02] available at

http://www.middlebury.edu/stereo. Large numbers are error percentages, small

numbers are ranks of each algorithm in each column. Further details are given

in section 4.5.4. Algorithms are roughly ranked according to their overall perfor-

mance. Methods that use graph cuts are marked with a star. Algorithms “alg. I”

and “alg. II” (#2 and #4) are our algorithms described in chapter 4.
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annealing. In fact, Greig et.al. used their result to show that in practice simulated

annealing reaches solutions very far from the global minimum even in a very simple

example of binary image restoration.

Unfortunately, the graph cut technique in Greig et.al. remained unnoticed for

almost 10 years mainly because binary image restoration looked very limited as an

application. In the late 90’s new computer vision techniques appeared that figured

how to use min-cut/max-flow algorithms on graphs for more interesting non-binary

problems. [RC98] was the first to use these algorithms to compute multi-camera

stereo. Later, [IG98b, BVZ98] showed that with the right edge weights on a similar

to [RC98] graph one can minimize a non-binary case of (1.1) with integer labels

and linear interaction penalties. This graph construction was further generalized to

handle convex smoothness terms in [Ish03]. The results in [BVZ98, BVZ01] showed

that iteratively running min-cut/max-flow algorithms on appropriate graphs can

be used to find provably good approximate solutions for even more general multi-

label case when interaction penalties are metrics.

A growing number of publications in vision use graph based energy minimiza-

tion techniques for applications like image segmentation [IG98b, Vek00, KFT+00,

BJ01, BK03], image restoration [GPS89], stereo reconstruction [RC98, IG98a,

BVZ98, BT99, KZ01, KZ02a, BGCM02, LT03, GM03, KZG03], voxel occupancy

[SVZ00], object recognition [BH99], augmented reality [TBRN00], texture synthe-

sis [KSE+03] and others.

1.3 Contributions and prior publications

The main goal of this thesis is applying graph based methods to the problem of

reconstructing an object’s 3-dimensional shape from images taken from multiple
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viewpoints. This is a classic vision problem. In the last few years, there has been

a great deal of interest in it, partly due to a number of new applications both in

vision and in graphics that require good reconstructions. While the problem can

be viewed as a natural generalization of stereo, it is considerably more difficult.

The major reason for this is the difficulty of reasoning about visibility. In stereo

matching, most scene elements are visible from both cameras, and it is possible to

obtain good results without addressing visibility constraints. In the more general

scene reconstruction problem, however, very few scene elements are visible from

every camera, and so the issue of visibility cannot be ignored.

We develop new algorithms for this problem with several important properties:

they treat the input images symmetrically, handle visibility properly, and impose

spatial smoothness while also preserving discontinuities. We give an energy mini-

mization formulation of the multi-camera scene reconstruction problem and show

how our energy function can be efficiently minimized via graph cuts.

We also address several issues common to many other vision algorithms that

use graph cuts. For an important class of energy function we provide a simple

criterion for determining whether a given function can be minimized via graph

cuts. If possible, we show how to construct a graph for its minimization. We use

this result for approximate minimization of the energy function that we introduce

for the multi-camera reconstruction problem.

Finally, we present a new maxflow algorithm for computing minimum s-t cuts

that outperforms other standard algorithms for many vision applications, as we

demonstrate experimentally. It speeds up many graph-based methods, including

the algorithms presented in this thesis.

Thus, the main contributions of this theses are:
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(1) A partial characterization of the class of energy functions that can be mini-

mized via graph cuts, together with a general-purpose construction to mini-

mize any energy function in this class.

(2) Several new graph based algorithms for the multicamera reconstruction prob-

lem.

(3) New min cut/max flow algorithm which outperforms other standard algo-

rithms for many vision applications.

Most of the work presented in this thesis was previously published in [KZ02b, KZ03]

(contribution 1), [KZ01, KZ02a, KZG03] (contribution 2) and [BK01] (contribution

3).

1.4 Outline

The rest of the thesis is organized as follows. In chapter 2 we give some background

on graphs and graph cuts, describe the two-camera stereo problem and the expan-

sion move algorithm of [BVZ01] for solving this problem. In chapter 3 we give

a partial characterization of the class of energy functions that can be minimized

via graph cuts. In chapter 4 we present several new algorithms for multi-camera

reconstruction problem and give experimental results. In chapter 5 we present our

new min cut/max flow algorithm and experimentally demonstrate that it outper-

forms other standard algorithms for many vision applications. We summarize our

contributions and state some open questions in chapter 6.



Chapter 2

Background and previous work

2.1 The two-camera stereo problem

Stereo matching is a fundamental problem in vision. It is routinely solved by the

human brain, allowing us to perceive depth. However, the problem proved to be

extremely difficult for computers to solve.

In the classical stereo vision problem, there are two cameras observing a static

scene (i.e., where nothing is moving). The relative coordinate systems of the two

cameras are assumed to be known, or are constrained in some fashion. The idea

underlying stereopsis is to determine a correspondence (or matching) between each

location p of the first image and some location q of the second image. In other

words, to find the pairs of points p and q that result from the projection of the

same point P into the two images. The disparity, or difference in image location,

of q and p then indicates the distance from the cameras to the point P in the

world. Note that a given point P need not be visible in both images — there may

be some other point in the scene that hides P from view in the left or right image,

causing there to be no correspondence. This situation is known as an occlusion.

In a standard stereo setup cameras are aligned, i.e. their positions differ only

by a shift in the horizontal direction (Fig. 2.1). The two cameras are then called

“left” and “right”. In this setup images are rectified: all pairs of corresponding

pixels p and q lie on the same scanline, i.e. py = qy. A horizontal disparity qx−px is

9
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Figure 2.1: Example stereo setup with aligned cameras. The disparity qx − px is

inversely proportional to the distance from cameras to the point P . The pixel r is

occluded: the point R is visible in the left image, but not in the right.
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inversely proportional to the distance to the object. Therefore, the 3-dimensional

shape of the object can be computed by finding correspondences between pixels of

the left and the right images.

A natural generalization of two-camera stereo is the multi-camera stereo prob-

lem. The goal is to reconstruct the 3-dimensional shape of the object from images

taken by several cameras. This problem is considered in more detail in chapter 4.

2.2 Solving stereo via pixel labeling

The two-camera stereo problem is often formulated as a pixel labeling problem.

One of the images is chosen to be the primary image and the other one the sec-

ondary image. Let P be the set of pixels in the primary image. The goal is to

assign a label fp to each pixel p in P. This label indicates a disparity for pixel

p. Therefore, in a labeling f = {fp|p ∈ P} the pixel p in the primary image

corresponds to pixel p + fp in the secondary image.

To compute this labeling, two assumptions are usually made:

(1) Corresponding pixels p in the primary image and p + fp in the secondary

image have similar intensities.

(2) The correct disparity map f is smooth, i.e. nearby pixels p and q should

have similar disparities fp and fq.

These two assumptions can be incorporated in the energy function of the form

given in equation 1.1:

E(f) =
∑
p∈P

Dp(fp) +
∑

{p,q}∈N
V{p,q}(fp, fq)
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A typical choice for function Dp is

Dp(fp) = (Intensity1(p) − Intensity2(p + fp))
2

Several choices used as smoothness term V{p,q} are discussed in the next section,

as well as techniques for minimizing energy function 1.1 with these terms.

To conclude this section, we mention some disadvantages of this formulation.

First of all, it does not encode all the constraints of the visual correspondence

problem. One such constraint is a uniqueness constraint introduced in [MP76]:

each pixel can correspond to at most one pixel in the other image1. In the pixel

labeling framework, however, it can easily happen that two pixels in the primary

image map to the same pixel in the secondary image. Modeling occlusions is also

problematic in this framework: it tries to assign disparities to all pixels in the

primary image, while some of them do not have a corresponding pixel. Of course,

it is possible to introduce a special label “occluded”; however, it still does not lead

to unique labelings. Our experimental results in chapter 4 show that this approach

does not identify occlusions very well.

Another (related) disadvantage of this formulation is that it does not treat the

two input images symmetrically, which also indicates that this framework does not

suit the visual correspondence problem.

2.3 Different smoothness term

An important issue is the choice of smoothness terms V{p,q}(·, ·). For simplicity we

will often refer to it as just V if this does not create confusion. One possible choice

1As usual in stereo, we will ignore a discretization issue. If pixel p corresponds
to the middle point between adjacent pixels q and q′, then it might be beneficial
to mark both pairs {p, q} and {p, q′} as corresponding pixels.
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is the L1 distance (assuming that labels, i.e. disparities, are consecutive integers):

V (fp, fq) = λ · |fp − fq|

An advantage of this smoothness term is that it is possible to compute efficiently

a global minimum of energy function 1.1 using either of two almost identical meth-

ods developed in [IG98b, BVZ98]. This is done by computing a minimum s-t cut

on a specially constructed graph. In fact, both of this methods use graphs that are

very similar the one introduced in [RC98]. The same technique can also be used

in a more general case when labels are integers and term V (fp, fq) is an arbitrary

convex function of (fp−fq) [Ish03]. One special case (namely when the smoothness

term is linear and data term is of the form Dp(fp) = |fp − cp| for constant cp) can

be solved much faster, as shown in [Zal02].

Unfortunately, convex smoothness terms have significant disadvantages. They

usually work well when depth varies smoothly, however they have problems at ob-

ject boundaries (discontinuities). Indeed, at the borders of objects, adjacent pixels

often should have very different labels, which convex smoothness terms would give

a very high penalty. As a result, the optimal labeling most likely will not be

allowed to have such a large change in labels between neighboring pixels. The la-

belings one gets using a convex smoothness term tend to be over-smoothed around

discontinuities, as demonstrated in [Vek99], for example.

To get good results at discontinuities, it is important that E not over-penalize

labelings with large label changes between neighboring pixels. This requires that

V be a non-convex function of |fp − fq|. An energy function with such smoothness

term is called discontinuity-preserving. One of the simplest examples is

V (fp, fq) = λ · T (fp �= fq)



14

(Here and throughout the thesis T (·) denotes the indicator function: it is 1 if its

argument is true and 0 otherwise). This form of smoothness term is usually called

the Potts model.

Unfortunately, minimizing such an energy function is known to be an NP-

hard problem [BVZ01], so there almost certainly are no efficient global energy

minimization algorithms. However, graph cut algorithms have been developed that

compute a local minimum in a strong sense [BVZ01]. These methods minimize an

energy function with non-binary variables by repeatedly minimizing an energy

function with binary variables.2 In the next section we will review one of such

algorithms.

2.4 The expansion move algorithm

One of the most effective algorithms for minimizing discontinuity-preserving en-

ergy functions is the expansion move algorithm, which was introduced in [BVZ99,

BVZ01]. This algorithm can be used whenever the smoothness term V (·, ·) is a met-

ric on the space of labels; this includes several important discontinuity-preserving

energy functions including the Potts case (see [BVZ01] for more details).

Consider a labeling f and a particular label α. Another labeling f ′ is defined

to be an α-expansion move from f if every pixel either keeps its old label (i.e.

f ′
p = fp), or switches to α (f ′

p = α). This means that the set of pixels assigned the

label α has increased when going from f to f ′. An example of an expansion move

is shown in figure 2.2.

The expansion move algorithm cycles through the labels α in some order (fixed

2This is somewhat analogous to the ZπM algorithm [DL02], although that
method produces a global minimum of a function with non-binary variables by
repeatedly minimizing a function with binary variables.
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Figure 2.2: An example of an expansion move. Different colors represent different

labels. The labeling on the right is a red-expansion move from the labeling on the

left.

or random) and finds the lowest energy α-expansion move from the current labeling.

If this expansion move has lower energy than the current labeling, then it becomes

the current labeling. The algorithm terminates with a labeling that is a local

minimum of the energy with respect to expansion moves; more precisely, there is

no α-expansion move, for any label α, with lower energy. It is also possible to

prove that such a local minimum lies within a multiplicative factor of the global

minimum [BVZ01]. The factor depends on the smoothness term used; for the Potts

model, for example, the factor is 2.

Clearly, the critical step of this algorithm is computing an expansion move

with the lowest energy. Note that the search space is exponentially large. [BVZ01]

showed that an optimal expansion move can be found by computing a minimum

s-t cut on a specially constructed graph. Details of this construction can be found

in [BVZ01]. Note, however, that they are fairly complex. In chapter 3 we will give

an equivalent construction which has some advantages.

The α expansion concept introduced in [BVZ98, BVZ01] has been successfully

used in many other vision and graphics algorithms [BT99, KZ01, KZ02a, LT03,
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KZG03, KSE+03]. In particular, it plays a critical role for scene reconstruction

algorithms presented in this thesis.

2.5 Background on graphs

In this section we review some basic facts about graphs in the context of energy

minimization methods in vision. A directed weighted (capacitated) graph G =

〈V, E〉 consists of a set of nodes V and a set of directed edges E that connect them.

Usually the nodes correspond to pixels, voxels, or other features. A graph normally

contains some additional special nodes that are called terminals. In the context

of vision, terminals correspond to the set of labels that can be assigned to pixels.

We will concentrate on the case of graphs with two terminals. Then the terminals

are usually called the source, s, and the sink, t. In Figure 2.3(a) we show a simple

example of a two terminal graph (due to Greig et al. [GPS89]) that can be used

to minimize the energy (1.1) using the Potts model V on a 3 × 3 image with two

labels. There is some variation in the structure of graphs used in other energy

minimization methods in vision. However, most of them are based on regular 2D

or 3D grid graphs as the one in Figure 2.3(a). This is a simple consequence of the

fact that normally graph nodes represent regular image pixels or voxels.

All edges in the graph are assigned some weight or cost. A cost of a directed

edge (p, q) may differ from the cost of the reverse edge (q, p). In fact, ability to

assign different edge weights for (p, q) and (q, p) is important for many graph-based

applications in vision. Normally, there are two types of edges in the graph: n-links

and t-links. N-links connect pairs of neighboring pixels or voxels. Thus, they

represent a neighborhood system in the image. The cost of the n-links corresponds

to a penalty for discontinuities between pixels. These costs are usually derived
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Figure 2.3: Example of a directed capacitated graph. Edge costs are reflected by

their thickness. A similar graph-cut construction was first used in vision by Greig

et al. [GPS89] for binary image restoration.

from the pixel interaction term V in the energy (1.1). T-links connect pixels

with terminals (labels). The cost of a t-link connecting a pixel and a terminal

corresponds to a penalty for assigning the corresponding label to the pixel. This

cost is normally derived from the data term Dp in the energy function (1.1).

2.5.1 Min-cut and max-flow problems

An s-t cut C on a graph with two terminals is a partition of the nodes in the graph

into two disjoint subsets S and T such that the source s is in S and the sink t

is in T . For simplicity, throughout this thesis we refer to s-t cuts as just cuts.

Figure 2.3(b) shows one example of a cut. In combinatorial optimization the cost

of a cut C = S, T is defined as the sum of the costs of “boundary” edges (p, q)

where p ∈ S and q ∈ T . Note that cut cost is “directed” as it sums up weights of

directed edges specifically from S to T . The minimum cut problem on a graph is

to find a cut that has the minimum cost among all cuts.
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One of the fundamental results in combinatorial optimization is that the min-

imum s-t cut problem can be solved by finding a maximum flow from the source

s to the sink t. Loosely speaking, maximum flow is the maximum “amount of

water” that can be sent from the source to the sink by interpreting graph edges as

directed “pipes” with capacities equal to edge weights. The theorem of Ford and

Fulkerson [FF62] states that a maximum flow from s to t saturates a set of edges

in the graph dividing the nodes into two disjoint parts S, T corresponding to a

minimum cut. Thus, a minimum cut can be computed from a maximum flow. In

fact, the maximum flow value is equal to the cost of the minimum cut.

We can also intuitively show how min-cut (or max-flow) on a graph may help

with energy minimization over image labelings. Consider an example in Figure 2.3.

The graph corresponds to a 3 × 3 image. Any s-t cut partitions the nodes into

disjoint groups each containing exactly one terminal. Therefore, any cut corre-

sponds to some assignment of pixels (nodes) to labels (terminals). If edge weights

are appropriately set based on parameters of an energy, a minimum cost cut will

correspond to a labeling with the minimum value of this energy.3

3Different graph-based energy minimization methods may use different graph
constructions, as well as, different rules for converting graph cuts into image label-
ings. Details for each method are described in the original publications.



Chapter 3

Energy functions and graph cuts

3.1 Introduction

In the last few years, several new algorithms based on graph cuts have been

developed to solve energy minimization problems in computer vision (see chap-

ters 1 and 2). Minimizing an energy function via graph cuts, however, remains

a technically difficult problem. Each paper constructs its own graph specifi-

cally for its individual energy function, and in some of these cases (especially

[BVZ01, KZ01, KZ02a]) the construction is fairly complex. One consequence is

that researchers sometimes use heuristic methods for optimization, even in situa-

tions where the exact global minimum can be computed via graph cuts. The goal

of this chapter is to precisely characterize the class of energy functions that can be

minimized via graph cuts, and to give a general-purpose graph construction that

minimizes any energy function in this class. Our results play a key role for scene

reconstruction algorithms presented in chapter 4, provide a significant generaliza-

tion of the energy minimization methods used in [BT99, BJ01, BVZ01, GPS89,

KFT+00, LT03, SVZ00], and show how to minimize an interesting new class of

energy functions.

In this chapter we only consider energy functions involving binary-valued vari-

ables. At first glance this restriction seems severe, since most work with graph

cuts considers energy functions with variables that have many possible values. For

19



20

example, the algorithms presented in [BVZ01] use graph cuts to address the stan-

dard pixel labeling problem that arises in early vision, including stereo, motion and

image restoration. In this problem the variables represent individual pixels, and

the possible values for an individual variable represent, e.g., its possible displace-

ments or intensities. However, many of the graph cut methods that handle multiple

possible values work by repeatedly minimizing an energy function involving only

binary variables.

Consider, for example, the expansion move algorithm of [BVZ01] described

in section 2.4. In the α-expansion operation each pixel makes a binary decision:

either to keep its old label, or to switch to the new label α. Thus, computing

an optimal α-expansion move can be viewed as minimizing an energy function of

binary variables with one binary variable per pixel.

As we will see, our results generalize the algorithms given in [BT99, BJ01,

BVZ01, GPS89, KFT+00, SVZ00], and can be easily applied to problems like

pixel-labeling, even though the pixels have many possible labels.

3.1.1 Summary of our results

In this chapter we focus on two classes of energy functions. Let {x1, . . . , xn},

xi ∈ {0, 1} be a set of binary-valued variables. We define the class F2 to be

functions that can be written as a sum of functions of up to 2 binary variables at

a time,

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑
i<j

Ei,j(xi, xj). (3.1)
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We define the class F3 to be functions that can be written as a sum of functions

of up to 3 binary variables at a time,

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑
i<j

Ei,j(xi, xj) +
∑

i<j<k

Ei,j,k(xi, xj, xk). (3.2)

Obviously, the class F2 is a strict subset of the class F3. However, to simplify the

discussion we will begin by focusing on F2. Note that there is no restriction on

the signs of the energy functions or of the individual terms.

The main results in this chapter are:

• A precise characterization of the class of functions in F3 that can be mini-

mized using graph cuts.

• A general-purpose graph construction for minimizing any function in this

class.

• A necessary condition for any function of binary variables to be minimized

via graph cuts.

The rest of the chapter is organized as follows. We discuss the importance

of energy functions with binary variables in the context of the expansion move

algorithm in section 3.1.2. In section 3.2 we formalize the relationship between

graphs and energy functions, and provide a precise definition of the problem that

we wish to solve. Section 3.3 contains our main theorem for the class of functions

F2 and shows how this result can be used for both stereo and multi-camera scene

reconstruction. Section 3.4 gives our results for the broader class F3, and shows

how this result can be used for multi-camera scene reconstruction. A necessary

condition for an arbitrary function of binary variables to be minimized via graph

cuts is presented in section 3.5. We discuss some related work in the theory of
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submodular functions in section 3.6, and give a summary of our graph constructions

in section 3.7. An NP-hardness result and a proof of one of our theorems are

deferred to section 3.8.

