Every formula in a proof is either a goal —i.e., it needs to be proved— or an assertion —i.e., it can be used in the proof. It is of utmost importance that, at every point during a proof, you know the current goals and the current assertions; that is, you can always answer the following two questions:

- What needs to be proved?
- What can be used in the proof?

The current goals and the current assertions change with every proof step:

1. At the beginning of a proof, you start out with a single goal and many assertions, namely, all axioms and definitions and all theorems and lemmas that have been proved previously (by you or anybody else).
2. Every proof step replaces one of your current goals with zero or more new goals and adds zero or more assumptions to your assertions.
3. The proof is completed once every goal is identical to an assertion.

There are two kinds of proof steps.

A Proof steps that break apart a goal

- The outermost operator of a goal is \forall ("for all"). Choose a new constant symbol \hat{x} and replace the goal $(\forall x \mid G)$ with the new goal $G[x := \hat{x}]$.\(^1\)
Write:

\[
\ldots \text{show } (\forall x \mid G). \text{ Consider an arbitrary } \hat{x} \text{ and show } G[x := \hat{x}].
\]
\[
\ldots
\]

In the special case that the universal quantifier ranges over a domain with a well-founded relation \prec, add the induction hypothesis $(\forall x' \mid x' \prec \hat{x} \Rightarrow G[x := x'])$ as a new assertion. Write:

\[
\ldots \text{show } (\forall x \mid G). \text{ We show this by induction on the well-founded relation \prec. We consider an arbitrary } \hat{x}, \text{ assume the induction hypothesis } (\forall x' \mid x' \prec \hat{x} \Rightarrow G[x := x']), \text{ and show } G[x := \hat{x}]. \ldots
\]

\(^1\)The notation $G[x := \hat{x}]$ means that every occurrence of the symbol “x” inside the statement G is replaced by the expression “\hat{x}.”
• The outermost operator of a goal is \exists ("there exists"). Choose a constant expression E and replace the goal $(\exists x \mid G)$ with the new goal $G[x := E]$. Write:

 \[\ldots \text{show} (\exists x \mid G). \text{It suffices to show} G[x := E], \ldots \]

• The outermost operator of a goal is \iff ("is equivalent to"). Replace the goal $E \iff F$ with the two new goals $E \implies F$ and $F \implies E$. Write:

 \[\ldots \text{show} E \iff F. \text{First we show} E \implies F. \ldots \text{Second we show} F \implies E. \ldots \]

• The outermost operator of a goal is \implies ("implies"). Replace the goal $E \implies F$ with the new goal F and add the assumption E as a new assertion. Write:

 \[\ldots \text{show} E \implies F. \text{We assume} E \text{and show} F. \ldots \]

• The outermost operator of a goal is \land ("and"). Replace the goal $E \land F$ with the two new goals E and F. Write:

 \[\ldots \text{show} E \land F. \text{First we show} E. \ldots \text{Second we show} F. \ldots \]

• The outermost operator of a goal is \lor ("or"). Replace the goal $E \lor F$ with the new goal F and add the assumption $\neg E$ as a new assertion. Write:

 \[\ldots \text{show} E \lor F. \text{We assume} \neg E \text{and show} F. \ldots \]

Alternatively:

 \[\ldots \text{show} E \lor F. \text{We assume} \neg F \text{and show} E. \ldots \]

• The outermost operator of a goal is \neg ("not"). Move the negation inside the goal $\neg E$ by de Morgan and similar laws. If you must, you may replace the goal $\neg E$ with the new goal \false and add the assumption E as a new assertion. Write:

 \[\ldots \text{show} \neg E. \text{We show this by contradiction. We assume} E \text{and show} \false. \ldots \]

B Proof steps that make use of an assertion

• The outermost operator of an assertion is \forall. Given the assertion $(\forall x \mid A)$, choose a constant expression E and add the new assertion $A[x := E]$. Write:

 From [the assumption; axiom; theorem; lemma; definition; induction hypothesis] $(\forall x \mid A)$ we know $A[x := E]$.

2
• The outermost operator of an assertion is \exists. Given the assertion $(\exists x \mid A)$, choose a new constant symbol \hat{x} and add the new assertion $A[x := \hat{x}]$. Write:

Recall that $(\exists x \mid A)$. Let \hat{x} be such that $A[x := \hat{x}]$.

• The outermost operator of an assertion is \iff. Given the assertion $E \iff F$, add the new assertion $E \Rightarrow F$. Write:

From $E \iff F$ we know $E \Rightarrow F$.
Alternatively:
From $E \iff F$ we know $F \Rightarrow E$.

• The outermost operator of an assertion is \Rightarrow. Given the assertion $E \Rightarrow F$ and a goal F, replace F with the new goal E. Write:

\ldots show F. Since $E \Rightarrow F$, it suffices to show E.

Given the assertion $E \Rightarrow F$ and another assertion E, add the new assertion F. Write:

Since $E \Rightarrow F$, from E we know F.

• The outermost operator of an assertion is \land. Given the assertion $E \land F$, add the new assertion E. Write:

From $E \land F$ we know E.
Alternatively:
From $E \land F$ we know F.

• The outermost operator of an assertion is \lor. Given the assertion $E \lor F$, prove the current goals twice —first by adding the assumption E as a new assertion, and second by adding the assumption F as a new assertion. Write:

\ldots show G. We show this by a case split on $E \lor F$. First we assume E and show G. \ldots Second we assume F and show G.

\ldots

• The outermost operator of an assertion is \neg. Move the negation inside the assertion $\neg E$ by de Morgan and similar laws.