Problem 1

1. Let P_1 be the following reactive module:

 state:
 \[\text{loc} = \{\text{noacc}, \text{req}, \text{acc}\} \]
 \[\text{flag}_X = \{\text{down}, \text{up}\} \]

 external:
 \[\text{flag}_Y = \{\text{down}, \text{up}\} \]

 initial:
 \[\text{loc} = \text{noacc}; \text{flag}_X = \text{down} \]

 update:
 \[\text{loc} = \text{noacc} \land \text{flag}_Y = \text{down} \rightarrow \text{loc} = \text{req} \]
 \[\text{loc} = \text{req} \rightarrow \text{flag}_X = \text{up}; \text{loc} = \text{acc} \]
 \[\text{loc} = \text{acc} \rightarrow \text{flag}_X = \text{down}; \text{loc} = \text{noacc} \]

 Consider the system $P_1 \parallel P_1[\text{flag}_X/\text{flag}_Y, \text{flag}_Y/\text{flag}_X]$. Does this system ensure the safety property that the two processes are never at the acc location at the same time?

2. Let P_2 be the following reactive module:

 state:
 \[\text{loc} = \{\text{noacc}, \text{req}, \text{acc}\} \]
 \[\text{flag}_X = \{\text{down}, \text{up}\} \]

 external:
 \[\text{flag}_Y = \{\text{down}, \text{up}\} \]

 initial:
 \[\text{loc} = \text{noacc}; \text{flag}_X = \text{down} \]

 update:
 \[\text{loc} = \text{noacc} \rightarrow \text{flag}_X = \text{up}; \text{loc} = \text{req} \]
 \[\text{loc} = \text{req} \land \text{flag}_Y = \text{down} \rightarrow \text{loc} = \text{acc} \]
 \[\text{loc} = \text{acc} \rightarrow \text{flag}_X = \text{down}; \text{loc} = \text{noacc} \]

 Consider the system $P_2 \parallel P_2[\text{flag}_X/\text{flag}_Y, \text{flag}_Y/\text{flag}_X]$. Does this system ensure the safety property “no deadlock” that requires that in every state at least one of the processes can make progress?

3. Design a system P_3 that corrects the problems of P_1 and P_2.

 Does your system ensure the “bounded waiting” property that requires that if a process is waiting for access (i.e. is in the location req), the other process can get access at most a bounded number of times?
Problem 2

Write a functional program \(\exp(m, n) \) which takes two integers \(m \) and \(n \) as inputs, and returns \(m^n \).

Problem 3

\[
\textbf{While Semantics} \\

(While Finish) \quad [i]_{st} = 0 \quad \text{while } (i) \text{ do } c \text{ od } st \\
\hline
(While) \quad [i]_{st} \neq 0 \quad st \xrightarrow{c} st' \quad st' \xrightarrow{\text{while } (i) \text{ do } c \text{ od}} st'' \\
\hline
\]

Give a formal semantics for do-until. Do until should have the following syntax \(\text{do } c \text{ until } (i) \text{ od} \). The semantics for do-until is such that after every loop iteration the condition is checked and only if it is true the loop will continue.