3.1.2 The expansion move algorithm

The key sub-problem in the expansion move algorithm is to compute the low-

est energy labeling within a single α-expansion of f . This sub-problem is solved

efficiently with a single graph cut [BVZ01], using a somewhat intricate graph con-

struction.

It is important to note that this sub-problem is an energy minimization problem

over binary variables, even though the overall problem that the expansion move

algorithm is solving involves non-binary variables. This is because each pixel will

either keep its old value under f or acquire the new label α.

Formally, any labeling f ′ within a single α-expansion of the initial labeling f

can be encoded by a binary vector x = {xp|p ∈ P} where f ′(p) = f(p) if xp = 0,

and f ′(p) = α if xp = 1. Let us denote the labeling defined by a binary vector x

as fx. Since the energy function E is defined over all labelings, it is obviously also

defined over labelings specified by binary vectors. The key step in the expansion

move algorithm is therefore to find the minimum of E(fx) over all binary vectors

x.

The importance of energy functions of binary variables does not arise simply

from the expansion move algorithm. Instead, it results from the fact that a graph

cut effectively assigns one of two possible values to each vertex of the graph. So

in a certain sense any energy minimization construction based on graph cuts relies

on intermediate binary variables.
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It is, of course, possible to use graph cuts in such a manner that variables in

the original problem do not correspond in a one-to-one manner with vertices in

the graph. This kind of complex transformation lies at the heart of the graph

cut algorithms that compute a global minimum [IG98b, Ish03]. However, the NP-

hardness result given in [BVZ01] shows that (unless P=NP) such as result cannot

be achieved for even the simplest discontinuity-preserving energy function.

3.2 Representing energy functions with graphs

In section 2.5 we defined the notion of graph cuts. For the purposes of this chapter

we will use a slightly different view on graph cuts, which we now present.

Let us consider a graph G = (V, E) with terminals s and t, thus

V = {v1, . . . , vn, s, t}. Each cut on G has some cost; therefore, G represents the

energy function mapping from all cuts on G to the set of nonnegative real numbers.

Any cut S, T can be described by n binary variables x1, . . . , xn corresponding to

vertices in G (excluding the source and the sink): xi = 0 when vi ∈ S, and xi = 1

when vi ∈ T . Therefore, the energy E that G represents can be viewed as a func-

tion of n binary variables: E(x1, . . . , xn) is equal to the cost of the cut defined

by the configuration x1, . . . , xn (xi ∈ {0, 1}). Note that the configuration that

minimizes E will not change if we add a constant to E.

We can efficiently minimize E by computing a minimum s-t-cut on G. This

naturally leads to the question: what is the class of energy functions E for which

we can construct a graph that represents E?

We can also generalize our construction. Above we used each vertex (except

the source and the sink) for encoding one binary variable. Instead we can specify a

subset V0 = {v1, . . . , vk} ⊂ V − {s, t} and introduce variables only for the vertices
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in this set. Then there may be several cuts corresponding to a configuration

x1, . . . , xk. If we define the energy E(x1, . . . , xk) as the minimum among the costs

of all such cuts, then a minimum s-t-cut on G will again yield a configuration which

minimizes E.

We will summarize the graph constructions that we allow in the following def-

inition.

Definition 3.1 A function E of n binary variables is called graph-representable

if there exists a graph G = (V, E) with terminals s and t and a subset of vertices

V0 = {v1, . . . , vn} ⊂ V − {s, t} such that for any configuration x1, . . . , xn the value

of the energy E(x1, . . . , xn) is equal to a constant plus the cost of a minimum s-

t-cut among all cuts C = S, T in which vi ∈ S, if xi = 0, and vi ∈ T , if xi = 1

(1 ≤ i ≤ n). We say that E is exactly represented by G, V0 if this constant is

zero.

The following lemma is an obvious consequence of this definition.

Lemma 3.2 Suppose the energy function E is graph-representable by a graph G

and a subset V0. Then it is possible to find the exact minimum of E in polynomial

time by computing a minimum s-t-cut on G.

In this chapter we will give a complete characterization of the classes F2 and

F3 in terms of graph representability, and show how to construct graphs for min-

imizing graph-representable energies within these classes. Moreover, we will give

a necessary condition for all other classes which must be met for a function to be

graph-representable. Obviously, it would be sufficient to consider only the class

F3, since F2 ⊂ F3. However, the condition for F2 is simpler so we will consider

it separately.
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Note that the energy functions we consider can be negative, as can the indi-

vidual terms in the energy functions. However, the graphs that we construct must

have non-negative edge weights. All previous work that used graph cuts for energy

minimization dealt with non-negative energy functions and terms. As a result, in

this respect our results are more general.

3.3 The class F2

Our main result for the class F2 is the following theorem.

Theorem 3.3 (F2 theorem) Let E be a function of n binary variables from the

class F2, i.e.

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑
i<j

Ei,j(xi, xj). (3.3)

Then E is graph-representable if and only if each term Ei,j satisfies the inequality

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0). (3.4)

We will call functions satisfying the condition of equation (3.4) regular.1 This

theorem thus states that regularity is a necessary and sufficient condition for graph-

representability, at least in F2.

In this section we will give a constructive proof that regularity is a sufficient

condition, by describing how to build a graph that represents an arbitrary regular

function in F2. The other half of the theorem is proved in much more generality

in section 3.5, where we show that a regularity is also a necessary condition.

1The representation of a function E as a sum in equation (3.3) is not unique.
However, we will show in section 3.4 that the definition of regularity does not
depend on this representation.
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Regularity is thus an extremely important property, as it allows energy func-

tions to be minimized using graph cuts. Moreover, without the regularity con-

straint, the problem becomes intractable. Our next theorem shows that minimiz-

ing an arbitrary non-regular function is NP-hard, even if we restrict our attention

to F2.

Theorem 3.4 (NP-hardness) Let E2 be a non-regular function of two variables.

Then minimizing functions of the form

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑

(i,j)∈N
E2(xi, xj)

where Ei are arbitrary functions of one variable and N ⊂ {(i, j)|1 ≤ i < j ≤ n},

is NP-hard.

The proof of this theorem is deferred to section 3.8. Note that this theorem

implies the intractability of minimizing the entire class of non-regular functions in

F2. It allows for the existence of non-regular functions in F2 that can be minimized

efficiently.2

3.3.1 Graph construction for F2

In this section we will prove the constructive part of F2 theorem. Let E be a

regular function of the form as given in the theorem. We will construct a graph

for each term separately and then “merge” all graphs together. This is justified by

additivity theorem given in section 3.8.

2Steven Gortler and colleagues have investigated a particularly simple example,
namely functions that can be made regular by interchanging the sense of 0 and 1
for some set of variables.
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The graph will contain n+2 vertices: V = {s, t, v1, . . . , vn}. Each non-terminal

vertex vi will encode the binary variable xi. For each term of E we will add one

or more edges that we describe next.

First, consider a term Ei depending on one variable xi. If Ei(0) < Ei(1) then

we add the edge (s, vi) with the weight Ei(1) − Ei(0) (Figure 3.1(a)). Otherwise

we add the edge (vi, t) with the weight Ei(0) − Ei(1) (Figure 3.1(b)). It easy to

see that in both cases the constructed graph represents the function Ei (but with

different constants: Ei(0) in the former case and Ei(1) in the latter).

Now consider a term Ei,j depending on two variables xi, xj . It is convenient to

represent it as the following table:

Ei,j =
Ei,j(0, 0) Ei,j(0, 1)

Ei,j(1, 0) Ei,j(1, 1)
=

A B

C D

We can rewrite it as

A B

C D
= A +

0 0

C − A C − A
+

0 D − C

0 D − C
+

0 B + C − A − D

0 0

The first term is a constant function, so we don’t need to add any edges for it. The

second and the third terms depend only on one variable xi and xj , respectively.

Therefore, we can use the construction given above. To represent the last term,

we add an edge (vi, vj) with the weight B + C −A−D (Figure 3.1(c)). Note that

this weight is nonnegative due to the regularity of E.

A complete graph for Ei,j will contain three edges. One possible case (C−A > 0

and D − C < 0) is illustrated in Figure 3.1(d).

Note that we did not introduce any additional vertices for representing binary

interactions of binary variables. This is in contrast to the construction in [BVZ01]

which added auxiliary vertices for representing energies that we just considered.
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s

t

vi

Ei(1) − Ei(0)

s

t

vi

Ei(0) − Ei(1)

(a) Graph for Ei where Ei(0) > Ei(1) (b) Graph for Ei where Ei(0) �> Ei(0)

s

t

vi vj
B + C − A − D

s

t

vi vj

C − A

B + C − A − D

C − D

(c) Third edge for Ei,j (d) Complete graph for Ei,j

if C > A and C > D

Figure 3.1: Graphs for functions in F2



29

Our construction yields a smaller graph and, thus, the minimum cut can potentially

be computed faster.

3.3.2 Example: applying our results for stereo problem

Our results give a generalization of a number of previous algorithms [BT99, BJ01,

BVZ01, GPS89, KFT+00, LT03, SVZ00] in the following sense. Each of these

methods used a graph cut algorithm that was specifically constructed to minimize

a certain form of energy function. The class of energy functions that we show

how to minimize is much larger, and includes the techniques used in all of these

methods as special cases.

To illustrate the power of our results, we return to the use of the expansion

move algorithm for stereo problem described in section 2.4. Recall that the key

sub-problem is to find a minimum energy labeling within a single α-expansion of

f , which is equivalent to minimizing the energy over binary variables xi.

The paper that proposed the expansion move algorithm [BVZ01] showed how

to solve the key sub-problem with graph cuts as long as Dp is non-negative and V

is a metric on the space of labels. This involved an elaborate graph construction

and several associated theorems.

Using our results, we can recreate the proof that such an energy function can

be solved in just a few lines. All that we need is to prove that E is regular if

Dp is non-negative and V is a metric. Obviously, the form of Dp doesn’t matter;

we simply have to show that if V is a metric the individual terms satisfy the

inequality in equation (3.4). Consider two neighboring pixels p, q, with associated
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binary variables i, j. We have

Ei,j(0, 0) Ei,j(0, 1)

Ei,j(1, 0) Ei,j(1, 1)
=

V (fp, fq) V (fp, α)

V (α, fq) V (α, α)

If V is a metric, by definition, for any labels α, β, γ V (α, α) = 0 and V (β, α) +

V (α, γ) ≥ V (β, γ). This gives the inequality of equation (3.4) and shows that E

can be minimized using graph cuts.

3.4 The class F3

Before stating our theorem for the class F3 we will extend the definition of regular-

ity to arbitrary functions of binary variables. We will need a notion of projections.

Suppose we have a function E of n binary variables. If we fix m of these

variables then we get a new function E ′ of n−m binary variables; we will call this

function a projection of E. The notation for projections is as follows.

Definition 3.5 Let E(x1, . . . , xn) be a function of n binary variables, and let I,

J be a disjoint partition of the set of indices {1, . . . , n}: I = {i(1), . . . , i(m)},

J = {j(1), . . . , j(n − m)}. Let αi(1), . . . , αi(m) be binary constants. A projection

E ′ = E[xi(1) = αi(1), . . . , xi(m) = αi(m)] is a function of n − m variables defined by

E ′(xj(1), . . . , xj(n−m)) = E(x1, . . . , xn),

where xi = αi for i ∈ I. We say that we fix the variables xi(1), . . ., xi(m).

Now we can give a generalized definition of regularity.

Definition 3.6

• All functions of one variable are regular.



31

• A function E of two variables is called regular if E(0, 0)+E(1, 1) ≤ E(0, 1)+

E(1, 0).

• A function E of more than two variables is called regular if all projections of

E of two variables are regular.

For the class F2 this definition is equivalent to the previous one. A proof of this

fact is given in section 3.4.3.

Now we are ready to formulate our main theorem for F3.

Theorem 3.7 (F3 theorem) Let E be a function of n binary variables from F3,

i.e.

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑
i<j

Ei,j(xi, xj) +
∑

i<j<k

Ei,j,k(xi, xj , xk) (3.5)

Then E is graph-representable if and only if E is regular.

3.4.1 Graph construction for F3

Consider a regular function E of the form given in equation (3.5). The regularity

of E does not necessarily imply that each term in (3.5) is regular. However, we will

give an algorithm for converting any regular function in F3 to the form (3.5) with

each term regular (see regrouping theorem in the next section). Note that this was

not necessary for the class F2: for any representation of a regular function in the

form (3.3) each term in the sum is regular.

Here we will give graph construction for a regular function E of the form as in

the F3 theorem assuming that each term of E is regular. The graph will contain
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s

t

vi vj vk

uijk

s

t

vi vj vk

uijk

(a) Edge weights are all P (b) Edge weights are all −P

Figure 3.2: Graphs for functions in F3

n + 2 vertices: V = {s, t, v1, . . . , vn} as well as some additional vertices described

below. Each non-terminal vertex vi will encode the binary variable xi. For each

term of E we will add one or more edges and possibly an additional (unique) vertex

that we describe next. Again, our construction is justified by the additivity lemma

given in section 3.8.

Terms depending on one and two variables were considered in the previous

section, so we will concentrate on a term Ei,j,k depending on three variables xi, xj ,

xk. It is convenient to represent it as the following table:

Ei,j,k =

Ei,j(0, 0, 0) Ei,j(0, 0, 1)

Ei,j(0, 1, 0) Ei,j(0, 1, 1)

Ei,j(1, 0, 0) Ei,j(1, 0, 1)

Ei,j(1, 1, 0) Ei,j(1, 1, 1)

=

A B

C D

E F

G H

Let us denote P = (A+D+F +G)− (B +C +E +H). We consider two cases:
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Case 1: P >= 0. We can rewrite Ei,j,k as

A B

C D

E F

G H

= A +

0 0

0 0

P1 P1

P1 P1

+

0 0

P2 P2

0 0

P2 P2

+

0 P3

0 P3

0 P3

0 P3

+

+

0 P23

0 0

0 P23

0 0

+

0 0

0 0

P31 0

P31 0

+

0 0

P12 P12

0 0

0 0

+

0 0

0 0

0 0

0 −P

where P1 = F − B, P2 = G − E, P3 = D − C, P23 = B + C − A − D, P31 =

B + E − A − F , P12 = C + E − A − G. Ei,j,k is regular, therefore by considering

projections Ei,j,k[x1 = 0], Ei,j,k[x2 = 0], Ei,j,k[x3 = 0] we conclude that P23, P31,

P12 are non-negative.

The first term is a constant function, so we don’t need to add any edges for

it. The next three terms depend only on one variable (xi, xj , xk, respectively) so

we can use the construction given in the previous section. The next three terms

depend on two variables; non-negativity of P23, P31, P12 implies that they are all

regular. Therefore, we can again use the construction of the previous section.

(Three edges will be added: (vj , vk), (vk, vi), (vi, vj) with weights P23, P31, P12,

respectively).

To represent the last term, we will add an auxiliary vertex uijk and four edges

(vi, uijk), (vj , uijk), (vk, uijk), (uijk, t) with the weight P . This is shown in fig-
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ure 3.2(a). Let us prove these four edges exactly represent the function

P P

P P

P P

P 0

= P +

0 0

0 0

0 0

0 −P

If xi = xj = xk = 1 then the cost of the minimum cut is 0 (the minimum cut

is S = {s}, T = {vi, vj, vk, uijk, t}. Suppose at least one of the variables xi, xj , xk

is 0; without loss of generality, we can assume that xi = 0, i.e. vi ∈ S. If uijk ∈ S

then the edge (uijk, t) is cut; if uijk ∈ T the edge (vi, uijk) is cut yielding the cost

P . Hence, the cost of a minimum cut is at least P . However, if uijk ∈ S the cost

of the cut is exactly P no matter where the vertices vi, vj , vk are. Therefore, the

cost of a minimum cut will be 0 if xi = xj = xk = 1 and P otherwise, as desired.

Case 2: P < 0. This case is similar to the case 1. We can rewrite Ei,j,k as

A B

C D

E F

G H

= H +

P1 P1

P1 P1

0 0

0 0

+

P2 P2

0 0

P2 P2

0 0

+

P3 0

P3 0

P3 0

P3 0

+

+

0 0

P32 0

0 0

P32 0

+

0 P13

0 P13

0 0

0 0

+

0 0

0 0

P21 P21

0 0

+

P 0

0 0

0 0

0 0

where P1 = C − G, P2 = B − D, P3 = E − F , P32 = F + G − E − H , P13 =

D + G−C −H , P21 = D + F −B −H . By considering projections Ei,j,k[x1 = 1],

Ei,j,k[x2 = 1], Ei,j,k[x3 = 1] we conclude that P32, P13, P21 are non-negative.
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As in the previous case, all terms except the last are regular and depend on

at most two variables, so we can use the construction of the previous section. We

will have, for example, edges (vk, vj), (vi, vk), (vj , vi) with weights P32, P13, P21,

respectively.

To represent the last term, we will add an auxiliary vertex uijk and four edges

(uijk, vi), (uijk, vj), (uijk, vk), (s, uijk) with the weight −P . This is shown in fig-

ure 3.2(b).

Note that in both cases we added an auxiliary vertex uijk. It is easy to see

that this is necessary since graphs without auxiliary vertices can only represent

functions in F2. Each edge represents a function of at most two variables, so the

whole graph represents a function that is a sum of terms of at most two variables.

3.4.2 Constructive proof of the regrouping theorem

Now we will show how to convert a regular function in F3 to the form (3.5) with

each term regular.

Theorem 3.8 (regrouping) Any regular function E from the class F3 can be

rewritten as a sum of terms such that each term is regular and depends on at most

three variables.

We will assume that E given as

E(x1, . . . , xn) =
∑

i<j<k

Ei,j,k(xi, xj, xk),

where i, j, k are indices from the set {1, . . . , n} (we omitted terms involving func-

tions of one and two variables since they can be viewed as functions of three

variables).

We begin by giving a definition.
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Definition 3.9 The functional π will be a mapping from the set of all functions

(of binary variables) to the set of real numbers which is defined as follows. For a

function E(x1, . . . , xn)

π(E) =
∑

x1∈{0,1},...,xn∈{0,1}
(Πn

i=1(−1)xi)E(x1, . . . , xn).

For example, for a function E of two variables π(E) = E(0, 0) − E(0, 1) −

E(1, 0) + E(1, 1). Note that a function E of two variables is regular if and only if

π(E) ≤ 0. (Some other properties of π are discussed at the end of this chapter.)

It is trivial to check the following lemma.

Lemma 3.10 The functional π has the following properties.

• π is linear, i.e. for a scalar c and two functions E ′, E ′′ of n variables

π(E ′ + E ′′) = π(E ′) + π(E ′′) and π(c · E ′) = c · π(E ′).

• If E is a function of n variables that does not depend on at least one of the

variables then π(E) = 0.

We will prove the theorem using the following lemma and a trivial induction

argument.

Definition 3.11 Let Ei,j,k be a function of three variables. The functional N(Ei,j,k)

is defined as the number of projections of two variables of Ei,j,k with positive values

of the functional π.

Note that N(Ei,j,k) = 0 exactly when Ei,j,k is regular.

Lemma 3.12 Suppose the function E of n variables can be written as

E(x1, . . . , xn) =
∑

i<j<k

Ei,j,k(xi, xj, xk),
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where some of the terms are not regular. Then it can be written as

E(x1, . . . , xn) =
∑

i<j<k

Ẽi,j,k(xi, xj, xk),

where

∑
i<j<k

N(Ẽi,j,k) <
∑

i<j<k

N(Ei,j,k).

