Idea: split \mathcal{X} into regions, for each region store an estimate $\hat{p}(y|x)$.

Note: prediction rule $c(x) = \arg\max_y \hat{p}(y|x)$ predicts the most frequent label in each leaf (same as in first lecture).
Idea: split \mathcal{X} into regions, for each region store an estimate $\hat{p}(y|x)$.

For example, using a **decision tree**:

- **training**: build a tree
- **prediction**: for new example x, find its leaf
- **output** $\hat{p}(y|x) = \frac{n_y}{n}$, where
 - n is the number of examples in the leaf,
 - n_y is the number of example of label y in the leaf.
Nonparametric Discriminative Model

Idea: split \mathcal{X} into regions, for each region store an estimate $\hat{p}(y|x)$.

For example, using a **decision tree**:
- training: build a tree
- prediction: for new example x, find its leaf
- output $\hat{p}(y|x) = \frac{n_y}{n}$, where
 - n is the number of examples in the leaf,
 - n_y is the number of example of label y in the leaf.

Note: prediction rule

$$c(x) = \arg\max_y \hat{p}(y|x)$$

is predicts the most frequent label in each leaf (same as in first lecture).
Setting. We assume $\mathcal{X} \subseteq \mathbb{R}^d$ and $\mathcal{Y} = \{-1, +1\}$.

Definition (Logistic Regression (LogReg) Model)

Modeling

$$\hat{p}(y|x; w) = \frac{1}{1 + \exp(-y \langle w, x \rangle)},$$

with parameter vector $w \in \mathbb{R}^d$ is called a *logistic regression* model.
Setting. We assume $X \subseteq \mathbb{R}^d$ and $Y = \{-1, +1\}$.

Definition (Logistic Regression (LogReg) Model)

Modeling

\[
\hat{p}(y|x; w) = \frac{1}{1 + \exp(-y\langle w, x \rangle)},
\]

with parameter vector $w \in \mathbb{R}^d$ is called a *logistic regression* model.

Lemma

\(\hat{p}(y|x; w)\) is a well defined probability density w.r.t. \(y\) for any $w \in \mathbb{R}^d$.

Proof. elementary.
Logistic Regression Training

Given a training set \(D = \{(x^1, y^1), \ldots, (x^n, y^n)\} \), logistic regression training sets the free parameter vector as

\[
w_{LR} = \arg\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} \log (1 + \exp(-y^i \langle w, x^i \rangle))
\]

Lemma (Conditional Likelihood Maximization)

\(w_{LR} \) from Logistic Regression training maximizes the conditional data likelihood w.r.t. the LogReg model,

\[
w_{LR} = \arg\max_{w \in \mathbb{R}^d} \hat{p}(y^1, \ldots, y^n | x^1, \ldots, x^n, w)
\]
Proof.

Maximizing

\[\hat{p}(\mathcal{D}^Y | \mathcal{D}^X, w) \overset{i.i.d.}{=} \prod_{i=1}^{n} \hat{p}(y^i | x^i, w) \]

is equivalent to minimizing its negative logarithm

\[-\log \hat{p}(\mathcal{D}^Y | \mathcal{D}^X, w) = -\log \prod_{i=1}^{n} \hat{p}(y^i | x^i, w) = -\sum_{i=1}^{n} \log \hat{p}(y^i | x^i, w) \]

\[= -\sum_{i=1}^{n} \log \frac{1}{1 + \exp(-y^i \langle w, x^i \rangle)}, \]

\[= -\sum_{i=1}^{n} [\log 1 - \log(1 + \exp(-y^i \langle w, x^i \rangle))], \]

\[= \sum_{i=1}^{n} \log(1 + \exp(-y^i \langle w, x^i \rangle)). \]
Definition (Kullback-Leibler (KL) divergence)

Let p and q be two probability distributions (for discrete \mathcal{Z}) or probability densities with respect to a measure $d\lambda$ (for continuous \mathcal{Z}). The **Kullbach-Leibler (KL)-divergence** between p and q is defined as

\[
\text{KL}(p \parallel q) = \sum_{z \in \mathcal{Z}} p(z) \log \frac{p(z)}{q(z)}, \quad \text{or} \quad \text{KL}(p \parallel q) = \int_{z \in \mathcal{Z}} p(z) \log \frac{p(z)}{q(z)} \, d\lambda(z),
\]

