Exercise 4.1. Solve the following systems of linear equations:

(a) \[
\begin{align*}
x_2 &+ 2x_3 + 3x_4 = 0 \\
x_1 + 2x_2 + 3x_3 + 4x_4 &= 0 \\
2x_1 + 3x_2 + 4x_3 &= 5x_4 = 0 \\
3x_1 + 4x_2 + 5x_3 &= 6x_4 = 0 \\
\end{align*}
\]

(b) \[
\begin{align*}
-6x_1 + 6x_2 + 2x_3 - 2x_4 &= 2 \\
-9x_1 + 8x_2 + 3x_3 - 2x_4 &= 3 \\
-3x_1 + 2x_2 + x_3 &= 1 \\
-15x_1 + 14x_2 + 5x_3 - 4x_4 &= 5 \\
\end{align*}
\]

Exercise 4.2 (Affine Subspaces). A subset \(F \subseteq \mathbb{R}^n\) is called an affine subspace if either \(F = \emptyset\), or there exists a linear subspace \(U \subseteq \mathbb{R}^n\) and a vector \(a \in \mathbb{R}^n\) such that

\[F = a + L := \{a + u : u \in U\}.\]

If \(F\) is nonempty, the dimension of \(F\) is defined as the dimension of \(U\) (this makes sense by Part (b) below). (If \(F\) is empty, its dimension is defined as \(-1\).)

(a) Show that every affine subspace of \(\mathbb{R}^2\) is of one of the following types: (i) \(F = \emptyset\); (ii) \(F = \{a\}\) has a single element; (iii) \(F\) is a line, not necessarily passing through the origin; (iv) \(F = \mathbb{R}^2\). (2 points)

(b) Show that if \(F\) is a nonempty affine subspace of \(\mathbb{R}^n\) and if \(F = a + U = a' + U'\) for vectors \(a, a' \in \mathbb{R}^n\) and linear subspaces \(U\) and \(U'\), then \(U = U'\). Thus the linear subspace \(U\) in the definition of a nonempty affine subspace is uniquely determined. Does it also necessarily hold that \(a = a'\)? (4 points)

(c) Consider a system of linear equations \(Ax = b\), where \(A \in \mathbb{R}^{m \times n}\) and \(b \in \mathbb{R}^m\). Show that the set of solutions \(\text{Sol}(A, b)\) is an affine subspace of \(\mathbb{R}^n\). (4 points)

(d) Suppose that \(A\) is in row echelon form. How can you tell the dimension of \(\text{Sol}(A, b)\) just by looking at \(A\) and \(b\)? (4 points)

Exercise 4.3. Prove the following statements from the lecture. For any invertible \(A, B \in \mathbb{R}^{n \times n}\):

a) the matrix \(A^{-1}\) is invertible and its inverse is \(A\), i.e. \((A^{-1})^{-1} = A\), (4 points)

b) \(AB\) is invertible, and its inverse is \(B^{-1}A^{-1}\), i.e. \((AB)^{-1} = B^{-1}A^{-1}\),

Exercise 4.4. Which of the following matrices are invertible? (6 points)

\[
\begin{align*}
a) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & b) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & c) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & d) \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix} & e) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} & f) \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n \end{pmatrix}
\end{align*}
\]

Exercise 4.5. The rank of a matrix \(A \in \mathbb{R}^{m \times n}\) is defined as the maximum number of linearly independent columns of \(A\) (we view each column as a vector in \(\mathbb{R}^m\)).

What’s the rank of the matrices from the previous exercise? (6 points)

\[
\begin{align*}
a) & \quad & b) & \quad & c) & \quad & d) & \quad & e) & \quad & f) & \quad
\end{align*}
\]

Bonus. Show that if \(A\) is in row echelon form then the definintion of rank we gave in class agrees with the definition of rank given here. (4 points)

Please turn page over...
Exercise 4.6. Identify all pairs of vectors from the following set that are orthogonal to each other for every $a, b, c \in \mathbb{R}$:

- in \mathbb{R}^2: $x_1 = \begin{pmatrix} a \\ b \end{pmatrix}$, $x_2 = \begin{pmatrix} b \\ -a \end{pmatrix}$, $x_3 = \begin{pmatrix} -b \\ a \end{pmatrix}$, $x_4 = \begin{pmatrix} a-b \\ b-a \end{pmatrix}$.

- in \mathbb{R}^3: $x_5 = \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix}$, $x_6 = \begin{pmatrix} 0 \\ b \\ 0 \end{pmatrix}$, $x_7 = \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix}$, $x_8 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

- in \mathbb{R}^n: $x_9 = \begin{pmatrix} a \\ a \\ \vdots \\ a \end{pmatrix}$, $x_{10} = \begin{pmatrix} b \\ b \\ \vdots \\ b \end{pmatrix}$, $x_{11} = \begin{pmatrix} 1 \\ 2 \\ \vdots \\ n \end{pmatrix}$, $x_{12} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$.

Bonus: for which of the other cases exist non-zero values of $a, b, c \in \mathbb{R}$ that do make the vectors orthogonal? (4 points)

Exercise 4.7. Prove: for any $x \in \mathbb{R}^n$ and any $\lambda \in \mathbb{R}$: $\| \lambda x \| = |\lambda| \| x \|$. (4 points)

Exercise 4.8. Prove: $\| \cdot \| : \mathbb{R}^n \to \mathbb{R}$, given by $x \mapsto \| x \|$, is not a linear function. (4 points)

Exercise 4.9. Let $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$ with $x \perp y$.

a) Use the definition of $\| \cdot \|$ and the properties of the inner product to show:

$$\| x + y \|^2 = \| x \|^2 + \| y \|^2 \quad (\text{Pythagorean Identity}).$$

b) Give an example that shows that the identity can be violated if $x \not\perp y$.

Exercise 4.10. Let $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$ be arbitrary.

Use the definition of $\| \cdot \|$ and the properties of the inner product to show:

$$\| x + y \|^2 + \| x - y \|^2 = 2(\| x \|^2 + \| y \|^2) \quad (\text{Parallelogram Identity}).$$