Second Homework Assignment

Write the solution to each question on a single page. The deadline for handing in solutions is Friday, October 18, 2013.

Question 1. (20 = 10 + 10 points). Let X be a discrete set of points in \mathbb{R}^d, and $r > 0$. Fixing a non-negative integer, k, we define $R_k(X; r)$ as the set of simplices $\sigma \in 2^X$ such that

1. $\sigma \in \check{C}(X; r)$, if $p \leq k$,
2. all $(p-1)$-faces of σ belong to $R_k(X; r)$, if $p > k$,

where we write p for the dimension of σ. Note that $R_1(X; r)$ is the Vietoris-Rips complex as defined in Section 3.

(a) Is it true that $R_k(X; r) \subseteq R_\ell(X; r)$ whenever $k \geq \ell$?

(b) Is it true that $R_k(X; r) = \check{C}(X; r)$ whenever $k \geq d$?

Question 2. (20 = 10 + 10 points). Let σ be an n-simplex.

(a) For $0 \leq k \leq n$, what is the number of k-faces of σ?

(b) Let $k \leq \ell$ be two non-negative integers both smaller than or equal to n, let υ be an ℓ-face of σ, and let τ be a k-face of υ. How many faces ϕ of σ are faces of υ and have τ as a face?

Question 3. (20 = 10 + 10 points). Let X be a finite set of points in \mathbb{R}^d. Recall that a minimum spanning tree of X is a tree whose vertices are the points in X such that the total length of the edges is a minimum.

(a) Listing the edges in a spanning tree in the order of non-decreasing length, we can define a partial order on the trees by comparing their lists lexicographically. Is it true that a minimum spanning tree is also minimal in this partial order?

(b) Let R be the length of the longest edge in a minimum spanning tree of X. Is it true that $G(X; r)$ is connected iff $R \leq r$?