(with convention $0 \log 0 = 0$, and $a \log \frac{a}{0} = \infty$ for $a > 0$).
Definition (Kullback-Leibler (KL) divergence)

Let p and q be two probability distributions (for discrete \mathcal{Z}) or probability densities with respect to a measure $d\lambda$ (for continuous \mathcal{Z}). The **Kullbach-Leibler (KL)-divergence** between p and q is defined as

$$
KL(p \parallel q) = \sum_{z \in \mathcal{Z}} p(z) \log \frac{p(z)}{q(z)}, \quad \text{or} \quad KL(p \parallel q) = \int_{z \in \mathcal{Z}} p(z) \log \frac{p(z)}{q(z)} \, d\lambda(z),
$$

(with convention $0 \log 0 = 0$, and $a \log \frac{a}{0} = \infty$ for $a > 0$).

KL is a similarity measure between probability distributions. It fulfills

$$
0 \leq KL(p \parallel q) \leq \infty, \quad \text{and} \quad KL(p \parallel q) = 0 \iff p = q.
$$

However, KL is **not a metric**.

- it is in general not symmetric, $KL(q \parallel p) \neq KL(p \parallel q)$,
- it does not fulfill the triangle inequality.
Alternative Explanation of Logistic Regression Training

Definition (Expected Kullback-Leibler (KL) divergence)

Let \(p(x, y) \) be a probability distribution over \((x, y) \in \mathcal{X} \times \mathcal{Y}\) and let \(\hat{p}(y|x) \) be an approximation of \(p(y|x) \).

We measure the approximation quality by the **expected KL-divergence** between \(p \) and \(q \) over all \(x \in \mathcal{X} \):

\[
\text{KL}_{\text{exp}}(p \parallel q) = \mathbb{E}_{x \sim p(x)} \{ \text{KL}(p(.\mid x) \parallel q(.\mid x)) \}
\]

Theorem

The parameter \(w_{LR} \) obtained by logistic regression training approximately minimizes the KL divergence between \(\hat{p}(y|x; w) \) and \(p(y|x) \).
Proof.

We show how maximizing the conditional likelihood relates to KL_{exp}:

$$
\text{KL}_{\text{exp}}(p||\hat{p}) = \mathbb{E}_{x \sim p(x)} \sum_{y \in \mathcal{Y}} p(y|x) \log \frac{p(y|x)}{\hat{p}(y|x, w)}
$$

$$
= \mathbb{E}_{(x,y) \sim p(x,y)} \log p(y|x) - \mathbb{E}_{(x,y) \sim p(x,y)} \log \hat{p}(y|x, w)
$$

We can’t maximize $\mathbb{E}_{(x,y) \sim p(x,y)} \log \hat{p}(y|x, w)$ directly, because $p(x, y)$ is unknown. But we can maximize its empirical estimate based on \mathcal{D}:

$$
\mathbb{E}_{(x,y) \sim p(x,y)} \log \hat{p}(y|x, w) \approx \sum_{(x^i,y^i) \in \mathcal{D}} \log \hat{p}(y^i|x^i, w)
$$

The approximation will get better the more data we have. \qed
Theorem

Logistic Regression training,

\[w_{LR} = \underset{w}{\text{argmin}} \ L(w) \quad \text{for} \quad L(w) = \sum_{i=1}^{n} \log \left(1 + \exp(-y^i \langle w, x^i \rangle) \right), \]

is a \(C^\infty \)-smooth, unconstrained, convex optimization problem.

Proof.

1. it's an optimization problem,
2. it's unconstrained,
3. it's smooth (the objective function is \(C^\infty \) differentiable),
4. remains to show: the objective function is a convex function.