Proof:

For simplicity of notation let us assume that the term E1,2,3 is not regular and

π(E1,2,3[x3 = 0]) > 0 or π(E1,2,3[x3 = 1]) > 0 (we can ensure this by renaming

indices). Let

Ck = max
αk∈{0,1}

π(E1,2,k[xk = αk]) k ∈ {4, . . . , n}

C3 = −
n∑

k=4

Ck

Now we will modify the terms E1,2,3, . . ., E1,2,n as follows:

Ẽ1,2,k ≡ E1,2,k − R[Ck] k ∈ {3, . . . , n}

where R[C] is the function of two variables x1 and x2 defined by the table

R[C] =
0 0

0 C

(other terms are unchanged: Ẽi,j,k ≡ Ei,j,k, (i, j) �= (1, 2)). We have

E(x1, . . . , xn) =
∑

i<j<k

Ẽi,j,k(xi, xj , xk)

since
∑n

k=3 Ck = 0 and
∑n

k=3 R[Ck] ≡ 0.

If we consider R[C] as a function of n variables and take a projection of two

variables where the two variables that are not fixed are xi and xj (i < j), then the
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functional π will be C, if (i, j) = (1, 2), and 0 otherwise since in the latter case a

projection actually depends on at most one variable. Hence, the only projections of

two variables that could have changed their value of the functional π are Ẽ1,2,k[x3 =

α3, . . . , xn = αn], k ∈ {3, . . . , n}, if we treat Ẽ1,2,k as functions of n variables, or

Ẽ1,2,k[xk = αk], if we treat Ẽ1,2,k as functions of three variables.

First let us consider terms with k ∈ {4, . . . , n}. We have π(E1,2,k[xk = αk]) ≤

Ck, thus

π(Ẽ1,2,k[xk = αk]) = π(E1,2,k[xk = αk]) − π(R[Ck][xk = αk]) ≤ Ck − Ck = 0

Therefore we did not introduce any non-regular projections for these terms.

Now let us consider the term π(Ẽ1,2,3[x3 = α3]). We can write

π(Ẽ1,2,3[x3 = α3]) = π(E1,2,3[x3 = α3]) − π(R[C3][x3 = α3]) =

= π(E1,2,3[x3 = α3]) − (−
n∑

k=4

Ck) =
n∑

k=3

π(E1,2,k[xk = αk])

where αk = arg maxα∈{0,1} π(E1,2,k[xk = α]), k ∈ {4, . . . , n}. The last expression is

just π(E[x3 = α3, . . . , xn = αn]) and is non-positive since E is regular by assump-

tion. Hence, values π(Ẽ1,2,3[x3 = 0]) and π(Ẽ1,2,3[x3 = 1]) are both non-positive

and, therefore, the number of non-regular projections has decreased.

The complexity of a single step is O(n) since it involves modifying at most n

terms. Therefore, the complexity of the whole algorithm is O(mn) where m is the

number of terms in (3.5) since in the beginning
∑

i<j<k N(Ei,j,k) is at most 6m and

each step decreases it by at least one.

3.4.3 The two definitions of regularity are equivalent

We now prove that the definition of regularity 3.6 is equivalent to the previous

definition of regularity for the class F2. Note that the latter one is formulated not
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only as a property of the function E but also as a property of its representation as

a sum in equation (3.3). We will show equivalence for an arbitrary representation,

which will imply that the definition of regularity for the class F2 depends only on

E but not on the representation.

Let us consider a graph-representable function E from the class F2:

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑
i<j

Ei,j(xi, xj)

Consider a projection where the two variables that are not fixed are xi and xj .

By lemma 3.10 the value of the functional π of this projection is equal to π(Ei,j)

(all other terms yield zero). Therefore, this projection is regular if and only if

Ei,j(0, 0)+ Ei,j(1, 1) ≤ Ei,j(0, 1)+ Ei,j(1, 0), which means that the two definitions

are equivalent.

3.5 More general classes of energy functions

Finally, we give a necessary condition for graph representability for arbitrary func-

tions of binary variables.

Theorem 3.13 (regularity) Let E be a function of binary variables. If E is not

regular then E is not graph-representable.

This theorem will imply the corresponding directions of the F2 and F3 theorems

(theorems 3.3 and 3.7).

Definition 3.14 Let G = (V, E) be a graph, v1, . . . , vk be a subset of vertices V

and α1, . . . , αk be binary constants whose values are from {0, 1}. We will define

the graph G[x1 = α1, . . . , xk = αk] as follows. Its vertices will be the same as in G



40

and its edges will be all edges of G plus additional edges corresponding to vertices

v1, . . . , vk: for a vertex vi, we add the edge (s, vi), if αi = 0, or (vi, t), if αi = 1,

with an infinite capacity.

It should be obvious that these edges enforce the following constraints on nodes

v1, . . . , vk in a minimum cut S,T: if αi = 0 then vi ∈ S, and if αi = 1 then vi ∈ T .

(If, for example, αi = 0 and vi ∈ T then the edge (s, vi) must be cut yielding an

infinite cost, so it would not a minimum cut.)

Now we can give a definition of graph representability which is equivalent to

the definition 3.1. This new definition will be more convenient for the proof.

Definition 3.15 We say that the function E of n binary variables is exactly rep-

resented by the graph G = (V, E) and the set V0 ⊂ V if for any configuration

α1, . . . , αn the cost of a minimum cut on G[x1 = α1, . . . , xk = αk] is E(α1, . . . , αn).

Lemma 3.16 Any projection of a graph-representable function is

graph-representable.

Proof: Let E be a graph-representable function of n variables, and the graph G =

(V, E) and the set V0 represents E. Suppose that we fix variables xi(1), . . . , xi(m).

It is straightforward to check that the graph G[xi(1) = αi(1), . . . , xi(m) = αi(m)]

and the set V ′
0 = V0 − {vi(1), . . . , vi(m)} represent the function E ′ = E[xi(1) =

αi(1), . . . , xi(m) = αi(m)].

This lemma implies that it suffices to prove theorem 3.13 only for energies of

two variables.

Let Ē(x1, x2) be a graph-representable function of two variables. Let us prove

that Ē is regular, i.e. that A ≤ 0 where A = π(Ē) = Ē(0, 0) + Ē(1, 1)− Ē(0, 1)−

Ē(1, 0). Suppose this is not true: A > 0.
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We can write

0 0

0 A
= Ē(0, 0) +

0 −Ē(0, 1)

0 −Ē(0, 1)
+

0 0

−Ē(1, 0) −Ē(1, 0)
+

Ē(0, 0) Ē(0, 1)

Ē(1, 0) Ē(1, 1)

All functions on the right side are graph-representable, therefore by the ad-

ditivity theorem (see section 3.8) the function E is graph-representable as well,

where

E =
0 0

0 A

Consider a graph G and a set V0 = {v1, v2} representing E. It means that there

is a constant K such that G, V0 exactly represent E ′(x1, x2) = E(x1, x2) + K:

E ′ =
K K

K K + A

The cost of a minimum s-t-cut on G is K (since this cost is just the minimum

entry in the table for E ′); hence, K ≥ 0. Thus the value of the maximum flow

from s to t in G is K. Let G0 be the residual graph obtained from G after pushing

the flow K. Let E0(x1, x2) be the function exactly represented by G0,V0.

By the definition of graph representability, E ′(α1, α2) is equal to the value of a

minimum cut (or maximum flow) on the graph G[x1 = α1, x2 = α2]. The following

sequence of operations shows one possible way to push a maximum flow through

this graph.

• First we take the original graph G and push the flow K; then we get the

residual graph G0. (It is equivalent to pushing flow through G[x1 = α1, x2 =

α2] where we do not use edges corresponding to constraints x1 = α1 and

x2 = α2).
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• Then we add edges corresponding to these constraints; then we get the graph

G0[x1 = α1, x2 = α2].

• Finally we push the maximum flow possible through the graph G0[x1 =

α1, x2 = α2]; the amount of this flow is E0(α1, α2) according to the definition

of graph representability.

The total amount of flow pushed during all steps is K + E0(α1, α2); thus,

E ′(α1, α2) = K + E0(α1, α2)

or

E(α1, α2) = E0(α1, α2)

We proved that E is exactly represented by G0, V0.

The value of a minimum cut/maximum flow on G0 is 0 (it is the minimum entry

in the table for E); thus, there is no augmenting path from s to t in G0. However,

if we add edges (v1, t) and (v2, t) then there will be an augmenting path from s

to t in G0[x1 = α1, x2 = α2] since E(1, 1) = A > 0. Hence, this augmenting path

will contain at least one of these edges and, therefore, either v1 or v2 will be in the

path. Let P be the part of this path going from the source until v1 or v2 is first

encountered. Without loss of generality we can assume that it will be v1. Thus, P

is an augmenting path from s to v1 which does not contain edges that we added,

namely (v1, t) and (v2, t).

Finally let us consider the graph G0[x1 = 1, x2 = 0] which is obtained from G0

by adding edges (v1, t) and (s, v2) with infinite capacities. There is an augmenting

path {P, (v1, t)} from the source to the sink in this graph; hence, the value of a

minimum cut/maximum flow on it greater than zero, or E(1, 0) > 0. We get a

contradiction.
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3.6 Related work

There is an interesting relationship between regular functions and submodular

functions.3 Let U be a finite set and g : 2U → R be a real-valued function defined

on the set of all subsets of U . g is called submodular if for any X, Y ⊂ U

g(X) + g(Y ) ≥ g(X ∪ Y ) + g(X ∩ Y ).

See [Fuj90], for example, for a discussion of submodular functions. An equivalent

definition of submodular functions is that g is called submodular if for any X ⊂ U

and i, j ∈ U − X

g(X ∪ {j}) − g(X) ≥ g(X ∪ {i, j}) − g(X ∪ {i}).

Obviously, functions of subsets X of U = {1, . . . , n} can be viewed as functions

of n binary variables (x1, . . . , xn); the indicator variable xi is 1 if i is included in X

and 0 otherwise. Then it is easy to see that the second definition of submodularity

reduces to the definition of regularity. Thus, submodular functions and regular

functions are essentially the same. We use different names to emphasize a technical

distinction between them: submodular functions are functions of subsets of U while

regular functions are functions of binary variables. From our experience, the second

point of view is much more convenient for vision applications.

Submodular functions have received a lot of attention in combinatorial opti-

mization literature. A remarkable fact about submodular functions is that they

can be minimized in polynomial time ([IFF00],[Sch00]). A function g is assumed

to be given as a value oracle, i.e., a “black box” which, for any input subset X

returns the value g(X).

3We thank Yuri Boykov and Howard Karloff for pointing out this connection.



44

Unfortunately, algorithms for minimizing arbitrary submodular functions are

extremely slow. For example, the algorithm of [IFF00] runs in O(n5 min{log nM,

n2 log n}) time where M is an upper bound on |g(X)| among X ∈ 2U . Thus, our

work can be viewed as identifying an important subclass of submodular functions

for which much faster algorithm can be used.

In addition, a relation between submodular functions and certain

graph-representable functions called cut functions is already known. Using our

terminology, cut functions can be defined as functions which can be represented

by a graph without the source and the sink and without auxiliary vertices. It is

well-known that cut functions are submodular. [Cun85] characterizes cut functions

and gives a general-purpose graph construction for them.

It can be shown that the set of cut functions is a strict subset of F2. We allow

a more general graph construction; as a result, we can minimize a larger class of

functions, namely regular functions in F3.

3.7 Summary of graph constructions

We now summarize the graph constructions used for regular functions. Recall that

for a function E(x1, . . . , xn) we define

π(E) =
∑

x1∈{0,1},...,xn∈{0,1}
(Πn

i=1(−1)xi)E(x1, . . . , xn).

The notation edge(v, c) will mean that we add an edge (s, v) with the weight c if

c > 0, or an edge (v, t) with the weight −c if c < 0.
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3.7.1 Regular functions of one binary variable

Recall that all functions of one variable are regular. For a function E(x1), we

construct a graph G with three vertices V = {v1, s, t}. There is a single edge

edge(v1, E(1) − E(0)).

3.7.2 Regular functions of two binary variables

We now show how to construct a graph G for a regular function E(x1, x2) of two

variables. It will contain four vertices: V = {v1, v2, s, t}. The edges E are given

below.

• edge(v1, E(1, 0) − E(0, 0));

• edge(v2, E(1, 1) − E(1, 0));

• (v1, v2) with the weight −π(E).

3.7.3 Regular functions of three binary variables

We next show how to construct a graph G for a regular function E(x1, x2, x3) of

three variables. It will contain five vertices: V = {v1, v2, v3, u, s, t}. If π(E) ≥ 0

then the edges are

• edge(v1, E(1, 0, 1)− E(0, 0, 1));

• edge(v2, E(1, 1, 0)− E(1, 0, 0));

• edge(v3, E(0, 1, 1)− E(0, 1, 0));

• (v2, v3) with the weight −π(E[x1 = 0]);

• (v3, v1) with the weight −π(E[x2 = 0]);
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• (v1, v2) with the weight −π(E[x3 = 0]);

• (v1, u), (v2, u), (v3, u), (u, t) with the weight π(E).

If π(E) < 0 then the edges are

• edge(v1, E(1, 1, 0)− E(0, 1, 0));

• edge(v2, E(0, 1, 1)− E(0, 0, 1));

• edge(v3, E(1, 0, 1)− E(1, 0, 0));

• (v3, v2) with the weight −π(E[x1 = 1]);

• (v1, v3) with the weight −π(E[x2 = 1]);

• (v2, v1) with the weight −π(E[x3 = 1]);

• (u, v1), (u, v2), (u, v3), (s, u) with the weight −π(E).

3.8 Technical details

In this section, we provide a few additional technical details that were deferred

earlier in this chapter.

3.8.1 Proof of the NP-hardness theorem

We now give a proof of the NP-hardness theorem (theorem 3.4), which shows that

in the absence of regularity it is intractable to minimize even energy functions in

F2.

Proof: Adding functions of one variable does not change the class of functions

that we are considering. Thus, we can assume without loss of generality that E2
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has the form

E2 =
0 0

0 A

(We can transform an arbitrary function of two variables to this form as follows:

we subtract a constant from the first row to make the upper left element zero, then

we subtract a constant from the second row to make the bottom left element zero,

and finally we subtract a constant from the second column to make the upper right

element zero.)

These transformations preserve the functional π, so E2 is non-regular, which

means that A > 0.

We will prove the theorem by reducing the maximum independent set problem,

which is known to be NP-hard, to our energy minimization problem.

Let an undirected graph G = (V, E) be the input to the maximum independent

set problem. A subset U ⊂ V is said to be independent if for any two vertices

u, v ∈ U the edge (u, v) is not in E . The goal is to find an independent subset U∗ ⊂

V of maximum cardinality. We construct an instance of the energy minimization

problem as follows. There will be n = |V| binary variables x1, . . . , xn corresponding

to the vertices v1, . . . , vn of V. Let us consider the energy

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑

(i,j)∈N
E2(xi, xj)

where Ei(xi) = − A
2n

· xi and N = {(i, j) | (vi, vj) ∈ E}.

There is a one-to-one correspondence between all configurations (x1, . . . , xn)

and subsets U ⊂ V: a vertex vi is in U if and only if xi = 1. Moreover, the first

term of E(x1, . . . , xn) is − A
2n

times the cardinality of U (which cannot be less than

−A
2
), and the second term is 0, if U is independent, and at least A otherwise. Thus,

the minimum of the energy yields the independent subset of maximum cardinality.
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3.8.2 The additivity theorem

Theorem (additivity) The sum of two graph-representable functions is graph-

representable.

It is important to note that the proof of this theorem is constructive. The

construction has a particularly simple form if the graphs representing the two

functions are defined on the same set of vertices (i.e., they differ only in their edge

weights). In this case, by simply adding the edge weights together, we obtain a

graph that represents the sum of the two functions. If one of the graphs has no

edge between two vertices, we can add an edge with weight 0.

Proof:Let us assume for simplicity of notation that E ′ and E ′′ are functions of all

n variables: E ′ = E ′(x1, . . . , xn), E ′′ = E ′′(x1, . . . , xn). By the definition of graph

representability, there exist constants K ′, K ′′, graphs G′ = (V ′, E ′), G′′ = (V ′′, E ′′)

and the set V0 = {v1, . . . , vn}, V0 ⊂ V ′ −{s, t}, V0 ⊂ V ′′ −{s, t} such that E ′ + K ′

is exactly represented by G′, V0 and E ′′ + K ′′ is exactly represented by G′′, V0. We

can assume that the only common vertices of G ′ and G′′ are V0 ∪ {s, t}. Let us

construct the graph G = (V, E) as the combined graph of G ′ and G′′: V = V ′ ∪ V ′′,

E = E ′ ∪ E ′′.

Let Ẽ be the function that G, V0 exactly represents. Let us prove that Ẽ ≡

E + (K ′ + K ′′) (and, therefore, E is graph-representable).

Consider a configuration x1, . . . , xn. Let C ′ = cut(S ′, T ′) be the cut on G′ with

the smallest cost among all cuts for which vi ∈ S ′ if xi = 0, and vi ∈ T ′ if xi = 1

(1 ≤ i ≤ n). According to the definition of graph representability,

E ′(x1, . . . , xn) + K ′ =
∑

u∈S′,v∈T ′,(u,v)∈E ′
c(u, v)

Let C ′′ = S ′′, T ′′ be the cut on G′′ with the smallest cost among all cuts for which



49

vi ∈ S ′′ if xi = 0, and vi ∈ T ′′ if xi = 1 (1 ≤ i ≤ n). Similarly,

E ′′(x1, . . . , xn) + K ′′ =
∑

u∈S′′,v∈T ′′,(u,v)∈E ′′
c(u, v)

Let S = S ′ ∪ S ′′, T = T ′ ∪ T ′′. It is easy to check that C = S, T is a cut on

G. Thus,

Ẽ(x1, . . . , xn) ≤
∑

u∈S,v∈T ,(u,v)∈E
c(u, v)

=
∑

u∈S′,v∈T ′,(u,v)∈E ′
c(u, v) +

∑
u∈S′′,v∈T ′′,(u,v)∈E ′′

c(u, v)

= (E ′(x1, . . . , xn) + K ′) + (E ′′(x1, . . . , xn) + K ′′) = E(x1, . . . , xn) + (K ′ + K ′′).

Now let C = S, T be the cut on G with the smallest cost among all cuts for

which vi ∈ S if xi = 0, and vi ∈ T if xi = 1 (1 ≤ i ≤ n), and let S ′ = S ∩ V ′,

T ′ = T ∩ V ′, S ′′ = S ∩ V ′′, T ′′ = T ∩ V ′. It is easy to see that C ′ = S ′, T ′ and

C ′′ = S ′′, T ′′ are cuts on G′ and G′′, respectively. According to the definition of

graph representability,

E(x1, . . . , xn) + (K ′ + K ′′) = (E ′(x1, . . . , xn) + K ′) + (E ′′(x1, . . . , xn) + K ′′)

≤
∑

u∈S′,v∈T ′,(u,v)∈E ′
c(u, v) +

∑
u∈S′′,v∈T ′′,(u,v)∈E ′′

c(u, v)

=
∑

u∈S,v∈T ,(u,v)∈E ′
c(u, v) = Ẽ(x1, . . . , xn).

3.8.3 Properties of the functional π

While the functional π has a form that at first seems counterintuitive, it actually

has a close relationship with the classes of energy functions we are concerned with.

To see this, let us define the class Fk to be functions of binary variables that can
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be written as a sum of functions of up to k variables at a time,

E(x1, . . . , xn) =
∑

i(1)<...<i(k′),k′≤k

Ei(1),...,i(k′)(xi(1), . . . , xi(k′)) (3.6)

(it is an obvious generalization of classes F2 and F3).

