Algorithms

• Instructors:
 - Vladimir Kolmogorov
 - Krzysztof Pietrzak
• Teaching assistant:
 - Sebastian Novak

• Course webpage:
 http://pub.ist.ac.at/courses/2012/algorithms/

• Final grade = 50% homeworks + 50% exam

• HW1: available today, due next Monday before the lecture

Topics

• Design techniques
 1. Divide-and-Conquer (VK)
 2. Prune-and-Search (VK)
 3. Dynamic programming (KP)
 4. Greedy algorithms (KP)

• Search trees, priority queues
 5. Binary search trees (KP)
 6. Amortized analysis (KP)
 7. Heaps, heapsort (VK)

• Graph algorithms (VK)
 8. Graph search
 9. Shortest paths

• String algorithms
 10. Knuth-Morris-Pratt alg. (KP)
 11. Data structures for strings (VK)

• “Hard” problems
 12. Concluding lecture (KP)

Algorithms II

Topics:

• Maximum flow algorithm
• Basics of Linear Programming
• NP-completeness
• Approximation algorithms
• Parameterized complexity
• Exponential-time algorithms
Divide-and-conquer

- Divide the problem into several subproblems
- Solve each subproblem recursively
- Combine solutions

Applications:
- Sorting (QuickSort, MergeSort)
- Fast Fourier Transform (FFT)
- Matrix multiplication (Strassen’s algorithm)
- ...

The sorting problem

- Input: sequence of items
 - e.g. integers, words in a dictionary, ...
 - stored in an array

 \[
 \begin{array}{cccccccccc}
 5 & 4 & 3 & 7 & 2 & 9 & 1 & 8 & 1 \\
 \end{array}
 \]

- Output: sorted sequence

 \[
 \begin{array}{cccccccccc}
 1 & 1 & 2 & 3 & 4 & 5 & 7 & 8 & 9 \\
 \end{array}
 \]

```java
void QuickSort(int left, int right) {
    if left < right then {
        i = Split(left, right);
        QuickSort(left, i - 1);
        QuickSort(i + 1, right);
    }
}
```

```java
\[
\begin{array}{ccccccccccc}
5 & 4 & 3 & 7 & 2 & 9 & 1 & 8 & 1 \\
\end{array}
\]

\[
\begin{array}{ccccccccccc}
1 & 4 & 3 & 1 & 2 & 5 & 9 & 8 & 7 \\
\end{array}
\]

\[
\begin{array}{ccccccccccc}
\leq 5 & \geq 5 \\
\end{array}
\]
**int Split(int left, int right)**

- Can be implemented in-place
  - no extra memory allocated

- Idea:
  - make sure that elements $x < 5$ come before elements $y > 5$
int Split(int left, int right)

pivot = A[left]; \ i = left; \ j = right + 1;
while TRUE do {
    do j = j - 1 while i < j and A[j] ≥ pivot;
    do i = i + 1 while i < j and A[i] ≤ pivot;
    if i < j then exchange A[i] and A[j];
    else {
        exchange A[left] and A[i];
        return i;
    }
}
Running time: worst case

• Already sorted sequence:

\[ T(n) = n + T(n-1) = n + (n-1) + \ldots + 1 = \frac{n(n+1)}{2} \]

• Quadratic running time: \( T(n) = O(n^2) \)

- i.e. \( T(n) \leq \text{const} \cdot n^2 \) for some \( \text{const} \)

Running time: best case

\[ T(n) = n + 2 \cdot T\left(\frac{n-1}{2}\right) \]

• Master theorem (see e.g. wikipedia):
  recipe for solving such recurrences

• Not covered in this course

Running time: best case

\[ T(n) = n + 2^k - 1; \]

\[
T(n) = \begin{cases} 
  n - (2^0 - 1) \\
  + n - (2^1 - 1) \\
  + n - (2^2 - 1) \\
  + \ldots \\
  + n - (2^{k-1} - 1) 
\end{cases} - k
\]
Running time: best case

\[ T(n) = n + 2 \cdot T \left( \frac{n-1}{2} \right) \]

\[ n = 2^k - 1; \]

\[ T(n) = n - (2^0 - 1) + n - (2^1 - 1) + n - (2^2 - 1) + \ldots + n - (2^{k-1} - 1) = kn - (2^k - 1) + k \]

• For general \( n \):

\[ T(n) \leq \text{const} \cdot n \log n \]

Running time

• QuickSort: runtime depends on input data
  - worst case: \( O(n^2) \) (e.g. if already sorted)
  - best case: \( O(n \log n) \)

• Randomized QuickSort: randomly select pivot