Since \(L \) is smooth, it’s enough to show that its Hessian matrix (the matrix of 2nd partial derivatives) is everywhere positive definite.
We compute first the gradient and then the Hessian of

\[\mathcal{L}(w) = \sum_{i=1}^{n} \log(1 + \exp(-y^i \langle w, x^i \rangle)). \]

\[\nabla_w \mathcal{L}(w) = \sum_{i=1}^{n} \nabla \log(1 + \exp(-y^i \langle w, x^i \rangle)). \]

use the chain rule, \(\nabla f(g(w)) = \frac{d}{dt} (g(w) \nabla g(w), \text{and} \frac{d}{dt} \log(t) = \frac{1}{t} \)

\[= \sum_{i=1}^{n} \frac{\nabla [1 + \exp(-y^i \langle w, x^i \rangle)]}{1 + \exp(-y^i \langle w, x^i \rangle)} \]

\[= \sum_{i=1}^{n} \frac{\exp(-y^i \langle w, x^i \rangle)}{1 + \exp(-y^i \langle w, x^i \rangle)} \nabla (-y^i \langle w, x^i \rangle) \]

\[= \hat{p}(y^i | x^i, w) \]

use the chain rule again, \(\frac{d}{dt} \exp(t) = \exp(t), \text{and} \ \nabla_w \langle w, x^i \rangle = x^i \)

\[= - \sum_{i=1}^{n} [\hat{p}(y^i | x^i, w)] y^i x^i \]
\[H_w \mathcal{L}(w) = \nabla \nabla^\top \mathcal{L}(w) = -\sum_{i=1}^{n} \left[\nabla \hat{p}(-y^i | x^i, w) \right] y^i x^i \]

\[\nabla \hat{p}(-y^i | x^i, w) = \nabla \frac{1}{1 + \exp(y^i \langle w, x^i \rangle)} \]

\[= -\frac{\nabla[1 + \exp(y^i \langle w, x^i \rangle)]}{[1 + \exp(y^i \langle w, x^i \rangle)]^2} \]

use quotient rule, \(\nabla \frac{1}{f(w)} = -\frac{\nabla f(w)}{f^2(w)} \), and chain rule,

\[= -\frac{\exp(y^i \langle w, x^i \rangle)}{[1 + \exp(y^i \langle w, x^i \rangle)]^2} \nabla y^i \langle w, x^i \rangle \]

\[= -(\hat{p}(-y^i | x^i)) \hat{p}(y^i | x^i, w) y^i x^i \]

insert into above expression for \(H_w \mathcal{L}(w) \)

\[H = \sum_{i=1}^{n} \left[\hat{p}(-y^i | x^i) \hat{p}(y^i | x^i, w) \right] x^i x^i \]

A positively weighted linear combination of pos.def. matrices is pos.def.
Example plot: LogReg objective for three examples in \mathbb{R}^2
Convex optimization is a well understood field. We can use, e.g., *gradient descent* will converge to the globally optimal solution!

Steepest Descent Minimization with Line Search

input

$\epsilon > 0$ tolerance (for stopping criterion)

1. $w \leftarrow 0$

2. **repeat**

3. $v \leftarrow -\nabla_w \mathcal{L}(w)$ \hspace{1cm} \{descent direction\}

4. $\eta \leftarrow \arg\min_{\eta > 0} \mathcal{L}(w + \eta v)$ \hspace{1cm} \{1D line search\}

5. $w \leftarrow w + \eta d$

6. **until** $\|v\| < \epsilon$

output

$w \in \mathbb{R}^d$ learned weight vector

Faster conference from methods that use second-order information, e.g., *conjugate gradients* or *(L-)*BFGS \rightarrow convex optimization lecture
A discriminative probability model, \(\hat{p}(y|x) \), is enough to make decisions:

\[
c(x) = \arg\max_{y \in \mathcal{Y}} \hat{p}(y|x) \quad \text{or} \quad c(x) = \arg\min_{y \in \mathcal{Y}} \mathbb{E}_{\bar{y} \sim \hat{p}(y|x)} \ell(\bar{y}, y).
\]

For Logistic Regression, this is particularly simple:

Lemma

The LogReg classification rule for 0/1-loss is

\[
c(x) = \text{sign} \left(\langle w, x \rangle \right).
\]

For a loss function \(\ell = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) the rule is

\[
c_\ell(x) = \text{sign} \left[\langle w, x \rangle + \log \frac{c - d}{b - a} \right],
\]

In particular, the decision boundaries is linear (or affine).