In this section we will show that the functional π can serve as an indicator of

the class of a function.

Theorem 3.17 Suppose, E is a function of n binary variables (n ≥ 1). Then

E ∈ Fn−1 if and only if π(E) = 0.

Proof: One direction of the theorem is trivial: if E ∈ Fn−1, then π(E) = 0 by

lemma 3.10. Let us prove π(E) = 0 implies E ∈ Fn−1 by induction on n.

Induction base: n = 1 (E is a function of one variable). If π(E) = E(0)−E(1) =

0, then E(0) = E(1), i.e. E is constant and, therefore, is in F0.

Now suppose that the theorem is true for n ≥ 1. Let us consider a function

E(x1, . . . , xn+1) of n + 1 binary variables such that π(E) = 0.

Let E0 = E[xn+1 = 0], E1 = E[xn+1 = 1] be functions of n variables x1, . . . , xn.

It is easy to check that π(E) = π(E0) − π(E1). Thus, π(E0) = π(E1) = C.

Let R[C] be a function of n variables x1, . . . , xn such that π(R[C]) = C. (For

example, we can define it as R[C](x1, . . . , xn) = C, if x1 = 0, . . . , xn = 0, and

R[C](x1, . . . , xn) = 0 otherwise.)

Let

E ′(x1, . . . , xn+1) = E(x1, . . . , xn+1) − R[C](x1, . . . , xn)

E ′
0(x1, . . . , xn) = E0(x1, . . . , xn) − R[C](x1, . . . , xn)

E ′
1(x1, . . . , xn) = E1(x1, . . . , xn) − R[C](x1, . . . , xn)
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E ′ is a function of n + 1 variables, E ′
0, E ′

1 are functions of n variables. Clearly,

E ′
0 = E ′[xn+1 = 0], E ′

1 = E ′[xn+1 = 1], π(E ′
1) = π(E ′

0) = π(E0) − π(R[C]) =

C − C = 0.

By the induction hypothesis, E ′
0, E

′
1 ∈ Fn−1:

E ′
0(x1, . . . , xn) =

∑
α

Eα
0 (x1, . . . , xn)

E ′
1(x1, . . . , xn) =

∑
β

Eβ
1 (x1, . . . , xn)

where all terms Eα
0 , Eβ

1 depend on at most n − 1 variables.

Let Ẽα
0 , Ẽβ

1 , Ẽ be functions of n + 1 variables defined as follows:

Ẽα
0 (x1, . . . , xn+1) =




Eα
0 (x1, . . . , xn), xn+1 = 0

0, xn+1 = 1

Ẽβ
1 (x1, . . . , xn+1) =




0, xn+1 = 0

Eβ
1 (x1, . . . , xn), xn+1 = 1

Ẽ ≡
∑
α

Ẽα
0 +

∑
β

Ẽβ
1

We can write

Ẽ[xn+1 = 0] ≡
∑
α

Ẽα
0 [xn+1 = 0] +

∑
β

Ẽβ
1 [xn+1 = 0] ≡

∑
α

Eα
0 + 0 ≡ E ′[xn+1 = 0]

Ẽ[xn+1 = 1] ≡
∑
α

Ẽα
0 [xn+1 = 1] +

∑
β

Ẽβ
1 [xn+1 = 1] ≡ 0 +

∑
α

Eβ
1 ≡ E ′[xn+1 = 1]

Thus, E ′ ≡ Ẽ. All terms Ẽα
0 , Ẽβ

1 depend on at most n variables, therefore,

E ′ ∈ Fn and E ∈ Fn (since E is a sum of E ′ and R[C], and R[C] depends on n

variables).

Theorem 3.18 Suppose, E is a function of m binary variables (m ≥ n ≥ 1).

Then E ∈ Fn−1 if and only if π(E ′) = 0 for all functions E ′ that are projections

of E of at least n variables (i.e. at most m − n variables are fixed).
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Proof: One direction of the theorem is trivial: if E ∈ Fn−1, then all projections

E ′ of E are also in Fn−1, therefore π(E ′) = 0 by lemma 3.10. Let us prove the

opposite direction by induction on m.

The induction base (the case m = n) follows from theorem 3.17.

Now suppose that it is true for m ≥ n. Let us consider a function E(x1, . . . , xm+1)

of m+1 binary variables such that π(E ′) = 0 for all projections E ′ of E of at least

n binary variables.

Any projection of E[xm+1 = 0] is also a projection of E. Thus, π(E ′) = 0

for all projections E ′ of E[xm+1 = 0] of at least n binary variables. E[xm+1 = 0]

is a function of m variables; by the induction hypothesis, E[xm+1 = 0] ∈ Fn−1.

Similarly, E[xm+1 = 1] ∈ Fn−1.

Let E0, E1 be functions of m + 1 variables x1, . . . , xm+1 defined as follows:

E0(x1, . . . , xm+1) =




E[xm+1 = 0](x1, . . . , xm), xm+1 = 0

0, xm+1 = 1

E1(x1, . . . , xm+1) =




0, xm+1 = 0

E[xm+1 = 1](x1, . . . , xm), xm+1 = 1

It is easy to see that E0 and E1 are in Fn since E[xm+1 = 0] and E[xm+1 = 1] are

in Fn−1. Therefore, E ≡ E0 + E1 is in Fn as well.

Thus, E can be written as

E(x1, . . . , xm+1) =
∑

i(1)<...<i(n)

Ẽi(1),...,i(n)(xi(1), . . . , xi(n)) =

=
∑

i(1)<...<i(n)

Ei(1),...,i(n)(x1, . . . , xm+1)

where

Ei(1),...,i(n)(x1, . . . , xm+1) = Ẽi(1),...,i(n)(xi(1), . . . , xi(n))
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Let us a take a projection of E of n variables where the variables that are not

fixed are xi(1), . . . , xi(n) (i(1) < . . . < i(n)), and apply the functional π to this

projection. Let us denote this operation as π′.

Let us consider the result of this operation on a single term Ei′(1),...,i′(n), i′(1) <

. . . < i′(n). If (i′(1), . . . , i′(n)) coincides with (i(1), . . . , i(n)) then π′(Ei′(1),...,i′(n)) =

π(Ẽi′(1),...,i′(n)). Suppose that these indexes do not coincide, then i(k) is not in

{i′(1), . . . , i′(n)} for some k. Ei′(1),...,i′(n) does not depend on xi(k). Therefore, any

projection of this function where xi(k) is not fixed also does not depend on xi(k), so

the functional π of such projection is 0 by lemma 3.10. Thus, π′(Ei′(1),...,i′(n)) = 0.

Therefore, π′(E) = π′(Ei(1),...,i(n)) = π(Ẽi(1),...,i(n)). By assumption π′(E) = 0,

so Ẽi(1),...,i(n) ∈ Fn−1 by theorem 3.17.

E is a sum of terms which lie in Fn−1, therefore E is in Fn−1 as well.

We can also show that π is unique (up to a constant multiplicative factor)

among the linear functionals that are indicator variables for the class of an energy

function.

Theorem 3.19 Suppose, π′ is a linear functional mapping the set of functions E

of n binary variables to the set of real numbers with the property that E ∈ Fn−1 if

and only if π′(E) = 0. Then there exists a constant c �= 0 such that π′(E) = cπ(E)

for any function E.

Proof: π′ can be written as

π′(E) =
∑

x1∈{0,1},...,xn∈{0,1}
c(x1, . . . , xn) · E(x1, . . . , xn)

where c(x1, . . . , xn) are some constants.

Let c = c(0, . . . , 0). Let us prove that c(x1, . . . , xn) = (Πn
i=1(−1)xi) c by induc-

tion on d = x1 + . . . + xn.
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Induction base: if d = x1 + . . . + xn = 0, then x1 = . . . = xn = 0, so

c(x1, . . . , xn) = c.

Suppose that it is true for all configurations x1, . . . , xn such that x1+. . .+xn = d

(d ≥ 0). Let us consider a configuration x1, . . . , xn such that x1 + . . .+xn = d+1.

At least one of the variables is 1 since d + 1 ≥ 1. Let us assume that this is the

first variable (we can ensure it by renaming indexes): x1 = 1. Let us consider the

function E(x′
1, . . . , x

′
n) which is 1 if (x′

2, . . . , x
′
n) = (x2, . . . , xn), and 0 otherwise.

Clearly,

π′(E) = c(0, x2, . . . , xn) + c(1, x2, . . . , xn)

0+x2+. . .+xn = d, therefore c(0, x2, . . . , xn) = (Πn
i=2(−1)xi) c by the induction

hypothesis. E is in Fn−1 since it does not depend on x1. Thus, π′(E) must be 0,

so

c(1, x2, . . . , xn) = −c(0, x2, . . . , xn) = (Πn
i=1(−1)xi) c

We proved that π′(E) = cπ(E) for any function E. c cannot be 0 since otherwise

π′(E) would always be 0, and there are functions E of n variables which are not

in Fn−1.



Chapter 4

Multi-camera scene reconstruction

In this chapter we present several algorithms for scene reconstruction from

multiple viewpoints. The algorithms are based on an energy minimization formu-

lation. They have many important properties which are essential for obtaining

accurate results. These properties are listed below. Our algorithms have all of

these properties.

Ideally, an algorithm for multi-camera scene reconstruction should

• Work with an arbitrary number of cameras,

• Enforce the photoconsistency constraint,

• Enforce the visibility constraint,

• Impose spatial smoothness while preserving discontinuities,

• Treat all input images symmetrically, and

In addition, of course, the algorithm should run efficiently and give strong exper-

imental results. This is most naturally obtained by energy minimization using

graph cuts.

We now discuss each property briefly.

Number of cameras

Traditionally, researchers have focused their attention on the two-camera stereo

problem. This can be formulated as a visual correspondence problem: we want to

55
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find a mapping from one image to the other satisfying the uniqueness constraint.

Thus, in principle it can be solved without referring to 3D geometry of the scene.

Unfortunately, this approach is not readily generalizable to multiple cameras. More

complex scene representations are needed which take into account 3D geometry.

Photoconsistency constraint

The constraint says that if two pixels in different cameras are looking at the same

element of the scene, then their intensities should be similar (this is often called the

Lambertian, or constant brightness, assumption). Most stereo algorithms enforce

this constraint, however there are several exceptions. For example, algorithms

based on silhouette intersections use only information obtained by subtracting

images with an object and images without an object (“background” images).

Visibility constraint

This is a generalization to multiple cameras of the uniqueness constraint used in

two-camera stereo. Similar to the two-camera case, this constraint is particularly

important for obtaining accurate results at object boundaries and for detecting

occlusions. The visibility constraint is described in more detail later the chapter.

Unlike other constraints, this is a hard constraint, i.e. the penalty for its violation

is infinity. It imposes complex nonlinear restrictions on the search space.

Spatial smoothness

A spatially smooth solution should be preferred, in situations where the input data

is ambiguous. Unfortunately, since vision is concerned with extracting information

about the 3D scene from one or more 2D images, ambiguity is inevitable. Moreover,
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it is important not to over-smooth the output, as discussed in section 2.3.

Symmetry

Many stereo algorithms do not treat all input images equally, and have a preferred

image instead. They will give different results if a different preferred image is cho-

sen. However, there is no asymmetry in the formulation of the scene reconstruction

problem. This is an indication of the fact that these algorithms are not well-suited

to this problem.

Energy minimization

Our energy function is not the first that captures all constraints mentioned above;

see [KSC01], for example. However, the minimization algorithm in [KSC01] is an

iteration of two steps one of which is a local optimization. It can easily be trapped

in local minima. As a result, this approach produces poor results.

In contrast, our minimization technique is based on the global α-expansion

operation described in section 2.4. The output of our algorithm has the same

strong property as the expansion move algorithm of [BVZ01]: no α-expansion can

decrease the energy.

The algorithms described in this chapter are based on papers [KZ01, KZ02a,

KZG03]. In the first two papers we presented two different stereo algorithms based

on graph cuts (the first one for two cameras, and the second one for multiple cam-

eras). The relationship between these two approaches was not clear at the time.

In the third paper we presented a unified algorithm and showed that algorithms

in [KZ01, KZ02a] are its special cases. The energy function for the unified algo-

rithm contains two different smoothness terms. If one of them is omitted, then the
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algorithm reduces to [KZ01] or [KZ02a], respectively.

The rest of the chapter is organized as follows. In section 4.1 we review other

algorithms for two-camera stereo and multiple-camera stereo. In section 4.2 we

formalize our problem and present the energy function for the unified algorithm.

Two special cases are considered in section 4.3. Minimization of the energy func-

tion is discussed in section 4.4. Experimental results are presented in section 4.5.

Conclusions are given in section 4.6.

4.1 Related work

The problem of reconstructing a scene from multiple cameras has received a great

deal of attention in the last few years. One extensively-explored approach to

this problem is voxel occupancy. In voxel occupancy [MA83, Sze93] the scene is

represented as a set of 3-dimensional voxels, and the task is to label the individual

voxels as filled or empty. Voxel occupancy is typically solved using silhouette

intersection, usually from multiple cameras but sometimes from a single camera

with the object placed on a turntable [CB92]. It is known that the output of

silhouette intersection even without noise is not the actual 3-dimensional shape,

but rather an approximation called the visual hull [Lau94].

4.1.1 Voxel coloring and space carving

Voxel occupancy, however, fails to exploit the consistent appearance of a scene

element between different cameras. This constraint, called photo-consistency, is

obviously quite powerful. Two well-known recent algorithms that have used photo-

consistency are voxel coloring [SD99] and space carving [KS00].

Voxel coloring makes a single pass through voxel space, first computing the
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visibility of each voxel and then its color. There is a constraint on the camera

geometry, namely that no scene point is allowed to be within the convex hull of the

camera centers. As we will see, our approach handles all the camera configurations

where voxel coloring can be used. Space carving is another voxel-oriented approach

that uses the photo-consistency constraint to prune away empty voxels from the

volume. Space carving has the advantage of allowing arbitrary camera geometry.

One major limitation of voxel coloring and space carving is that they lack a way

of imposing spatial coherence. This is particularly problematic because the image

data is almost always ambiguous. Another (related) limitation comes from the

fact that these methods traverse the volume making “hard” decisions concerning

the occupancy of each voxel they analyze. Because the data is ambiguous, such a

decision can easily be incorrect, and there is no easy way to undo such a decision

later on.

4.1.2 Energy minimization approaches

Although [RC98] and [SVZ00] use energy minimization via graph cuts, their focus

is quite different from ours. [RC98] uses an energy function whose global minimum

can be computed efficiently via graph cuts; however, the spatial smoothness term is

not discontinuity preserving, and so the results tend to be oversmoothed. Visibility

constraints are not used. [SVZ00] computes the global minimum of a different

energy function as an alternative to silhouette intersection (i.e., to determine voxel

occupancy). Their approach does not deal with photoconsistency at all, nor do

they reason about visibility.

Our method is also related to the work of [KSC01], which also relies on graph

cuts. They extend the work of [BVZ01], which focused on traditional stereo match-
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ing, to allow an explicit label for occluded pixels. While the energy function that

they use is of a similar general form to ours, they do not treat the input images

symmetrically. While we effectively compute a disparity map with respect to each

camera, they compute a disparity map only with respect to a single camera.

4.2 Problem formulation

Now we will formalize the problem we are trying to solve. We will introduce

two mappings describing the geometry of the scene, and enforce hard constraints

between them. These mappings will be similar to the ones used in [KZ02a] and

[KZ01], respectively.

Suppose we are given n calibrated images of the same scene taken from different

viewpoints (or at different moments of time). Let Pi be the set of pixels in the

camera i, and let P = P1 ∪ . . . ∪ Pn be the set of all pixels. A pixel p ∈ P

corresponds to a ray in 3D-space. Our first mapping f will describe depths for all

pixels. More formally, the labeling f is a mapping from P to L where L is a discrete

set of labels corresponding to different depths. In the current implementation of

our method, labels correspond to increasing depth from a fixed camera.

A pair 〈p, l〉 where p ∈ P, l ∈ L corresponds to some point in 3D-space. We

will refer to such pairs as 3D-points.

Our method has the same limitation as voxel coloring [SD99]. Namely, there

must exist a function D : R3 
→ R such that for all scene points P and Q, P

occludes Q in a camera i only if D(P ) < D(Q). If such a function exists then

labels correspond to level sets of this function. In our current implementation, we

make a slightly more specific assumption, which is that the cameras must lie in

one semiplane looking at the other semiplane. The interpretation of labels will be
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as follows: each label corresponds to a plane in 3D-space, and a 3D-point 〈p, l〉 is

the intersection of the ray corresponding to the pixel p and the plane l.

Let us introduce the set of interactions I consisting of (unordered) pairs of 3D-

points 〈p1, l1〉, 〈p2, l2〉 “close” to each other in 3D-space. We will discuss several

criteria for “closeness” later. In general, I can be an arbitrary set of pairs of

3D-points satisfying the following constraint:

• Only 3D-points at the same depth can interact, i.e.if {〈p1, l1〉, 〈p2, l2〉} ∈ I

then l1 = l2.

To simplify the notation, we will denote interactions in I as 〈p, q, l〉 where p, q are

pixels and l is a depth label.

Since 3D-points 〈p, l〉 and 〈q, l〉 are close to each other, the interaction 〈p, q, l〉

approximately corresponds to a single point in 3D-space (it can be, for example, the

middle point between 〈p, l〉 and 〈q, l〉). We can describe the geometry of the scene

by specifying which interactions are visible. Let us introduce another mapping

g : I → {0, 1}. g(〈p, q, l〉) will be 1 if this interaction is visible in both pixels p

and q, and 0 otherwise. This mapping allows us to introduce the data term (i.e.

the photoconsistency constraint) very naturally: we will enforce photoconsistency

between p and q only if the interaction 〈p, q, l〉 is active, i.e. g(〈p, q, l〉) = 1.

4.2.1 Our energy function

Now we will define the energy function that we minimize. It will consist of five

terms:

E(f, g) = Edata(g) + E
(1)
smooth(f) + E

(2)
smooth(g) + Evis(f) + Econsistency(f, g) (4.1)
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The terms E
(1)
smooth and Evis were used in [KZ02a]. The terms E

(2)
smooth and Edata

are similar to the ones used in [KZ01]. The term Econsistency will enforce consistency

between the mappings f and g.

Data term

The data term will be

Edata(g) =
∑
i∈I

Di(g(i))

where Di(0) = K for some constant K and Di(1) depends on intensities of pixels

p and q involved in the interaction i. We can have, for example, D〈p,q,l〉(1) =

(Intensity(p) − Intensity(q))2.

Smoothness terms

Two smoothness terms enforce smoothness on two fields f and g, respectively.

They involve a notion of neighborhood; we assume that there are two neighborhood

systems: one on pixels

N1 ⊂ {{p, p′} | p, p′ ∈ P , p �= p′}

and one on interactions

N2 ⊂ {{i, i′} | i, i′ ∈ I , i �= i′}.

N1 can be the usual 4-neighborhood system: pixels p and p′ are neighbors if they

are in the same image and |p′x − px| + |p′y − py| = 1. N2 can be defined similarly;

interactions 〈p, q, l〉 and 〈p′, q′, l〉 are neighbors if p and p′ are neighbors (or they

are the same pixel): |p′x − px|+ |p′y − py| ≤ 1. The only requirement on N2 is that

neighboring interactions must have the same depth label.
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We will write the first smoothness term as

E
(1)
smooth(f) =

∑

{p,p′}∈N1

V{p,p′}(f(p), f(p′))

We will require the term V{p,q} to be a metric. This imposes smoothness while

preserving discontinuities, as long as we pick an appropriate robust metric. For

example, we can use the robustified L1 distance V (l1, l2) = min(|l1 − l2|, R) for

constant R. Note that this smoothness term involves only a single camera.