```c
int rSplit(int left, int right)
p = Random(left, right);
exchange A[left] and A[p];
return Split(left, right);
```
Randomized QuickSort - Average complexity

- \( T(n) \): expected runtime for \( n \) elements
- Assumption: all elements are distinct

\[
T(n) = n + \frac{1}{n} \sum_{m=0}^{n-1} (T(m) + T(n-m-1))
\]

\[
T(n) = n + \frac{1}{n} \cdot 2 \sum_{i=0}^{n-1} T(i)
\]
Randomized QuickSort - Average complexity

\[ T(n) = \frac{T(n-1)}{n+1} + \frac{2n-1}{n(n+1)} \]
\[ U(n) = \frac{T(n)}{n+1} \]

\[ U(n) = U(n-1) + \frac{2n-1}{n(n+1)} \]
\[ U(n) = \frac{T(n)}{n+1} \]

\[ = \sum_{i=1}^{n} \frac{2i-1}{i(i+1)} \]
\[ = 2 \sum_{i=1}^{n} \frac{1}{i+1} - \sum_{i=1}^{n} \frac{1}{i(i+1)} \]

Randomized QuickSort - Average complexity

\[ \frac{T(n)}{n+1} = 2 \sum_{i=1}^{n} \frac{1}{i+1} - \sum_{i=1}^{n} \frac{1}{i(i+1)} \]

\[ \sum_{i=1}^{n} \left( \frac{1}{i} - \frac{1}{i+1} \right) = 1 - \frac{1}{n+1} \]
Randomized QuickSort - Average complexity

\[ T(n) + 1 < 2 \sum_{i=1}^{n} \frac{1}{i+1} < \int_{1}^{n+1} \frac{dx}{x} \]

= \[2 \log(n + 1)\]

Randomized QuickSort - Average complexity

- Complexity: \( T(n) = O(n \log n) \)

\[
T(n) < 2 \cdot (n + 1) \cdot \log(n + 1)
\]

- Approximately \( \frac{2}{\log_2 e} \approx 1.386... \) slower than the best case

Stack & extra space

```c
void QuickSort(int left, int right)
if left < right then {
 i = Split(left, right);
 QuickSort(left, i - 1);
 QuickSort(i + 1, right);
}
```

- Worst-case stack size: \(O(n)\)
- **QuickSort** is **tail-recursive**
  - as the last step calls itself
  - naive implementation (with stack) inefficient
Removing tail recursion

```java
void QuickSort(int left, int right)
 while left < right do {
 i = Split(left, right);
 QuickSort(left, i - 1);
 left = i + 1;
 }
```

- Worst-case stack size: still O(n) ...

Removing tail recursion for larger side

```java
void QuickSort(int left, int right)
 while left < right do {
 i = Split(left, right);
 if i - left < right - i then
 QuickSort(left, i - 1); left = i + 1;
 else
 QuickSort(i + 1, right); right = i - 1;
 }
```

- Worst-case stack size: O(log n)

Summary

- Deterministic QuickSort:
  - Worst-case: O(n²)
  - Average over data instances (random permutations): O(n log n)
- Randomized QuickSort:
  - Worst-case: O(n log n)
  - Average: O(n log n) [assuming distinct elements]
- Extra space (worst-case): O(log n)
  - Use recursive call only for the smaller side
- One of the fastest sorting algorithms in practice

- Techniques:
  - Divide-and-conquer
  - Randomization