Proof. Elementary, since \(\log \frac{\hat{p}(+1|x;w)}{p(-1|x;w)} = \langle w, x \rangle \)
For $\mathcal{Y} = \{1, \ldots, M\}$, we can do two things:

- **Parametrize** $\hat{p}(y|x; \vec{w})$ using $M - 1$ vectors, $w_1, \ldots, w_{M-1} \in \mathbb{R}^d$, as

 $\hat{p}(y|x, w) = \frac{\exp(\langle w_y, x \rangle)}{1 + \sum_{j=1}^{M-1} \exp(\langle w_j, x \rangle)}$ \quad \text{for } y = 1, \ldots, M - 1,$

 $\hat{p}(M|x, w) = \frac{1}{1 + \sum_{j=1}^{M-1} \exp(\langle w_j, x \rangle)}$.

- **Parametrize** $\hat{p}(y|x; \vec{w})$ using M vectors, $w_1, \ldots, w_M \in \mathbb{R}^d$, as

 $\hat{p}(y|x, w) = \frac{\exp(\langle w_y, x \rangle)}{\sum_{j=1}^{M} \exp(\langle w_j, x \rangle)}$ \quad \text{for } y = 1, \ldots, M,$

Second is more popular, since it’s easier to implement and analyze.

Decision boundaries are still **piecewise linear**, $c(x) = \text{argmax}_y \langle w_y, x \rangle$.
Discriminative models treats the input data, x, as fixed and only model the distribution of the output labels $p(y|x)$.

Discriminative models, in particular LogReg, are popular, because

- they often need less training data than generative models,
- they provide an estimate of the uncertainty of a decision $p(c(x)|x)$,
- training them is often efficient,
 e.g. Yahoo trains LogReg models routinely from billions of examples.

But: they also have drawbacks

- often $\hat{p}_{LR}(y|x) \not\rightarrow p(y|x)$, even for $n \rightarrow \infty$,
- they usually are good for prediction, but they do not reflect the actual mechanism.

Note: there are much more complex discriminative models than LogReg, e.g. Conditional Random Fields (maybe later).
Let’s use \mathcal{D} to estimate a classifier $c : \mathcal{X} \rightarrow \mathcal{Y}$ directly.
Maximum Margin Classifiers

Let’s use \mathcal{D} to estimate a classifier $c : \mathcal{X} \rightarrow \mathcal{Y}$ directly.

For a start, we fix

- $\mathcal{D} = \{(x^1, y^1), \ldots, (x^n, y^n)\}$,
- $\mathcal{Y} = \{+1, -1\}$,
- we look for classifiers with linear decision boundary.

Several of the classifiers we saw had linear decision boundaries:

- Perceptron
- Generative classifiers for Gaussian class-conditional densities with shared covariance matrix
- Logistic Regression

What’s the best linear classifier?
Definition

Let

\[\mathcal{F} = \{ f : \mathbb{R}^d \rightarrow \{ \pm 1 \} \text{ with } f(x) = b + a_1 x_1 + \cdots + a_d x_d = b + \langle w, x \rangle \} \]

be the set of linear (affine) function from \(\mathbb{R}^d \rightarrow \mathbb{R} \).

A classifier \(g : \mathcal{X} \rightarrow \mathcal{Y} \) is called **linear**, if it can be written as

\[g(x) = \text{sign} \, f(x) \]

for some \(f \in \mathcal{F} \).

We write \(\mathcal{G} \) for the set of all linear classifiers.
A linear classifier, $g(x) = \text{sign}\langle w, x \rangle$, with $b = 0$
A linear classifier $g(x) = \text{sign}(\langle w, x \rangle + b)$, with $b > 0$
We call a classifier, g, **correct** (for a training set D), if it predicts the correct labels for all training examples:

$$g(x^i) = y^i \quad \text{for } i = 1, \ldots, n.$$

Example (Perceptron)

- if the *Perceptron* converges, the result is an *correct* classifier.
- any classifier with zero training error is *correct*.
Linear classifiers

Definition

We call a classifier, g, **correct** (for a training set D), if it predicts the correct labels for all training examples:

$$g(x^i) = y^i \quad \text{for} \quad i = 1, \ldots, n.$$

Example (Perceptron)

- if the *Perceptron* converges, the result is an **correct** classifier.
- any classifier with zero training error is **correct**.

Definition (Linear Separability)

A training set D is called **linearly separable**, if it allows a correct linear classifier (i.e. the classes can be separated by a hyperplane).
A linearly separable dataset and a correct classifier
A linearly separable dataset and a correct classifier
A linearly separable dataset and a correct classifier
An incorrect classifier
The **robustness** of a classifier g (with respect to D) is the largest amount, ρ, by which we can perturb the training samples without changing the predictions of g.

$$g(x^i + \epsilon) = g(x^i), \quad \text{for all } i = 1, \ldots, n.$$

for any $\epsilon \in \mathbb{R}^d$ with $\|\epsilon\| < \rho$.