The second smoothness term can be written as

E
(2)
smooth(g) =

∑
{i,i′}∈N2

V{i,i′} · T (g(i) �= g(i′))

where T (·) is 1 if its argument is true and 0 otherwise. Note that this smoothness

term involves pairs of cameras, as does [KZ01].

Visibility term

This term will encode the visibility constraint: it will be zero if this constraint is

satisfied, and infinity otherwise. We can write this using another set of interactions

Ivis which contains pairs of 3D-points violating the visibility constraint:

Evisibility(f) =
∑

〈p,f(p)〉,〈q,f(q)〉∈Ivis

∞

We require the set Ivis to meet following condition:

• Only 3D-points at different depths can interact, i.e. if {〈p1, l1〉, 〈p2, l2〉} ∈ Ivis

then l1 �= l2.

The visibility constraint says that if a 3D-point 〈p, l〉 is present in a config-

uration f (i.e. l = f(p)) then it “blocks” views from other cameras: if a ray

corresponding to a pixel q goes through (or close to) 〈p, l〉 then its depth is at
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most l. Again, we need a definition of “closeness”. We will use the set I for this

purpose. Thus, the set Ivis can be defined as follows: it will contain all pairs of

3D-points 〈p, l〉, 〈q, l′〉 such that 〈p, l〉 and 〈q, l〉 interact (i.e. they are in I) and

l′ > l.

Consistency term

The last term will enforce consistency between two mappings f and g. It can be

formulated as follows: if an interaction 〈p, q, l〉 is active, then the label for pixels

p and q must be l. We can write this as

Econsistency(f, g) =
∑

〈p,q,l〉∈I

∞ · T (g(〈p, q, l〉) = 1 ∧ (f(p) �= l ∨ f(q) �= l))

4.2.2 Discretization

An important issue is the choice of the sets of interactions I which basically defines

a discretization. It can consist, for example, of pairs of 3D-points {〈p, l〉, 〈q, l〉} such

that the distance in 3D-space between these points is less than some threshold.

However, with this definition of closeness the number of interactions per pixel may

vary greatly from pixel to pixel. Instead, we chose the following criterion: if p is a

pixel in the image i, q is a pixel in the image j and i < j then the 3D-points 〈p, l〉,

〈q, l〉 interact if the closest pixel to the projection of 〈p, l〉 onto the image j is q.

Of course, we can include only interactions between certain images, for example,

taken by neighboring cameras. Note that it makes sense to include interactions

only between different cameras.

An example of our problem formulation in action is shown in figure 4.1. There

are two cameras C1 and C2. There are 5 labels shown as black vertical lines. As
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l = 2 l = 3

C1

C2

q

p

Depth labels

Figure 4.1: Example of pixel interactions. There is a photo-consistency constraint

between the red round point and the blue round point. The red round point blocks

camera C2’s view of the green square point.

in our current implementation, labels are distributed by increasing distance from

a fixed camera. Two pixels, p from C1 and q from C2 are shown, along with

the red round 3D-point 〈q, 2〉 and the blue round 3D-point 〈p, 2〉. These points

share the same label, and interact (i.e., {〈p, 2〉, 〈q, 2〉} = 〈p, q, 2〉 ∈ I). So there

is a photoconsistency term between them. The green square point 〈q, 3〉 is at a

different label (greater depth), but is behind the red round point. The pair of

3D-points {〈p, 2〉, 〈q, 3〉} is in Ivis. So if the ray p from camera C1 sees the red

round point 〈p, 2〉, the ray q from C2 cannot see the green square point 〈q, 3〉.
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4.3 Special cases

In this section we consider two special cases:

• I. Only the first smoothness term is present; E
(2)
smooth is omitted.

• II. Only the second smoothness term is present; E
(1)
smooth is omitted.

We will refer to cases I and II as “algorithm I” and “algorithm II”, respectively.

Algorithm I was originally presented in [KZ02a]. A special case of algorithm II

(namely, the case of two rectified cameras) was presented in [KZ01].

4.3.1 Algorithm I

Let us consider our energy function with the second smoothness term E
(2)
smooth

omitted. We can view our energy as function of only one mapping f if we assume

that g is determined from the minimality condition:

Ẽ(f) = E(f, g(f)) with g(f) = arg min
g

E(f, g)

Let us consider an interaction i = 〈p, q, l〉 ∈ I. Since g is not involved in the

smoothness constraint, the value g(i) will depend only on f(p) and f(q). Namely,

if f(p) �= l or f(q) �= l then g(i) must be 0 because of the consistency constraint

between f and g. Now suppose that f(p) = f(q) = l. In this case the value g(i)

will be determined from the minimality condition: it will be 0 if Di(0) < Di(1),

and it will be 1 if Di(0) > Di(1). Thus, the data term for interaction i becomes

Ẽdata(i)(f) = Di(0) + D(p, q) · T (f(p) = f(q) = l)

where D(p, q) = min(Di(1) − Di(0), 0).
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Di(0) is a constant which does not depend on configuration f ; therefore, it can

be omitted. Then the energy function becomes

E(f) = E
(1)
data(f) + E

(1)
smooth(f) + Evis(f) (4.2)

The terms E
(1)
smooth and Evis are defined above; the new term E

(1)
data is

E
(1)
data(f) =

∑
〈p,q,l〉∈I

D(p, q) · T (f(p) = f(q) = l)

where D(p, q) is a non-positive number.

4.3.2 Algorithm II

Now let us consider our energy with the first smoothness term E
(1)
smooth omitted.

As before, we will view our energy as a function of only one mapping g (with f

determined from the minimality condition). The energy function then becomes

E(g) = Edata(g) + E
(2)
smooth(g) + E

(2)
vis(g) (4.3)

where Edata and E
(2)
smooth are defined above and E

(2)
vis(g) is a sum of two terms

Evis(f(g)) + Econsistency(f(g), g). It is easy to see that this term enforces the fol-

lowing constraint: for every pair of 3D-points 〈p, l〉, 〈p′, l′〉 in the visibility neigh-

borhood Ivis interactions 〈p, q, l〉 and 〈p′, q′, l′〉 cannot both be active in g.

Algorithm II: case of two rectified cameras

Algorithm II can be formulated in a simpler form in one special case: the case

of two rectified cameras Cleft and Cright. Rectification means that corresponding

pixels p and q lie on the same scanline, i.e. py = qy.

Recall that the difference qx−px where p is a pixel in the left image and q is the

corresponding pixel in the right image is called a disparity for the pixel p. Disparity
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directly depends on the distance from a camera to the object. If, for example, two

cameras are aligned then disparity is inversely proportional to the distance to the

object. Thus, we can use disparities as depth labels in our framework.

Then the set of interactions I can be represented by a collection of (unordered)

pairs 〈p, q〉 where p, q are pixels in the left and the right cameras, respectively,

that may potentially correspond. We omitted a depth label (i.e. disparity) l in

this notation since it can be expressed from p and q as l = qx − px.

The visibility term E
(2)
vis effectively imposes the uniqueness: a pixel p can par-

ticipate in at most one active interaction, i.e. it can correspond to at most one

pixel in the other image.

Let us prove that the energy function can be written in the following form:

E(g) = Ẽdata(g) + Eocclusions(g) + E
(2)
smooth(g) + E

(2)
vis(g) (4.4)

where

• Ẽdata(g) is a modified data term:

Ẽdata(g) =
∑

g(i)=1

Di(g(i))

(the summation is over all active interactions and does not include penalty

K for inactive interactions)

• Eocclusions(g) counts the number of occluded pixels: we add a penalty 2K for

every occluded pixel in configuration g. (Recall that a pixel is occluded if it

is not involved in any active interaction)

• E
(2)
smooth(g) is a smoothness term on the mapping g (see above)

• E
(2)
vis(g) enforces uniqueness constraint (see above)



69

Indeed, the only difference between equations 4.3 and 4.4 is that we replaced

the term Edata(g) with two terms Ẽdata(g) + Eocclusions(g). Let N0(g) and N1(g)

be the number of inactive and active interactions in configuration g, respectively,

and let n0(g) and n1(g) be the number of occluded and non-occluded pixels in g,

respectively. Then N0(g) + N1(g) = const, n0(g) + n1(g) = const, N1(g) = 2n1(g),

so

Edata(g) = Ẽdata(g) + K · N0(g) = const + Ẽdata(g) + 2K · n0(g) =

= const + Ẽdata(g) + Eocclusions(g)

as desired.

This formulation with energy 4.4 was first presented in [KZ01]. This paper used

a slightly different terminology: interactions 〈p, q〉 ∈ I were called assignments.

4.3.3 Comparison of algorithms I and II

In this section we will present our intuition on differences between these two special

cases. The major difference lies in the smoothness term. We argue that the

smoothness term of algorithm I suits the problem more naturally. Indeed, the

purpose of the smoothness term is to introduce a prior knowledge on the shape

of object itself. Ideally, it should not depend on cameras observing this object.

Unfortunately, a tractable formulation of the multicamera reconstruction problem

with such a smoothness term is not known. Algorithm I uses the next best thing:

the smoothness term depends on the shape of the object and on a position of one

camera. ¿From this point of view, algorithm II is less natural since the smoothness

term depends on the shape of the object and on positions of two cameras.

Another drawback of the second smoothness term is that it allows only piece-

wise constant depth maps, while the first smoothness term can be chosen to permit
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smooth depth variations (using, for example, robustified L1 distance V (l1, l2) =

min(|l1 − l2|, R) for constant R).

The difference between the two smoothness terms can be summarized as follows.

There are two reasons why a smoothness constraint can be violated. The first

reason is smooth depth variations which happen when the normal to the object’s

surface is not perpendicular to depth labels (planes). Algorithm I can handle

this situation better than algorithm II since it allows using any smoothness term

which is a metric. The second reason is depth changes at discontinuities (object

boundaries). Again, algorithm I is more preferable. The smoothness constraint of

algorithm I says that if a scene element is visible from a particular camera, then

a close scene element at the same depth should also be visible from this camera.

On the other hand, the smoothness constraint of algorithm II says that if a scene

element is visible from two particular cameras, then a close scene element at the

same depth should also be visible from these two cameras. The latter constraint

seems to be violated more often than the former one.

Another difference between algorithms I and II is the representation used. Al-

gorithm I represents the geometry of the scene by the mapping f which assigns a

depth label to every pixel. A value of some assignments is questionable: some scene

elements may be visible from only one of the cameras; in this case it is impossible

to choose the correct depth label based on the photoconsistency constraint, so only

smoothness constraint is used.

In contrast, algorithm II uses the mapping g to represent the geometry of the

scene that marks which interactions are visible from both cameras. If there is not

enough evidence that a pixel p has corresponding pixels in other images, then it

won’t participate in active interactions, so the depth label will be undetermined.
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Pixel p will be marked as “occluded” which means that it is visible from only one

of the cameras.

Occlusions are much more common when a small number of cameras is used

(for example, two). Therefore, we argue that algorithm II has some merits over

algorithm I in the case of two cameras (i.e. stereo case).

4.4 Graph construction

Exact minimization of energy function 4.1 and its special cases 4.2 and 4.3 is NP-

hard, as shown in [KZ01, KZ02a]. Therefore, it is unlikely that there exists a

polynomial time algorithm for computing the exact minimum.

We will present an approximate algorithm for minimizing the general form of

the function E (equation 4.1) among all configurations. The algorithm relies on

the notion of α-expansion introduced in [BVZ98, BVZ01] (see section 2.4). Since

we use a different representation of the scene, we need to generalize this notion.

Consider an input configuration (f , g) and a disparity α. Another configuration

(f ′, g′) is defined to be within a single α-expansion of (f , g) if two conditions are

satisfied:

• All pixels must either keep their depth labels, or change it to α. In other

words, for any pixel p ∈ P either f ′(p) = f(p) or f ′(p) = α.

• All inactive interactions whose depth is different from α must remain inactive.

In other words, for any interaction 〈p, q, l〉 ∈ I conditions g(〈p, q, l〉) = 0 and

l �= α imply g′(〈p, q, l〉) = 0.

Our algorithm is very straightforward; we simply select (in a fixed order or at

random) a disparity α, and we find the configuration within a single α-expansion
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move (our local improvement step) that gives the largest decrease in the energy

E(f, g). If this decreases the energy, then we go there; if there is no α that decreases

the energy, we are done. The output of our method will be a local minimum in

a strong sense: no α-expansion move can decrease the energy. Except for the

problem formulation and the choice of energy function, this algorithm is identical

to the method of [BVZ01].

One restriction on the algorithm is that the initial configuration must satisfy

the visibility and consistency constraints (i.e. the initial energy must be finite).

This will guarantee that all subsequent configurations will have finite energies, i.e.

they will satisfy these constraints as well.

The critical step in our method is to efficiently compute the α-expansion with

the smallest energy. In this section, we show how to use graph cuts to solve this

problem.

4.4.1 Energy minimization using graph cuts

Instead of doing an explicit problem reduction, we will use a result from chapter 3.

We will show that the restriction of our energy function to configurations within

a single expansion move results in a regular function of binary variables, i.e. a

function of the form of equation 3.3. Note that it is not necessary to use only

terms Ei,j for which i < j since we can swap the variables if necessary without

affecting condition 3.4.

In an α-expansion, active interactions may become inactive, and inactive inter-

actions whose depth is α may become active. Suppose that we start off with an

initial configuration (f 0, g0) satisfying the visibility and consistency constraints.

The active interactions for a new configuration within one α-expansion will be
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a subset of I0 ∪ Iα, where I0 = {〈p, q, l〉 ∈ I | g0(〈p, q, l〉) = 1 and l �= α} and

Iα = {〈p, q, α〉 ∈ I}.

It is easy to see that any configuration (f, g) within a single α-expansion of the

initial configuration (f 0, g0) can be encoded by two binary vectors x = {xp |p ∈ P}

and y = {yi | i ∈ Iα ∪ I0}. We will use the following formula for correspondence

between binary vectors and configurations:

∀p ∈ P f(p) =




f 0(p) if xp = 0

α if xp = 1

∀i ∈ I0 g(i) = 1 − yi

∀i ∈ Iα g(i) = yi

∀i /∈ I0 ∪ Iα g(i) = 0

Let us denote a configuration defined by vectors (x, y) as (fx, gy). We now have

the energy of binary variables:

Ẽ(x, y) = Ẽdata(y) + Ẽ
(1)
smooth(x) + Ẽ

(2)
smooth(y) + Ẽvis(x) + Ẽconsistency(x, y)

where

Ẽdata(y) = Edata(g
y),

Ẽ
(1)
smooth(x) = E

(1)
smooth(f

x),

Ẽ
(2)
smooth(y) = E

(2)
smooth(g

y),

Ẽvis(x) = Evis(f
x),

Ẽconsistency(x, y) = Econsistency(f
x, gy).

We can now consider each term separately, and show that each is regular, i.e.

satisfies condition (3.4).
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1. Data term.

Ẽdata(y) =
∑

i∈I0

Di(1 − yi) +
∑
i∈Iα

Di(yi)

Condition (3.4) is satisfied since each term in this sum depends only on one variable.

2. First smoothness term.

Ẽ
(1)
smooth(x) =

∑
{p,p′}∈N1

V{p,p′}(f
x(p), fx(p′)).

Let’s consider a single term Ep,p′(xp, xp′) = V{p,p′}(f
x(p), fx(p′)). We assumed that

V{p,p′} is a metric; thus, V{p,p′}(α, α) = 0 and V{p,p′}(f(p), f(p′)) ≤ V{p,p′}(f(p), α)+

V{p,p′}(α, f(p′)), or Ep,p′(1, 1) = 0 and Ep,p′(0, 0) ≤ Ep,p′(0, 1) + Ep,p′(1, 0). There-

fore, condition (3.4) holds.

3. Second smoothness term.

Ẽ
(2)
smooth(y) =

∑
{i,i′}∈N2

V{i,i′} · T (gy(i) �= gy(i′))

Let’s consider a single term Ei,i′(yi, yi′) = V{i,i′} · T (gy(i) �= gy(i′)). Since the

depths of i and i′ are the same, they either both belong to I0 or both belong

to Iα. In both cases condition gy(i) �= gy(i′) is equivalent to condition yi �= yi′.

Thus, Ei,i′(0, 0) = Ei,i′(1, 1) = 0 and Ei,i′(0, 1) = Ei,i′(1, 0) = V{i,i′} ≥ 0, so

condition (3.4) holds.

4. Visibility term.

Ẽvis(x) =
∑

〈p,fx(p)〉,〈q,fx(q)〉∈Ivis

∞

=
∑

〈p,lp〉,〈q,lq〉∈Ivis

T (fx(p) = lp ∧ fx(q) = lq) · ∞.

Let’s consider a single term Ep,q(xp, xq) = T (fx(p) = lp∧fx(q) = lq) ·∞. Ep,q(0, 0)

must be zero since it corresponds to the visibility cost of the initial configuration

and we assumed that the initial configuration satisfies the visibility constraint. Also
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Ep,q(1, 1) is zero (if xp = xq = 1, then fx(p) = fx(q) = α and, thus, the conditions

fx(p) = lp and fx(q) = lq cannot both be true since Ivis includes only pairs of

3D-points at different depths). Therefore, condition (3.4) holds since Ep,q(0, 1)

and Ep,q(1, 0) are non-negative.

5. Consistency term.

Ẽconsistency(x, y) =
∑

〈p,q,l〉∈I

∞ · T (gy(〈p, q, l〉) = 1 ∧ (fx(p) �= l ∨ fx(q) �= l))

The term involving interaction i = 〈p, q, l〉 can be rewritten as the sum Ep,i(xp, yi)+

Eq,i(xq, yi) where Ep,i(xp, yi) = ∞ · T (gy(i) = 1 ∧ fx(p) �= l) and Eq,i(xq, yi) =

∞ · T (gy(i) = 1 ∧ fx(q) �= l). Let’s consider one of the terms, for example Ep,i.

Two cases are possible:

5A. l �= α. If f 0(p) �= l then Ep,i ≡ 0, otherwise Ep,i(xp, yi) = ∞ · T (yi =

0 ∧ xp = 1), so Ep,i(1, 0) = ∞ and Ep,i(0, 0) = Ep,i(1, 1) = Ep,i(0, 1) = 0.

5B. l = α. In this case Ep,i(xp, yi) = ∞·T (yi = 1 ∧ xp = 0), so Ep,i(0, 1) = ∞

and Ep,i(0, 0) = Ep,i(1, 1) = Ep,i(1, 0) = 0.

4.5 Experimental results

4.5.1 Implementational details

Depth labels

The planes for labels were chosen to be orthogonal to the main axis of the middle

camera, and to increase with depth. The labels are distributed so that disparities

depend on labels approximately linearly. The depth difference between planes was

chosen in such a way that a label change by one results in disparity change by at

most one both in x and y directions.



76

We selected the labels α in random order, and kept this order for all iterations.

We performed three iterations. (The number of iterations until convergence was

at most five but the result was practically the same). We started with an initial

solution in which all pixel are assigned to the label having the largest depth.

Data term

For our data term D we made use of the method of Birchfield and Tomasi [BT98]

to handle sampling artifacts, with a slight variation: we compute intensity intervals

for each band (R,G,B) using four neighbors, and then take the average data penalty.

(We used color images; results for grayscale images are slightly worse).

Smoothness terms

We used a simple Potts model for the first smoothness term:

V{p,p′}(lp, lp′) =




U{p,p′} if lp �= lp′

0 otherwise

The choice of U{p,p′} was designed to make it more likely that a pair of adjacent

pixels in one image with similar intensities would end up with similar disparities.

For pixels {p, p′} ∈ N1 the term U{p,p′} was implemented as an empirically selected

decreasing function of ∆I(p, p′) as follows:

U{p,p′} =




3λ1 if ∆I(p, p′) < 5

λ1 otherwise

where ∆I(p, p′) is the maximum value of |Intensity(p)−Intensity(p′)| for all three

bands (R,G,B).