Example

- constant classifier, e.g. $c(x) \equiv 1$: very robust ($\rho = \infty$), (but it is not *correct*, in the sense of the previous definition)
- robustness of the *Perceptron*: can be arbitrarily small (see Exercise...)
Robustness, ρ, of a linear classifier
Definition (Margin)

Let \(f(x) = \langle w, x \rangle + b \) define a correct linear classifier. Then the smallest (Euclidean) distance of any training example from the decision hyperplane is called the margin of \(f \) (with respect to \(D \)).

Lemma

We can compute the margin of a linear classifier \(f = \langle w, x \rangle + b \) as

\[
\rho = \min_{i=1,...,n} \left| \langle \frac{w}{\|w\|}, x^i \rangle + b \right|.
\]

Proof.

High school maths: distance between a points and a hyperplane in Hessian normal form.
Margin, ρ, of a linear classifier
Theorem

The robustness of a linear classifier function $g(x) = \text{sign} \, f(x)$ with $f(x) = \langle w, x \rangle + b$ is identical to the margin of f.

Correction: this only works for classifiers with $b = 0$ for now:

Proof (blackboard). For any $i = 1, \ldots, n$ and any $\epsilon \in \mathbb{R}^d$

$$f(x^i + \epsilon) = \langle w, x^i + \epsilon \rangle = \langle w, x^i \rangle + \langle w, \epsilon \rangle = f(x^i) + \langle w, \epsilon \rangle,$$

so it follows (Cauchy-Schwarz inequality) that

$$f(x^i) - \|w\|\|\epsilon\| \leq f(x^i + \epsilon) \leq f(x^i) + \|w\|\|\epsilon\|.$$

Checking the cases $\epsilon = \pm \frac{\|\epsilon\|}{\|w\|} w$, we see that these inequalities are sharp.

To ensure $g(x^i + \epsilon) = g(x^i)$ for all training samples, $f(x^i)$ and $f(x^i + \epsilon)$ have the same sign for all ϵ, i.e. $|f(x^i)| \geq \|w\|\|\epsilon\|$ for $i = 1, \ldots, n$.

This inequality holds for all samples, so in particular it holds for the one of minimal score. □
Maximum-Margin Classifier

Theorem

Let \mathcal{D} be a linearly separable training set. Then the most robust, correct classifier is given by $g(x) = \text{sign} \langle w^*, x \rangle + b^*$ where (w^*, b^*) are the solution to

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2$$

subject to

$$y^i(\langle w, x^i \rangle + b) \geq 1, \quad \text{for } i = 1, \ldots, n.$$

Remark

- The classifier defined above is call Maximum (Hard) Margin Classifier, or Hard-Margin Support Vector Machine (SVM).
- It is unique (follows from strictly convex optimization problem).
Proof.

1. All \((w, b)\) that fulfill the inequalities yield correct classifiers.

2. Since \(D\) is linearly separable, there exists some \((v, b)\) with

\[
\text{sign}(\langle v, x^i \rangle + b) = y_i, \quad \text{i.e.} \quad y_i(\langle v, x^i \rangle + b) \geq \gamma > 0.
\]

for \(\gamma = \min_i y_i(\langle v, x^i \rangle + b)\). So \(\tilde{v} = v/\gamma, \tilde{b} = b/\gamma\) fulfills the inequalities and we see that the constraint set is at least not empty.
Proof.

1. All \((w, b)\) that fulfill the inequalities yield correct classifiers.

2. Since \(\mathcal{D}\) is linearly separable, there exists some \((v, b)\) with

\[
\text{sign}(\langle v, x^i \rangle + b) = y_i, \quad \text{i.e.} \quad y_i(\langle v, x^i \rangle + b) \geq \gamma > 0.
\]

for \(\gamma = \min_i y_i(\langle v, x^i \rangle + b)\). So \(\tilde{v} = v/\gamma, \tilde{b} = b/\gamma\) fulfills the inequalities and we see that the constraint set is at least not empty.