For the second smoothness term we used similar expression:

V{i,i′} =




3λ2 if max(∆I(p, p′), ∆I(q, q′)) < 8

λ2 otherwise
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where 〈p, q, l〉, 〈p′, q′, l〉 are interactions i, i′, respectively, and p and p′ are pixels

in the same image, as well as q and q′.

4.5.2 Choice of parameters

Our energy function as defined above depends on three numbers: penalty K for an

interaction being passive and two regularization parameters λ1 and λ2. From our

experience there is some range of these parameters in which results differ slightly,

but quality is about the same. If, however, parameters are chosen very far from

this range (e.g. several times off), then results start to degrade: they are either

oversmoothed, or vice versa - too noisy. These ranges sometimes differ considerably

for different datasets, which can probably be explained by different levels of noise

in the images.

The problem of picking good parameters is inherent in many energy-based

vision algorithms and is not very well understood. We have chosen some heuristics

for picking these parameters automatically. Although they do no always give the

best result, we believe that they usually avoid the two extremes mentioned above.

Our first heuristic concerns the choice of K. Let us consider algorithm I for

simplicity. The data term then becomes D(p, q) = min(Di(1) − K, 0) (it is added

to the energy function only if both pixels p and q agree on the depth label).

Consider too different extremes. If K is too small (e.g. smaller than all costs

Di(1)), then the penalty for a pixel p will be the same for all depth labels. If, on

the other hand, K is too large, then all penalties (or, rather, encouragements) will

be approximately −K, so the algorithm will try to maximize the number of active

interactions without looking at their quality. Our approach is to try to balance

these two effects: K should be the smallest number that discriminates, say, the
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best 25% matches for a pixel p. We arrive at the following algorithm:

• 1. For every pixel p compute D(p) as the k-th smallest value of Di(1)’s for

all interactions i for a fixed pair of cameras involving pixel p, where k is 0.25

times the number of depth labels. We also require k ≥ 3.

• 2. Set K to be the average of D(p) for all pixels p.

The choice of regularization parameters λ1 and λ2 is less clear. Intuitively,

smoothness and data terms should “balanced”. Since the minimum data term

is −K, we have decided to make these parameters proportional to K. We use

the following constraint: λ1 + λ2 = K/5. Thus, parameters for algorithm I are

λ1 = K/5, λ2 = 0, and parameters for algorithm II are λ1 = 0, λ2 = K/5.

4.5.3 Experiments: stereo

We have compared three algorithms: algorithm I, algorithm II and the method of

[BVZ01] which was found to be the best algorithm for stereo according to [SZ99].

We have run these algorithms in two modes: without reporting occlusions and with

reporting occlusions. Algorithm I produces depth maps for all pixels of both the

left and the right images, therefore occlusions can be inferred by cross-checking:

a pixel is occluded if it does not map back to itself. Algorithm II produces depth

maps which already contain occlusions. We have filled occluded regions using

some postprocessing: we have assigned to occluded pixels the depth label of the

closest non-occluded left neighbor lying in the same scanline. Algorithm of [BVZ01]

computes depths for all pixels in the left image. To produce occlusions, we have

augmented the algorithm: we introduced a new label “occluded” with some fixed

penalty.
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Note that some applications may require depth maps for all pixels, while others

would benefit if occlusions were explicitly marked since they provide important

information about object boundaries.

We performed experiments on six stereo pairs. Their sizes and running times

of algorithms I, II, I+II and [BVZ01] are given in the table below. These running

times were obtained on 450MHz UltraSPARC II processor. The max flow imple-

mentation we used is one specifically designed for the kinds of graphs that arise in

vision [BK01].

stereo pair image number running times

size of labels I II I+II [BVZ01]

Tsukuba 384 x 288 16 80 secs 69 secs 183 secs 35 secs

sawtooth 434 x 380 20 141 secs 115 secs 320 secs 66 secs

venus 434 x 383 22 159 secs 145 secs 394 secs 85 secs

map 284 x 216 30 68 secs 49 secs 176 secs 26 secs

meter 256 x 240 15 35 secs 26 secs 95 secs 14 secs

tree 256 x 233 8 18 secs 13 secs 43 secs 7 secs

First we evaluated these four algorithms in the mode without occlusions. We

have computed the error statistics for the first four stereo pairs (these datasets

have ground truth).

stereo pair I II I+II [BVZ01]

Tsukuba 5.91 (1.86) 5.82 (1.18) 6.64 (1.78) 7.17 (1.93)

sawtooth 11.77 (0.67) 12.13 (0.71) 11.55 (0.54) 11.86 (0.62)

venus 13.19 (0.69) 15.40 (1.07) 13.03 (0.58) 16.90 (0.75)

map 16.78 (6.53) 19.80 (6.78) 19.60 (6.69) 21.55 (6.84)

We determined the percentage of the pixels where the algorithm did not compute
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the correct disparity (“errors” - the first number), or a disparity within ±1 of the

correct disparity (“gross errors” - the second number). We counted only pixels

that are not occluded according to the ground truth since depth labels of such

pixels cannot be determined from the photoconsistency constraint.

As we mentioned above, algorithm II does not compute depth labels for all

pixels - it marks some regions as “occluded”. We have performed some postpro-

cessing to fill these regions: we have assigned to occluded pixels the depth label of

the closest non-occluded left neighbor lying in the same scanline.

We have also computed error statistics for Tsukuba stereo pair in the mode

with reporting occlusions.

algorithm Errors Gross errors False negatives False positives

I 6.51% 2.66% 44.16% 1.03%

II 6.56% 2.17% 41.33% 1.33%

I+II 7.45% 2.91% 38.86% 1.41%

[BVZ01] 7.28% 2.14% 77.59% 0.62%

The first two columns count only pixels that are not occluded according to the

ground truth. We considered labeling a pixel as occluded to be a gross error. The

last two columns show error rates for occlusions.

4.5.4 Evaluation of two-camera stereo algorithms

So far we have compared our algorithms only with the algorithm of [BVZ01]. A

much more extensive comparison of different stereo algorithms is given in [SS02]1.

Results of this comparison are shown in Figure 1.2. We now explain the statistics

used.
1The comparison is available at http://www.middlebury.edu/stereo. As of

September 1, 2003, it compares 25 algorithms.
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Left image Ground truth

alg. I result alg. I result with occlusions

alg. II result after postprocessing alg. II result

[BVZ01] result [BVZ01] result with occlusions

Figure 4.2: Stereo: results on Tsukuba pair.
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Left image Ground truth

alg. I result alg. I result with occlusions

alg. II result after postprocessing alg. II result

[BVZ01] result [BVZ01] result with occlusions

Figure 4.3: Stereo: results on sawtooth pair.



83

Left image Ground truth

alg. I result alg. I result with occlusions

alg. II result after postprocessing alg. II result

[BVZ01] result [BVZ01] result with occlusions

Figure 4.4: Stereo: results on venus pair.
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Left image Ground truth

alg. I result alg. I result with occlusions

alg. II result after postprocessing alg. II result

[BVZ01] result [BVZ01] result with occlusions

Figure 4.5: Stereo: results on map pair.
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Left image

alg. I result alg. I result with occlusions

alg. II result after postprocessing alg. II result

[BVZ01] result [BVZ01] result with occlusions

Figure 4.6: Stereo: results on meter pair.
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Left image

alg. I result alg. I result with occlusions

alg. II result after postprocessing alg. II result

[BVZ01] result [BVZ01] result with occlusions

Figure 4.7: Stereo: results on tree pair.
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Stereo algorithms are evaluated on four datasets with ground truth: Tsukuba,

Sawtooth, Venus and Map. For each dataset three numbers are computed: error

percentage for the entire image (excluding occluded pixels), error percentage for

pixels in untextured regions and error percentage for pixels near disparity discon-

tinuities. One exception is the Map dataset where almost all pixels are in textured

regions. A disparity is considered to be incorrect if it differs by more than 1 from

the true disparity.

The small number indicate the rank of each algorithm in each column. The

overall rank for an algorithm is determined as the sum of ranks for all columns.

Note that algorithm II is included twice in this table. The algorithm ranked

#7 is our old submission without the heuristics for choosing parameters. The algo-

rithm of [BVZ01] listed under the name “Graph cuts” is also included twice. These

two submissions are due to different authors with slighly different implementational

details.

Algorithms developed in this thesis have a sufficiently high ranking - #2 and

#4. However, this does not necessarily mean that they are worse than algorithm

#1 and better than algorithm #5. Different authors used different implementa-

tional details, such as different parameters, different data and smoothness costs;

some authors use grayscale images, others use color images. From our experience,

these details can have a big impact on performance.

4.5.5 Experiments: multiple cameras

We performed experiments on three datasets: the ’head and lamp’ image from

Tsukuba University, the flower garden sequence and the Dayton sequence. We

used 5 images for the Tsukuba dataset (center, left, right, top, bottom), 8 images
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for the flower garden sequence and 5 images for the Dayton sequence. For the

Tsukuba dataset we performed two experiments: in the first one we used 4 pairs

of interacting cameras (center-left, center-right, center-top, center-bottom), and in

the second one (marked with an asterisk) we used all 10 possible pairs. For the

flower garden and Dayton sequences we used 7 and 4 interacting pairs, respectively

(only adjacent cameras interact). The table below show image dimensions and

running times obtained on 450MHz UltraSPARC II processor.

dataset number of image running times

images size I II I+II

Tsukuba 5 384 x 288 366 secs 707 secs 760 secs

Tsukuba* 5 384 x 288 774 secs 3794 secs 1771 secs

Flower garden 8 352 x 240 850 secs 929 secs 1078 secs

Dayton 5 384 x 256 543 secs 520 secs 664 secs

For algorithms I and II we used the parameters described in section 4.5.2. For

the case I+II we used the following parameters: λ1 = λ2 = K/10. Note that cases

I and II are usually faster than the case I+II since in the former case graphs that

we construct contain only nodes corresponding to one of the mappings f or g. Also

note that for the “Tsukuba*” dataset case II takes longer than case I+II. This is

due to an inefficient implementation2 of algorithm II.

We have computed the error statistics for the Tsukuba dataset, which are shown

in the table below.

dataset I II I+II

Tsukuba 5.93 (2.76) 6.39 (2.83) 5.95 (2.72)

Tsukuba* 4.66 (2.25) 5.19 (2.19) 5.07 (2.24)

2when interacting pairs of cameras form cycles, hard visibility constraints are
enforced twice
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As before, the first number denotes the percentage of errors and the second - the

percentage of gross errors. However, unlike the stereo case, we counted all pixels

in the image.

The images are shown in figure 4.8. The image at bottom right shows the

areas where algorithm I differs from ground truth (black is no difference, gray is a

difference of ±1, and white is a larger difference). Inspecting the image shows that

we in general achieve greater accuracy at discontinuities than results obtained from

two views (see below); for example, the camera in the background and the lamp

are more accurate. The major weakness of our output is in the top right corner,

which is an area of low texture. The behavior of our method in the presence of

low texture needs further investigation.

Figures 4.9 and 4.10 show our reconstructions for the two other datasets. Note

that results for algorithm II contain scattered pixels marked in red. These are

pixels with no depth labels (or, more precisely, assigning any depth label to such

pixels results in the same value of the energy function). According to the for-

mulation of algorithm II, this should mean that such pixels are visible only in

one camera. However, inspecting the images shows that it is not the case: unlike

stereo, all scene elements are visible from at least two cameras in our datasets.

These occluded pixels are probably due to a high level of noise in these datasets

(or their miscalibration). We performed some postprocessing of the results to fill

these regions: we assign to such pixels the label of the closest labeled pixel. Note

that this postprocessing is different from the technique in the previous section since

that technique was specific to the stereo case.
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Parameter sensitivity

Experiments described so far were performed using automatically selected param-

eters (see section 4.5.2). We have also experimented with the parameter sensitivity

of our method for the Tsukuba dataset using 4 pairs of interacting cameras. The

tables below show that our method is relatively insensitive to the exact choice of

K, λ1 and λ2. (Note that our selection procedure gives K = 15, λ1 + λ2 = 3).

K=10 λ1=0 λ1=1 λ1=3 λ1=9

λ2=0 7.20 (2.77) 5.29 (2.67) 6.55 (2.93) 9.34 (2.91)

λ2=1 5.66 (2.73) 5.86 (2.72) 8.34 (2.98) 9.38 (2.92)

λ2=3 6.86 (2.98) 8.16 (2.93) 7.44 (1.94) 9.13 (2.87)

λ2=9 8.27 (1.94) 8.75 (2.41) 8.76 (2.39) 10.37 (2.95)

K=30 λ1=0 λ1=1 λ1=3 λ1=9

λ2=0 6.86 (2.72) 6.14 (3.23) 6.30 (2.88) 8.67 (3.59)

λ2=1 6.24 (3.05) 6.10 (2.78) 6.13 (2.74) 8.85 (3.61)

λ2=3 6.35 (2.88) 6.27 (2.83) 8.71 (3.46) 9.04 (3.58)

λ2=9 7.35 (1.93) 7.34 (1.91) 7.46 (1.92) 7.68 (1.91)

K=50 λ1=0 λ1=1 λ1=3 λ1=9

λ2=0 7.24 (2.81) 6.48 (3.34) 6.20 (2.89) 8.60 (3.58)

λ2=1 6.66 (3.48) 6.47 (3.07) 6.29 (2.85) 8.71 (3.64)

λ2=3 6.40 (2.92) 6.49 (2.86) 8.11 (3.47) 8.76 (3.62)

λ2=9 8.85 (3.61) 8.97 (3.63) 9.01 (3.63) 9.20 (3.63)
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Center image Ground truth

4 interactions: alg. I 4 interactions: alg. II

4 interactions: alg. I+II 10 interactions: alg. II

10 interactions: alg. I Comparison of alg. I result

with ground truth

Figure 4.8: Results on Tsukuba dataset (5 images).
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Middle image alg. II result

alg. I result alg. II result after postprocessing

Figure 4.9: Results on the flower garden sequence (8 images).
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Middle image alg. II result

alg. I result alg. II result after postprocessing

Figure 4.10: Results on the Dayton sequence (5 images).
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4.6 Conclusions

To summarize, all algorithms I, II and I+II show very promising results and are

quite comparable. If many views are used, then the difference between them is

negligible. In the case of stereo conclusions are not so clear. Algorithm I generally

seems to perform better, especially for generating depth maps without occlusions.

However there are cases when algorithm II gives better results.

Algorithm I+II is slower than algorithms I or II, uses more memory since it

constructs bigger graphs, and does not give any clear advantages over algorithms

I or II. Therefore, it is unlikely to be used in practice.



Chapter 5

Maxflow algorithms for computer vision

5.1 Introduction

A growing number of publications in vision use graph cut energy minimization tech-

niques for applications like image segmentation, restoration, stereo reconstruction,

voxel occupancy, object recognition, augmented reality, texture synthesis, and oth-

ers (see section 1.2). The graphs corresponding to these applications are usually

huge 2D or 3D grids, and min-cut/max-flow algorithm efficiency is an issue that

cannot be ignored.

The goal of this chapter is to examine the performance of several min-cut/max-

flow algorithms on graphs typical for applications in vision, including a new method

that we developed especially for these applications. The chapter is organized as fol-

lows. Section 5.2 introduces a new min-cut/max-flow algorithm that we developed

while working with graphs in vision. In section 5.3 we tested our new algorithm

and three standard min-cut/max-flow algorithms: the H PRF and Q PRF versions

of the Goldberg-style “push-relabel” method [GT88, CG97], and Dinic’s algorithm

[Din70]. We selected several examples in image restoration, stereo, and segmen-

tation where different forms of energy (1.1) are minimized via graph structures

originally described in [GPS89, IG98b, BVZ98, BVZ01, KZ01, KZ02a, BJ01]. Such

(or very similar) graphs are used in all computer vision papers known to us that

use graph cut algorithms. In many interesting cases our new algorithm was signif-

95
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icantly faster than the standard min-cut/max-flow techniques from combinatorial

optimization. More detailed conclusions are presented in section 5.4.

5.1.1 Standard combinatorial optimization algorithms

An important fact in combinatorial optimization is that there are polynomial algo-

rithms for min-cut/max-flow problems on directed weighted graphs with two termi-

nals. These algorithms can be divided into two main groups: Goldberg-Tarjan style

“push-relabel” methods [GT88] and algorithms based on Ford-Fulkerson style aug-

menting paths [FF62]. There are also some randomized algorithms (e.g. [Kar99])

for min-cut/max-flow problems but they are suitable only for dense undirected

graphs which are not relevant for energy minimization in vision.

Standard augmenting paths based algorithms, such as Dinic’s algorithm [Din70],

work by pushing flow along non-saturated paths from the source to the sink until

the maximum flow in the graph G is reached. A typical augmenting path algo-

rithm stores information about the distribution of the current s → t flow f among

the edges of G using a residual graph Gf . The topology of Gf is identical to G

but capacity of an edge in Gf reflects the residual capacity of the same edge in

G given the amount of flow already in the edge. At the initialization there is no

flow from the source to the sink (f=0) and edge capacities in the residual graph

G0 are equal to the original capacities in G. At each new iteration the algorithm

finds the shortest s → t path along non-saturated edges of the residual graph. If

a path is found then the algorithm augments it by pushing the maximum possible

flow df that saturates at least one of the edges in the path. The residual capacities

of edges in the path are reduced by df while the residual capacities of the reverse

edges are increased by df . Each augmentation increases the total flow from the



97

source to the sink f = f +df . The maximum flow is reached when any s → t path

crosses at least one saturated edge in the residual graph Gf .

Dinic’s algorithm uses breadth-first search to find the shortest paths from s

to t on the residual graph Gf . After all shortest paths of a fixed length k are

saturated, the algorithm starts the breadth-first search for s → t paths of length

k +1 from scratch. Note that the use of shortest paths is an important factor that

improves running time complexities for algorithms based on augmenting paths.

The worst case running time complexity for Dinic’s algorithm is O(mn2) where n

is the number of nodes and m is the number of edges in the graph.

Push-relabel algorithms [GT88] use quite a different approach. They do not

maintain a valid flow during the operation; there are “active” nodes that have a

positive “flow excess”. Instead, the algorithms maintain a labeling of nodes giving

a low bound estimate on the distance to the sink along non-saturated edges. The

algorithms attempt to “push” excess flows towards nodes with smaller estimated

distance to the sink. Typically, the “push” operation is applied to active nodes

with the largest distance (label) or based on FIFO selection strategy. The dis-

tances (labels) progressively increase as edges are saturated by push operations.

Undeliverable flows are eventually drained back to the source. We recommend our

favorite text-book on basic graph theory and algorithms [CCPS98] for more details

on push-relabel and augmenting path methods.

5.2 A new min-cut/max-flow algorithm for vision

In this section we present a new algorithm that we developed while working with

graphs that are typical for energy minimization methods in computer vision. The

algorithm presented here belongs to the group of algorithms based on augmenting
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paths. Similarly to Dinic [Din70] it builds search trees for detecting augmenting

paths. In fact, we build two search trees, one from the source and the other from

the sink1. The other difference is that we reuse these trees and never start building

them from scratch. The drawback of our approach is that the augmenting paths

found are not necessarily the shortest augmenting paths; thus the time complexity

of the shortest augmenting path is no longer valid. The trivial upper bound on the

number of augmentations for our algorithm is the cost of the minimum cut |C|,

which results in the worst case complexity O(mn2|C|). Theoretically speaking,

this is worse than complexity of the standard algorithms discussed in section 5.1.1.

However, experimental comparison in section 5.3 shows that on typical problem

instances in vision our algorithm significantly outperforms standard algorithms.

5.2.1 Algorithm overview

Figure 5.1 illustrates our basic terminology. We maintain two non-overlapping

search trees S and T with roots at the source s and the sink t, correspondingly.

In tree S all edges from each parent node to its children are non-saturated, while

in tree T edges from children to their parents are non-saturated. The nodes that

are not in S or T are called “free”. We have

S ⊂ V, s ∈ S, T ⊂ V, t ∈ T, S ∩ T = ∅.

The nodes in the search trees S and T can be either “active” or “passive”. The

active nodes represent the outer border in each tree while the passive nodes are

internal. The point is that active nodes allow trees to “grow” by acquiring new

1Note that in an earlier publication [BK01] we used a single tree rooted at the
source that searched for the sink. The two-trees version presented here treats the
terminals symmetrically. Experimentally, the new algorithm consistently outper-
forms the one in [BK01].
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Figure 5.1: Example of the search trees S (red nodes) and T (blue nodes) at the

end of the growth stage when a path (yellow line) from the source s to the sink t

is found. Active and passive nodes are labeled by letters A and P, correspondingly.

Free nodes appear in black.

children (along non-saturated edges) from a set of free nodes. The passive nodes

can not grow as they are completely blocked by other nodes from the same tree.

It is also important that active nodes may come in contact with the nodes from

the other tree. An augmenting path is found as soon as an active node in one of

the trees detects a neighboring node that belongs to the other tree.

The algorithm iteratively repeats the following three stages:

• “growth” stage: search trees S and T grow until they touch giving an s → t

path

• “augmentation” stage: the found path is augmented, search tree(s) brake

into forest(s)

• “adoption” stage: trees S and T are restored.

At the growth stage the search trees expand. The active nodes explore adjacent

non-saturated edges and acquire new children from a set of free nodes. The newly
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acquired nodes become active members of the corresponding search trees. As soon

as all neighbors of a given active node are explored the active node becomes passive.

The growth stage terminates if an active node encounters a neighboring node that

belongs to the opposite tree. In this case we detect a path from the source to the

sink, as shown in Figure 5.1.

The augmentation stage augments the path found at the growth stage. Since we

push through the largest flow possible some edge(s) in the path become saturated.

Thus, some of the nodes in the trees S and T may become “orphans”, that is, the

edges linking them to their parents are no longer valid (they are saturated). In

fact, the augmentation phase may split the search trees S and T into forests. The

source s and the sink t are still roots of two of the trees while orphans form roots

of all other trees.

The goal of the adoption stage is to restore single-tree structure of sets S and

T with roots in the source and the sink. At this stage we try to find a new valid

parent for each orphan. A new parent should belong to the same set, S or T , as the

orphan. A parent should also be connected through a non-saturated edge. If there

is no qualifying parent we remove the orphan from S or T and make it a free node.

We also declare all its former children as orphans. The stage terminates when

no orphans are left and, thus, the search tree structures of S and T are restored.

Since some orphan nodes in S and T may become free the adoption stage results

in contraction of these sets.

After the adoption stage is completed the algorithm returns to the growth

stage. The algorithm terminates when the search trees S and T can not grow (no

active nodes) and all edges leaving S are saturated, as well as edges entering T .

This implies that a maximum flow is achieved. Corresponding minimum cuts can
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be determined either as S = S, T = V − S, or as S = V − T , T = T .

5.2.2 Details of implementation

Assume that we have a directed graph G = 〈V, E〉. As for any augmenting path

algorithm, we will maintain a flow f and the residual graph Gf (see section 5.1.1).

We will keep the lists of all active nodes, A, and all orphans, O. The general

structure of the algorithm is:

initialize: S = {s}, T = {t}, A = {s, t}, O = ∅

while true

grow S or T to find an augmenting path P from s to t

if P = ∅ terminate

augment on P

adopt orphans

end while

The details of the growth, augmentation, and adoption stages are described be-

low. It is convenient to store content of search trees S and T via flags TREE(p)

indicating affiliation of each node p so that

TREE(p) =




S if p ∈ S

T if p ∈ T

∅ if p isfree

If node p belongs to one of the search trees then the information about its parent

will be stored as PARENT (p). Roots of the search trees (the source and the
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sink), orphans, and all free nodes have no parents, t.e. PARENT (p) = ∅. We

will also use notation tree cap(p → q) to describe residual capacity of either edge

(p, q) if TREE(p) = S or edge (q, p) if TREE(p) = T . These edges should be

non-saturated in order for node p to be a valid parent of its child q depending on

the search tree.

Growth stage:

At this stage active nodes acquire new children from a set of free nodes.

while A �= ∅

pick an active node p ∈ A

for every neighbor q such that tree cap(p → q) > 0

if TREE(q) = ∅ then add q to search tree as an active node:

TREE(q) := TREE(p), PARENT (q) := p, A := A ∪ {q}

if TREE(q) �= ∅ and TREE(q) �= TREE(p) return P = PATHs→t

end for

remove p from A

end while

return P = ∅

Augmentation stage:

The input for this stage is a path P from s to t. Note that the orphan set is empty

in the beginning of the stage, but there might be some orphans in the end since

at least one edge in P becomes saturated.
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find the bottleneck capacity ∆ on P

update the residual graph by pushing flow ∆ through P

for each edge (p, q) in P that becomes saturated

if TREE(p) = TREE(q) = S

then set PARENT (q) := ∅ and O := O ∪ {q}

if TREE(p) = TREE(q) = T

then set PARENT (p) := ∅ and O := O ∪ {p}

end for

Adoption stage:

During this stage all orphan nodes in O are processed until O becomes empty. Each

node p being processed tries to find a new valid parent within the same search tree;

in case of success p remains in the tree but with a new parent, otherwise it becomes

a free node and all its children are added to O.

while O �= ∅

pick an orphan node p ∈ O and remove it from O

process p

end while

The operation “process p” consists of the following steps. First we are trying

to find a new valid parent for p among its neighbors. A valid parent q should

satisfy: TREE(q) = TREE(p), tree cap(q → p) > 0, and the “origin” of q
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should be either source or sink. Note that the last condition is necessary because

during adoption stage some of the nodes in the search forests S or T may originate

from orphans.

If node p finds a new valid parent q then we set PARENT (p) = q. In this

case p remains in its search tree and the active (or passive) status of p remains

unchanged. If p does not find a valid parent then p becomes a free node and the

following operations are performed:

• scan all neighbors q of p such that TREE(q) = TREE(p):

– if tree cap(q → p) > 0 add q to the active set A

– if PARENT (q) = p add q to the set of orphans O and set PARENT (q) :=

∅

• TREE(p) := ∅, A := A − {p}

Note that as p becomes free all its neighbors connected through non-saturated

edges should became active. It may happen that some neighbor q did not qualify

as a valid parent during adoption stage because it did not originate from the

source or the sink. However, this node could be a valid parent after adoption stage

is finished. At this point q must have active status as it is located next to a free

node p.

5.2.3 Correctness proof

Let’s introduce some invariants which are maintained during the execution of the

algorithm.

I1 • S and T are disjoint sets

• S is a forest with roots at either the source or orphans.



105

• T is a forest with roots at either the sink or orphans.

I2 If nodes p and q belong to the same search forest (S or T ) then the residual

capacity tree cap(p → q) is positive.

I3 There are no orphans during the growth stage.

I4 For passive nodes p in S or T the following property holds: if a neighbor q of p

does not belong to the same search forest as p (i.e. TREE(q) �= TREE(p))

then the residual capacity tree cap(p → q) must be zero.

These invariants are clearly true at the initialization of the algorithm. It is

easy to see these invariants directly follow from the construction of the algorithm.

Let’s show that all stages terminate. The growth stage terminates because the

number of nodes is finite. The same argument applies to the augmentation stage.

Now we prove that the adoption stage is also finite. Note that after a node p in O

has been processed it can not become an orphan again during the same adoption

stage (it will imply that the adoption stage terminates after processing at most

n nodes). Indeed, if p is moved from S or T to the set of free nodes then this

holds since free nodes are not involved at the adoption stage. Suppose p found a

new parent q and remained in the search forest. The new parent q must originate

from a terminal (the source or the sink, depending on the search forest). Thus, the

same terminal is the new origin of p as well. By construction, only descendants

of orphans may become orphans during the adoption stage. Therefore, p can not

become an orphan again at the same adoption stage.

The algorithm terminates if the number of cycles (augmentations) is finite.

Since the algorithm is not a shortest path algorithm the polynomial bound for the
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number of augmentations does not seem to be valid. There is only a trivial bound

connected with the value of a minimum cut in case when all costs are integers.

It remains to show that when the algorithm terminates it generates a maximum

flow. In fact, both partitions S,V−S and V−T, S at the end of the algorithm give

minimum s-t-cuts (these cuts are the same if S ∪ T = V). Suppose the algorithm

has terminated. It could only have happened in the growth stage when no active

nodes were left. S and T are disjoint sets such that s ∈ S and t ∈ T . In order to

show that S,V − S is a minimum cut (and, thus, the current flow is a maximum

flow), we need to show that all edges leaving S are saturated. Let (p, q) be such

an edge: TREE(p) = S, TREE(q) �= S. Since no active nodes are left then p is

passive. Hence, invariant I4 implies that (p, q) is saturated, as desired. The same

argument shows that V − T, S is a minimum cut as well.

5.2.4 Algorithm tuning

Our description leaves many free choices in implementing certain details. For

example, we found that the order of processing active nodes and orphans may

have a significant effect on the algorithm’s running time.

A natural choice for processing active nodes would be a FIFO queue (“First-

In-First-Out”). We used a modified version of this strategy, which we found to

have a slightly better performance. Namely, we maintain two queues Q1 and Q2

which are empty in the beginning. When a node becomes active, it is added to

the rear of the second queue Q2. When we need to retrieve an active node, we

first check whether the first queue Q1 is empty; if it is the case, then we “swap”

the two queues. After that we take the node from the front of the first queue Q1.

This strategy guarantees that at least the first path from the source to the sink is
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Original image (a) Graph cut (b) Graph flow

Figure 5.2: Graph cut/flow example in the context of image segmentation in sec-

tion 5.3.4. The cost of edges between the pixels is low in places with high intensity

contrast. Red and blue seeds are linked to the source s and the sink t, corre-

spondingly. (a) shows the optimal segmentation (minimum cut) and (b) displays

augmenting paths (flow) from s to t. As the flow increases it quickly saturates

weak edges that are at the boundary of segments in (a).

the shortest. Note that the search tree may change unpredictably during adoption

stage. Thus, we can not guarantee anything about paths found after the first one.

For processing orphans we used the following approach. Let O∩S = {p1, . . . , pn}

be the set of orphans in S right after the augmentation stage ordered along the

augmenting path (so p1 was the closest node to the source and pn the farthest).

First we process the node p1. It may cause its descendants to become orphans;

we process them as well using the FIFO order. After all descendants of p1 are

processed, we proceed to the next node p2, and so on. The order of processing

orphans in the set T is similar, except that they ordered according to the distance

to the sink.

There are additional free choices in implementing the adoption stage. For

example, when an orphan looks for a new parent it may find several qualifying
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parents. Our description does not say which parent we should pick. One choice

would be to pick the first valid parent. We chose a different strategy which helps

to get shorter paths: we check all neighbors of the orphans and pick a qualifying

parent which has the smallest distance to the terminal (the source or the sink).

Note that in order to compute this distance, we need to trace the path from a

potential parent to the terminal. However, we need to do this in any case since we

must check the origin of a node to determine whether it can be a valid parent.

It may easily happen in the adoption stage that we check the origin of the same

node several times. To speed up the algorithm, we use a “marking” heuristic: if

a node is confirmed to be connected to a terminal, then we mark it by recording

the distance to a terminal and the “timestamp” showing when this distance was

computed. In this case other orphans do not have to trace the roots of their

potential parents all the way to a terminal. More details about this heuristic are

given in the next section.

Finally, during the growth stage we have an opportunity to reassign parents

of some nodes in the search trees. Indeed, suppose that an active node p checks

its neighbor q and discovers that the edge tree cap(p → q) is non-saturated and

q is in the same search tree as p. Then p can be made to be the new parent of

q without violating invariants I1-I4, as long as q is not one of grand-parents of p.

This will help to speed the algorithm if it results in shorter paths, i.e. if p is closer

to the terminal than the current parent of q. We use the marking information to

decide whether or not to reassign the parent of q. Details are contained in the next

section.

We used a fixed tuning of our algorithm in all experiments of section 5.3 and

a library with our implementation is available upon request for research purposes.
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Note that augmenting paths on graphs in vision can be easily visualized. In the

majority of cases such graphs are regular grids of nodes that correspond to image

pixels. Then, augmenting paths and the whole graph flow can be meaningfully

displayed (see Figure 5.2). We can also display the search tree at different stages.

This allows a very intuitive way of tuning max-flow methods in vision.

5.2.5 “Marking” heuristic

We now present the “marking” heuristic that we used. To implement this heuristic,

we store some additional information for each node p in sets S and T :

• DIST (p) - an estimate on the distance to a terminal

• TS(p) - a timestamp showing when this estimate was made

In addition, we maintain a global counter TIME which is incremented in the

beginning of each augmentation. In general, DIST (p) shows the correct distance

only at the stage when it was computed (i.e. when TS(p) = TIME), and at later

stages this information becomes outdated. However, we show that some invariants

hold at later stages as well, which helps us to ensure algorithm’s correctness. These

invariants are formulated in the next section.

A modified algorithm with marking taken into account can be formulated as

follows. Changes are marked by the star (*).
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initialize: S = {s}, T = {t}, A = {s, t}, O = ∅

(*) DIST (s) = DIST (t) = 0

(*) TS(s) = TS(t) = TIME = 1

while true

grow S or T to find an augmenting path P from s to t

if P = ∅ terminate

(*) TIME := TIME + 1

augment on P

adopt orphans

end while

Modified versions of growth and adoption stages are described below (the augmen-

tation stage is the same as before).

Growth stage:

There are two changes to the growth stage. First, when an active node acquires

a new child from the set of free nodes, an additional operation is performed: the

child’s distance to a terminal and its timestamp are set to be the parent’s distance

(incremented by one) and the parent’s timestamp, respectively. Second, when an

active node encounters another node in the same search tree, it checks whether the

parent of the latter node can be reassigned.
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while A �= ∅

pick an active node p ∈ A

for every neighbor q such that tree cap(p → q) > 0

if TREE(q) = ∅ then add q to search tree as an active node:

TREE(q) := TREE(p), PARENT (q) := p, A := A ∪ {q}

(*) DIST (q) := DIST (p) + 1, TS(q) := TS(p)

(*) if TREE(q) = TREE(p) and isCloser(p, q)

(*) then reassign the parent of q to be p:

(*) PARENT (q) := p

(*) DIST (q) := DIST (p) + 1, TS(q) := TS(p)

if TREE(q) �= ∅ and TREE(q) �= TREE(p) return P = PATHs→t

end for

remove p from A

end while

return P = ∅

isCloser(p, q) is a predicate which tries to determine whether p is closer to a

terminal than q. It is defined as follows:

isCloser(p, q) = TS(q) ≤ TS(p) and DIST (q) > DIST (p)

The first condition is necessary to ensure the algorithm’s correctness: it will guar-

antee that q is not a grand-parent of p (see next section). Without this condition

cycles could be formed.
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Adoption stage:

A general structure of the adoption stage remains the same:

while O �= ∅

pick an orphan node p ∈ O and remove it from O

process p

end while

However, details of the operation “process p” are slightly different.

First we are trying to find a new valid parent for p among its neighbors. As

before, a valid parent q should satisfy: TREE(q) = TREE(p), tree cap(q → p) >

0, and the “origin” of q should be either source or sink. Checking the origin of q

can now be described as follows. We start to trace the path from q to a terminal

checking the condition TS(r) = TIME for nodes r along the path. If for some

node r this condition is true, then it means that the origin of r was checked during

the same iteration and DIST (r) shows the correct distance to a terminal (see next

section for a proof of this fact). Thus, we can stop there and use DIST (r) for

computing the distance from q to a terminal. If we found that the origin of q

is a terminal, then we perform an additional operation: we trace the same path

again, assigning the correct distance information to nodes r in the path and setting

TS(r) = TIME.

If node p finds a new valid parent q then we set PARENT (p) = q, DIST (p) =

DIST (q) + 1, TS(p) = TIME. In this case p remains in its search tree and the

active (or passive) status of p remains unchanged. If p does not find a valid parent

then we perform the same operations as before:
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• scan all neighbors q of p such that TREE(q) = TREE(p):

– if tree cap(q → p) > 0 add q to the active set A

– if PARENT (q) = p add q to the set of orphans O and set PARENT (q) :=

∅

• TREE(p) := ∅, A := A − {p}

5.2.6 Correctness of the marking heuristic

In order to prove correctness of the modified algorithm, we need to introduce

additional invariants which are maintained during the execution of the algorithm.

I5 For all nodes p in the search forests S and T TS(p) ≤ TIME.

I6 If a node p is in the search forest S or T and TS(p) = TIME then the origin

of p is a terminal and DIST (p) shows the correct distance to this terminal.

I7 If a node p is in the search forest S or T and q is a child of p then TS(q) ≤

TS(p).

I8 If a node p is in the search forest S or T , q is a child of p, and TS(q) = TS(p)

then DIST (q) > DIST (p).

Invariants I1-I8 are clearly true at the initialization of the algorithm. It is

straightforward to check that each operation maintains these invariants. We will

discuss only potential pitfall. We will show that if isCloser(p, q) is true for nodes

p, q in the same search tree S or T , then q cannot be a predecessor of p. This will

ensure that cycles are not formed in the growth stage.
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Suppose that q is a predecessor of p. Let r0 = q, . . . , rk = p be the path from

q to p (k ≥ 1). Invariant I7 says that

TS(q) = TS(r0) ≥ TS(r1) ≥ . . . ≥ TS(rk) = TS(p)

Since isCloser(p, q) is true, then TS(q) ≤ TS(p). Therefore,

TS(q) = TS(r0) = TS(r1) = . . . = TS(rk) = TS(p)

Thus, according to invariant I8

DIST (q) = DIST (r0) < TS(r1) < . . . < DIST (rk) = DIST (p)

which contradicts to the condition isCloser(p, q).

5.3 Experimental tests on applications in vision

In this section we experimentally test min-cut/max-flow algorithms for three dif-

ferent applications in computer vision: image restoration (section 5.3.2), stereo

(section 5.3.3), and object segmentation (section 5.3.4). We chose formulations

where certain appropriate versions of energy (1.1) can be minimized via graph

cuts. The corresponding graph structures were previously described by [GPS89,

IG98b, BVZ98, BVZ01, KZ01, KZ02a, BJ01] in detail. These (or very similar)

structures are used in all computer vision applications with graph cuts (that we

are aware of) to date.

5.3.1 Experimental setup

Note that we could not test all known min-cut/max-flow algorithms. In our exper-

imental tests on graph-based energy minimization methods in vision we compared
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the new algorithm in section 5.2 and the following standard min-cut/max-flow

algorithms outlined in section 5.1.1:

DINIC: Dinic’s algorithm [Din70].

H PRF: Push-Relabel algorithm [GT88] with the highest level selection rule.

Q PRF: Push-Relabel algorithm [GT88] with the queue based selection rule.

Many previous experimental tests, including the results in [CG97], show that the

last two algorithms work consistently better than a large number of other min-

cut/max-flow algorithms of combinatorial optimization. The theoretical worst

case complexities for these “push-relabel” algorithms are O(n3) for Q PRF and

O(n2
√

m) for H PRF.

For DINIC, H PRF, and Q PRF we used the implementations written by

Cherkassky and Goldberg [CG97], except that we converted them from C to C++

style and modified the interface (i.e. functions for creating a graph). Both H PRF

and Q PRF use global and gap relabeling heuristics.

Our algorithm was implemented in C++. We selected a tuning described in

section 5.2.4. We did not make any machine specific optimization (such as pipeline-

friendly instruction scheduling or cache-friendly memory usage).