3. Now we check (for all \(i = 1, \ldots, n\)):

\[
\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2 \quad \text{sb.t.} \quad y^i \langle w, x^i \rangle \geq 1
\]

\[
\Leftrightarrow \max_{w \in \mathbb{R}^d} \frac{1}{\|w\|} \quad \text{sb.t.} \quad y^i \langle w, x^i \rangle \geq 1
\]

\[
\Leftrightarrow \max \left\{ w' : \|w'\| = 1, \rho \in \mathbb{R} \right\} \rho \quad \text{sb.t.} \quad y^i \langle \frac{w'}{\rho}, x^i \rangle \geq 1
\]

\[
\Leftrightarrow \max \left\{ w' : \|w'\| = 1, \rho \in \mathbb{R} \right\} \rho \quad \text{sb.t.} \quad y^i \langle w', x^i \rangle \geq \rho
\]

\[
\Leftrightarrow \max \left\{ w' : \|w'\| = 1, \rho \in \mathbb{R} \right\} \rho \quad \text{sb.t.} \quad |\langle w', x^i \rangle| \geq \rho \text{ and } \text{sign} \langle w', x^i \rangle = y_i
\]
Proof.

1. All \((w, b)\) that fulfill the inequalities yield correct classifiers.

2. Since \(\mathcal{D}\) is linearly separable, there exists some \((v, b)\) with

\[
\text{sign}(\langle v, x^i \rangle + b) = y_i, \quad \text{i.e.} \quad y_i(\langle v, x^i \rangle + b) \geq \gamma > 0.
\]

for \(\gamma = \min_i y_i(\langle v, x^i \rangle + b)\). So \(\tilde{v} = v/\gamma\), \(\tilde{b} = b/\gamma\) fulfills the inequalities and we see that the constraint set is at least not empty.

3. Now we check (for all \(i = 1, \ldots, n\)):

\[
\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2 \quad \text{s.b.t.} \quad y^i \langle w, x^i \rangle \geq 1
\]

\[
\Leftrightarrow \max_{w \in \mathbb{R}^d} \frac{1}{\|w\|} \quad \text{s.b.t.} \quad y^i \langle w, x^i \rangle \geq 1
\]

\[
\Leftrightarrow \max \{w' : \|w'\| = 1\}, \rho \in \mathbb{R} \quad \rho \quad \text{s.b.t.} \quad y^i \langle \frac{w'}{\rho}, x^i \rangle \geq 1
\]

\[
\Leftrightarrow \max \{w' : \|w'\| = 1\}, \rho \in \mathbb{R} \quad \rho \quad \text{s.b.t.} \quad y^i \langle w', x^i \rangle \geq \rho
\]

\[
\Leftrightarrow \max \{w' : \|w'\| = 1\}, \rho \in \mathbb{R} \quad \rho \quad \text{s.b.t.} \quad |\langle w', x^i \rangle| \geq \rho \quad \text{and} \quad \text{sign} \langle w', x^i \rangle = y_i
\]

maximal robustness and correct
Non-Separable Training Sets

Observation (Not all training sets are linearly separable.)

\[\begin{align*}
\rho & \quad \text{margin} \\
\xi_i & \quad \text{margin violation}
\end{align*} \]

\[x_i \]
Definition (Maximum Soft-Margin Classifier)

Let \mathcal{D} be a training set, not necessarily linearly separable. Let $C > 0$. Then the classifier $g(x) = \text{sign}(\langle w^*, x \rangle)$ where (w^*, b^*) are the solution to

$$
\min_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n} \quad \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{n} \xi_i
$$

subject to

$$
y^i(\langle w, x^i \rangle + b) \geq 1 - \xi_i, \quad \text{for } i = 1, \ldots, n.
$$

$$
\xi_i \geq 0, \quad \text{for } i = 1, \ldots, n.
$$

is called Maximum (Soft-)Margin Classifier or Linear Support Vector Machine.
Theorem

The maximum soft-margin classifier exists and is unique for any $C > 0$.

Proof. optimization problem is strictly convex

Remark

The constant $C > 0$ is called regularization parameter.

It balances the wishes for robustness and for correctness

- $C \to 0$: mistakes don’t matter much, emphasis on short w
- $C \to \infty$: as few errors as possible, might not be robust

We’ll see more about this tomorrow.
Remark

Sometimes, a soft margin is better even for linearly separable datasets!

Left: small margin, no errors) Right: large margin, but 1 error
What, if a linear classifier is really not a good choice?
Nonlinear Classifiers

What, if a linear classifier is really not a good choice?

Change the data representation, e.g. Cartesian \rightarrow polar coordinates
Definition (Max-margin Generalized Linear Classifier)

Let $C > 0$. Assume a necessarily linearly separable training set

$$D = \{(x^1, y^1), \ldots, x^n, y^n\} \subset \mathcal{X} \times \mathcal{Y}.$$

Let $\phi : \mathcal{X} \rightarrow \mathcal{H}$ be a feature map from \mathcal{X} into a Hilbert space \mathcal{H}.

Then we can form a new training set

$$D^\phi = \{ (\phi(x^1), y^1), \ldots, (\phi(x^n), y^n) \} \subset \mathcal{H} \times \mathcal{Y}.$$

The maximum-(soft)-margin linear classifier in \mathcal{H},

$$g(x) = \text{sign} \langle w, \phi(x) \rangle_{\mathcal{H}} + b,$$

for $w \in \mathcal{H}$ and $b \in \mathbb{R}$ is called \textbf{max-margin generalized linear classifier}.

It is still \textit{linear} w.r.t w, but (in general) \textit{nonlinear} with respect to x.
Example (Polar coordinates)

Left: dataset \mathcal{D} for which no good linear classifier exists.
Right: dataset \mathcal{D}^ϕ for $\phi : \mathcal{X} \rightarrow \mathcal{H}$ with $\mathcal{X} = \mathbb{R}^2$ and $\mathcal{H} = \mathbb{R}^2$

$$
\phi(x, y) = \left(\sqrt{x^2 + y^2}, \arctan\frac{y}{x}\right) \quad \text{(and } \phi(0, 0) = (0, 0))
$$
Example (Polar coordinates)

Left: dataset \mathcal{D} for which no good linear classifier exists.
Right: dataset \mathcal{D}^ϕ for $\phi : \mathcal{X} \rightarrow \mathcal{H}$ with $\mathcal{X} = \mathbb{R}^2$ and $\mathcal{H} = \mathbb{R}^2$

$$\phi(x, y) = (\sqrt{x^2 + y^2}, \arctan \frac{y}{x}) \quad \text{(and } \phi(0,0) = (0,0))$$

Any classifier in \mathcal{H} induces a classifier in \mathcal{X}.
Other popular feature mappings, ϕ

Example (d-th degree polynomials)

$\phi : (x_1, \ldots, x_n) \mapsto (1, x_1, \ldots, x_n, x_1^2, \ldots, x_n^2, \ldots, x_1^d, \ldots, x_n^d)$

Resulting classifier: d-th degree polynomial in x. $g(x) = \text{sign} \ f(x)$ with

$$f(x) = \langle w, \phi(x) \rangle = \sum_j w_j \phi(x)_j = \sum_i a_i x_i + \sum_{ij} b_{ij} x_i x_j + \ldots$$

Example (Distance map)

For a set of prototype $p_1, \ldots, p_N \in \mathcal{H}$:

$\phi : \bar{x} \mapsto \left(e^{-\|\bar{x} - \bar{p}_i\|^2}, \ldots, e^{-\|\bar{x} - \bar{p}_N\|^2}\right)$

Classifier: combine weights from close enough prototypes

$$g(x) = \text{sign} \langle w, \phi(x) \rangle = \text{sign} \sum_{i=1}^n a_i e^{-\|\bar{x} - \bar{p}_i\|^2}.$$
Finding the Maximum Margin Classifier numerically – Optimization II

\[
\begin{align*}
\min_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} & \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi^i \\
\text{subject to} & \quad y^i \langle w, \phi(x^i) \rangle \geq 1 - \xi^i, \quad \text{for } i = 1, \ldots, n, \\
& \quad \xi^i \geq 0. \quad \text{for } i = 1, \ldots, n.
\end{align*}
\]

How to solve numerically?

- off-the-shelf Quadratic Program (QP) solver
 only for small dimensions and training sets (a few hundred),
- variants of gradient descent,
 high dimensional data, large training sets (millions)
- by convex duality,
 for very high dimensional data and not so many examples \((d \gg n)\)