Experiments in sections 5.3.2 and 5.3.4 were performed on 1.4GHz Pentium IV

PC (2GB RAM, 8KB L1 cache, 256KB L2 cache), and experiments in section 5.3.3

were performed on UltraSPARC II workstation with four 450 MHz processors

and 4GB RAM. In the former case we used Microsoft Visual C++ 6.0 compiler,

Windows NT platform and in the latter case - GNU C++ compiler, version 3.2.2

with the flag “-O5”, SunOS 5.8 platform. To get system time, we used ftime()

function in Unix and ftime() function in Windows. Although these functions do
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(a) Diamond restoration (b) Original Bell Quad (c)“Restored” Bell Quad

Figure 5.3: Image Restoration Examples

not measure process computation time, we felt that they were appropriate since

we got very consistent results (within 1%) when running tests multiple times.

5.3.2 Image restoration

Image restoration is a representative early vision problem. The goal is to restore

original pixel intensities from the observed noisy data. Some examples of image

restoration are shown in Figure 5.3. The problem can be very easily formulated in

terms of energy (1.1) minimization. In fact, many other low level vision problems

can be represented by the same energies. We chose the context of image restoration

mainly for its simplicity.

In this section we consider two examples of energy (1.1) based on the Potts and

linear models of interaction, correspondingly. Besides image restoration [GPS89],

graph methods for minimizing Potts energy were used in segmentation [KFT+00],

stereo [BVZ98, BVZ01, KZ02a], object recognition [BH99], voxel occupancy

[SVZ00], and augmented reality [TBRN00]. Linear interaction energies were used

in stereo [RC98] and segmentation [IG98b]. Minimization of the linear interac-
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tion energy is based on graphs that are quite different from what is used for the

Potts model. At the same time, there is very little variation between the graphs

in different applications when the same type of energy is used. They mainly differ

in their specific edge cost settings while the topological properties of graphs are

almost identical once the energy model is fixed.

Potts Model

The Potts energy that we use for image restoration is

E(I) =
∑
p∈P

|Ip − Io
p | +

∑

{p,q}∈N
K{p,q} · T (Ip �= Iq) (5.1)

where I = {Ip |p ∈ P} is a vector of unknown “true” intensities of pixels on

the image P and Io = {Io
p |p ∈ P} are intensities observed in the original image

corrupted by noise. The Potts interactions are specified by penalties K{p,q} for

intensity discontinuities between pairs of neighboring pixels. Function T (·) is 1 if

the condition inside parenthesis is true and 0 otherwise. In the case of two labels

the Potts energy can be minimized exactly using the graph cut method of Greig

et al. [GPS89].

We consider image restoration with multiple labels where the problem becomes

NP-hard. We use iterative α-expansion method in [BVZ01] which is guaranteed to

find a solution within a factor of two from the global minimum of the Potts energy.

Details of this algorithms are described in section 2.4.

Two tables below present the running times (in seconds, 1.4GHz Pentium IV)

when different max-flow/min-cut algorithms are employed in the basic step of

each α-expansion. Each table corresponds to one of the original images shown in

Figure 5.3. The number of allowed labels is 210 (Diamond) and 244 (Bell Quad),

correspondingly. We run the algorithms on images at different resolutions. At each
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column we state the exact size (HxW) in pixels. Note that the total number of

pixels increases by a factor of 2 from left to right.

method

DINIC

H PRF

Q PRF

Ours

input: Diamond, 210 labels

35x35 50x50 70x70 100x100 141x141 200x200 282x282

0.39 0.77 3.42 4.19 13.85 43.00 136.76

0.17 0.34 1.16 1.68 4.69 12.97 32.74

0.16 0.35 1.24 1.70 5.14 14.09 40.83

0.16 0.20 0.71 0.74 2.21 4.49 12.14

method

DINIC

H PRF

Q PRF

Ours

input: Bell Quad, 244 labels

44x44 62x62 87x87 125x125 176x176 250x250

1.32 4.97 13.49 37.81 101.39 259.19

0.31 0.72 1.72 3.85 8.24 18.69

0.20 1.00 1.70 4.31 10.65 25.04

0.19 0.48 0.98 2.11 4.84 10.47

Note that the running times above correspond to the end of the first cycle of

the α-expansion method in [BVZ01] when all labels were expanded once. The rel-

ative speeds of different max-flow/min-cut algorithms do not change much when

the energy minimization is run to convergence. The number of cycles it takes to

converge can vary from 1 to 3 for different resolutions/images. Thus, the running

times to convergence are hard to compare between the columns and we do not

present them. In fact, restoration results are quite good even after the first itera-

tion. In most cases additional iterations do not improve the actual output much.

Figure 5.3(a) shows the result of the Potts model restoration of the Diamond image

(100x100) after the first cycle of iterations.
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Linear interaction energy

Here we consider image restoration with “linear” interaction energy. Figure 5.3(c)

shows one restoration result that we obtained in our experiments with this energy.

The linear interaction energy can be written as

E(I) =
∑
p∈P

|Ip − Io
p | +

∑
{p,q}∈N

A{p,q} · |Ip − Iq| (5.2)

where constants A{p,q} describe the relative importance of interactions between

neighboring pixels p and q. If the set of labels is finite and ordered then this

energy can be minimized exactly using either of the two almost identical graph-

based methods developed in [IG98b, BVZ98]. In fact, both of these methods use

graphs that are very similar to the one introduced by [RC98] in the context of multi-

camera stereo. The graphs are constructed by consecutively connecting multiple

layers of image-grids. Each layer corresponds to one label. The two terminals are

connected only to the first and the last layers. Note that the topological structure

of these graphs is noticeably different from the Potts model graphs especially when

the number of labels (layers) is large.

The tables below show the running times (in seconds on 1.4GHz, Pentium IV)

that different min-cut/max-flow algorithms took to compute the exact minimum

of the linear interactions energy (5.2). We used the same Diamond and Bell Quad

images as in the Potts energy tests. We run the algorithms on images at different

resolution. At each column we state the exact size (hight and width) in pixels.

Note that the total number of pixels increases by a factor of 2 from left to right.
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method

DINIC

H PRF

Q PRF

Ours

input: Diamond, 54 labels

35x35 50x50 70x70 100x100 141x141 200x200

1.34 4.13 8.86 18.25 34.84 57.09

0.47 1.30 3.03 7.48 17.53 43.58

0.55 1.16 3.05 6.50 12.77 22.48

0.17 0.33 0.63 1.41 2.88 5.98

method

DINIC

H PRF

Q PRF

Ours

input: Bell Quad, 32 labels

44x44 62x62 87x87 125x125 176x176 250x250

0.55 1.25 2.77 6.89 15.69 31.91

0.48 1.25 2.75 7.42 17.69 38.81

0.27 0.56 1.55 2.39 6.78 10.36

0.13 0.27 0.52 1.09 2.33 4.84

The structure of linear interaction graph directly depends on the number of

labels2. In fact, if there are only two labels then the graph is identical to the

Potts model graph. However, both size and topological properties of the linear

interaction graphs change as the number of labels (layers) gets larger and larger.

Below we compare the running times of the algorithms for various numbers of

allowed labels (layers). We consider the same two images, Diamond and Bell

Quad. In each case the size of the corresponding image is fixed. At each column

we state the number of allowed labels L. The number of labels increases by a

factor of 2 from left to right.

2Note that in section 5.3.2 we tested multi-label Potts energy minimization
algorithm [BVZ01] where the number of labels affects the number of iterations but
has no effect on the graph structures.
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method

DINIC

H PRF

Q PRF

Ours

input: Diamond, 100x100 (pix)

L=27 L=54 L=108 L=215

6.89 18.16 50.81 166.27

3.05 7.38 15.50 47.49

2.36 6.41 17.22 43.47

0.55 1.39 4.34 16.81

method

DINIC

H PRF

Q PRF

Ours

input: Bell Quad, 125x125 (pix)

L=32 L=63 L=125 L=250

6.91 17.69 46.64 102.74

7.47 19.30 58.14 192.39

2.39 7.95 15.83 45.64

1.13 2.95 10.44 41.11

Our experiments with linear interaction graphs show that most of the tested

max-flow/min-cut algorithms are close to linear with respect to increase in image

size. At the same time, none of the algorithms behaved linearly with respect to

the number of labels despite the fact that the size of graphs linearly depend on the

number of labels. Our algorithm is a winner in absolute speed as in most of the

tests it is 2-4 times faster than the second best method. However, our algorithm’s

dynamics with respect to increase in the number of labels is not favorable. For

example, Q PRF gets real close to the speed of our method in case of L=250 (Bell

Quad) even though our algorithm was 2 times faster than Q PRF when the number

of labels was L=32.
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5.3.3 Stereo

Stereo and its generalization to multiple cameras are other classical vision problems

where graph-based energy minimization methods have been successfully applied.

We consider three graph-based methods for solving this problem: pixel-labeling

stereo with the Potts model [BVZ01], algorithm I and algorithm II (chapter 4).

We applied the method of [BVZ01] and algorithm II to the case of two cameras,

and algorithm I to the case of multiple cameras.

Pixel-labeling stereo with the Potts model

First, we consider a formulation of stereo problem given in [BVZ98, BVZ01] (see

section 2.4). The tests were done on three stereo examples. We used the Head

pair from the University of Tsukuba, and the well-known Tree pair from SRI (see

section 4.5). To diversify our tests we compared the speed of algorithms on a

Random pair where the left and the right images did not correspond to the same

scene (they were taken from the Tsukuba and the Tree pairs, respectively).

Running times for these stereo examples are shown in seconds (450 MHz Ultra-

SPARC II Processor) in the table below. As in the restoration section, the running

times correspond to the first cycle of the algorithm. The relative performance of

different max-flow/min-cut algorithms is very similar when the energy minimiza-

tion is run to convergence while the number of cycles it takes to converge varies

between 3 and 5 for different data sets. We performed two sets of experiments:

one with a four-neighborhood system and the other with an eight-neighborhood

system. The corresponding running times are marked by “N4” and “N8”. The

disparity maps in N4 and N8 cases were very similar.
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method

DINIC

H PRF

Q PRF

Ours

Tsukuba, 384x288

N4 N8

104.18 151.32

12.00 18.03

10.40 14.69

3.41 6.47

Tree, 256x233

N4 N8

9.53 19.80

1.65 2.86

2.13 3.33

0.68 1.42

Random, 384x288

N4 N8

105.93 167.16

14.25 18.22

12.05 15.64

3.50 6.87

Algorithm II

We used the same three datasets as in the previous section. Running times for

these stereo examples are shown in seconds (450 MHz UltraSPARC II Processor)

in the table below. The times are for the first cycle of the algorithm.

method

DINIC

H PRF

Q PRF

Ours

Tsukuba, 384x288

N4 N8

376.70 370.94

35.65 49.81

33.12 44.86

10.64 19.14

Tree, 256x233

N4 N8

66.19 102.60

9.07 15.41

8.55 13.64

2.73 5.51

Random, 384x288

N4 N8

81.70 115.58

5.48 8.32

9.36 14.02

3.61 6.42

Multi-camera stereo: algorithm I

The tests were done for three datasets: the Tsukuba sequence from the University

of Tsukuba, the Garden sequence and the Dayton sequence (see section 4.5). The

table below gives running times (in seconds, 450 MHz UltraSPARC II Processor)

for these three datasets. The times are for the first cycle of the algorithm.
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method input sequence

Tsukuba Garden Dayton

5 views 384x288 8 views 352x240 5 views 384x256

DINIC 2793.48 2894.85 2680.91

H PRF 282.35 308.52 349.60

Q PRF 292.93 296.48 266.08

Our 104.33 81.30 85.56

5.3.4 Segmentation

In this section we describe experimental tests that compare running times of the

selected min-cut/max-flow algorithms for segmentation technique in [BJ01]. The

graph-based method in [BJ01] allows to segment an object of interest in N-D

images/volumes. This technique generalizes the MAP-MRF method of Greig at.

al. [GPS89] by incorporating additional hard constraints into minimization of the

Potts energy

E(L) =
∑
p∈P

Dp(Lp) +
∑

{p,q}∈N
K{p,q} · T (Lp �= Lq)

over binary (object/background) labelings. The hard constraints may come from

a user placing object and background seeds.

The technique finds a globally optimal binary segmentation of N-dimensional

image satisfying the hard constraints (seeds). The computation is done in one

pass of a max-flow/min-cut algorithm on a certain graph. In case of 2D images

the structure of the underlying graph is exactly the same as shown in Figure 2.3.

In 3D cases [BJ01] build a regular 3D grid graph.

We tested min-cut/max-flow algorithms on 2D and 3D segmentation examples

illustrated in Figure 5.4. This figure demonstrates original data and our segmen-
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Photo Editing

(a) Bell Photo (b) Bell Segmentation

Medical Data

(c) Cardiac MR (e) Lung CT (g) Liver MR

(d) LV Segment (f) Lobe Segment (h) Liver Segment

Figure 5.4: Segmentation Experiments
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tation results corresponding to some sets of seeds. Note that the user can place

seeds interactively. New seeds can be added to correct segmentation imperfections.

The technique in [BJ01] efficiently recomputes the optimal solution starting at the

previous segmentation result.

Figure 5.4(a-b) shows one of our experiments where a group of people around a

bell were segmented on a real photo image (255x313 pixels). Other segmentation

examples in (c-h) are for 2D and 3D medical data. In (c-d) we segmented a left

ventricle in a 3D cardiac MR data (127x127x12 voxels). In our 3D experiments the

seeds were placed in one slice in the middle of the volume. Often, this is enough to

segment the whole volume correctly. The tests with lung CT data (e-f) were made

in 2D (409x314 pixels) case. The goal was to segment out a lower lung lobe. In

(g-h) we tested the algorithms on 2D liver MR data (511x511 pixels). Additional

3D experiments were performed on heart ultrasound and kidney MR volumes.

The tables below compare running times (in seconds, 1.4GHz Pentium IV) of

the selected min-cut/max-flow algorithms for a number of segmentation exam-

ples. Note that these times include only min-cut/max-flow computation3. In each

column we show running times of max-flow/min-cut algorithms corresponding to

exactly the same set of seeds. The running times were obtained for the “6” and

“26” neighborhood systems (N6 and N26). Switching from N6 to N26 increases

complexity of graphs but does not affect the quality of segmentation results much.

3Time for entering seeds may vary between different users. For the experiments
in Figure 5.4 all seeds were placed within 10 to 20 seconds.
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method

DINIC

H PRF

Q PRF

Ours

2D examples

Bell photo Lung CT Liver MR

(255x313) (409x314) (511x511)

N4 N8 N4 N8 N4 N8

2.73 3.99 2.91 3.45 6.33 22.86

1.27 1.86 1.00 1.22 1.94 2.59

1.34 0.83 1.17 0.77 1.72 3.45

0.09 0.17 0.22 0.33 0.20 0.45

method

DINIC

H PRF

Q PRF

Ours

3D examples

Heart MR Heart US Kidney MR

(127x127x12) (76x339x38) (99x66x31)

N6 N26 N6 N26 N6 N26

20.16 39.13 172.41 443.88 3.39 8.20

1.38 2.44 18.19 47.99 0.19 0.50

1.30 3.52 23.03 45.08 0.19 0.53

0.70 2.44 13.22 90.64 0.20 0.58

5.4 Conclusions

We have experimented with a reasonable sample of typical vision graphs. In most

examples our new min-cut/max-flow algorithm worked 2-5 times faster than any

of the other methods, including the push-relabel and Dinic’s algorithms (which are

known to outperform other min-cut/max-flow techniques). In some cases the new

algorithm made possible near real-time performance of the corresponding applica-

tions.
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More specifically, we can conclude that our algorithm is consistently several

times faster than the second best method in all applications where the graphs are

2D grids. However, our algorithm’s performance degrades when the complexity

of the underlying graphs is increased. For example, on linear interaction energy

graphs (section 5.3.2) with a large number of grid-layers (labels), the performance

of Q PRF was comparable to our algorithm. Similarly, experiments in section 5.3.4

show that push-relabel methods (H PRF and Q PRF) are comparable to our al-

gorithm in 3D segmentation tests even though it was several times faster in all 2D

segmentation examples. Going from the 6-connected neighborhood system to the

26-connected system further decreased the relative performance of our method in

3D segmentation.

Note that we do not have a polynomial bound for our algorithm.4 Interestingly,

in all our tests on 2D and 3D graphs that occur in real computer vision applications,

our algorithm significantly outperformed a polynomial method of DINIC. Our

results suggest that grid graphs in vision are a very specific application for min-

cut/max-flow algorithms. In fact, Q PRF outperformed H PRF in many of our

tests (especially in section 5.3.2) despite the fact that H PRF is generally regarded

as the fastest algorithm in combinatorial optimization community.

4The trivial bound given in section 5.2 involves the cost of a minimum cut
and, theoretically, it is not a polynomial bound. In fact, additional experiments
showed that our algorithm is by several orders of magnitude slower than Q PRF,
H PRF, and DINIC on several standard (not from computer vision) types of graphs
commonly used for tests in combinatorial optimization community.



Chapter 6

Conclusions

This thesis has explored graph cut techniques in computer vision. In this

chapter we summarize our contributions and state some open problems.

6.1 Contributions

We have showed how to apply graph cut techniques to the problem of scene re-

construction from multiple views. The algorithms that we developed have several

important properties: they treat the input images symmetrically, handle visibil-

ity properly, and impose spatial smoothness while also preserving discontinuities.

Experimental results show that our algorithms for two views are among the top

performers, and that the accuracy of the reconstruction is greatly improved when

more views are used.

We also addressed two issues common to many other vision algorithms that use

graph cuts. First, we gave a partial characterization of the class of functions of

binary variables that can be minimized via graph cuts. We showed that regularity

is a necessary condition for graph representability, and that is sufficient for the

class F3. In addition, we gave a general-purpose graph construction to minimize

any regular function in F3. It is thus no longer to necessary to construct graphs

explicitly for minimizing a function; instead it suffices to show that the function is

regular. Second, we presented a new maxflow algorithm for computing minimum

s-t cuts that outperforms other standard algorithms for many vision applications,

129
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as we demonstrated experimentally. It speeds up many graph-based methods,

including the scene reconstruction algorithms presented in this thesis.

6.2 Open questions

In conclusion we mention some open questions that we would like to explore in the

future.

Minimizing a broader class of energy functions

• We proved that regularity is a necessary condition for graph representability

for any function of binary variables. However, we showed that it is also

sufficient only for class F3. An obvious question is whether regular functions

in other classes (F4, F5, . . .) are graph-representable. Note that a positive

answer would give practical algorithms only for classes Fk with small k since

the size of the graph would almost certainly be exponential in k.

• We gave a condition only for functions of binary variables. Can we say

something useful about functions of multi-valued variables? Of course, we

could choose an encoding of multi-valued variables with binary variables and

then apply our results. However, it would be much more powerful to have a

condition that does not depend on this encoding.

Multi-camera scene reconstruction

• As is common in stereo, we assumed that surfaces are Lambertian. Unfor-

tunately, in real scenes this assumption often fails. Can we somehow relax

it?
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• Currently we have a restriction on the geometry of cameras and the object,

which prevents, for example, the cameras from surrounding the object. Can

we modify our algorithm to more general geometries?

• Ideally, the smoothness term should impose a constraint on the shape of

the object, and therefore should not depend on position of the cameras.

However, both smoothness terms that we use are formulated in terms of

cameras viewing the object. Can we reformulate the scene reconstruction

problem to overcome this drawback?

• As is common with energy minimization algorithms, we pick the parameters

of our energy function heuristically. Is there a theoretically sound model that

would explain how to choose these parameters?

Despite these remaining open questions, it is clear that graph cut algorithms

can now be used to obtain strong results for multi-camera scene reconstruction.
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