1. Parity Objectives

1.1. Definition. Consider a graph \((S, E)\). Let \(d\) be a non-negative integer and let \(p : S \rightarrow \{0, 1, \ldots, d\}\) be a function which we call the priority function. The corresponding parity objective \(\text{Parity}(p)\) is defined to be the set of (infinite) paths in which the minimal priority of infinitely often visited nodes is even. In a more symbolic notation, this reads

\[
\text{Parity}(p) = \{\pi \in \Pi : \min_{s \in \text{Inf}(\pi)} p(s) \text{ is even}\}
\]

where \(\Pi\) denotes the set of all infinite paths in \((S, E)\) and \(\text{Inf}(\pi)\) is the set of nodes visited infinitely often in path \(\pi\). If \(G = ((S, E), (S_1, S_2))\) is a game graph and \(p : S \rightarrow \{0, 1, \ldots, d\}\) is a priority function, then we call the pair \((G, p)\) a parity game.

1.2. Parity Objectives Generalize Büchi and co-Büchi. It turns out that Büchi and co-Büchi objectives are in fact parity objectives: Given a Büchi set \(B \subseteq S\), the priority function \(p : S \rightarrow \{0, 1\}\)

\[
p(s) = \begin{cases}
0 & \text{if } s \in B \\
1 & \text{if } s \not\in B
\end{cases}
\]

yields \(\text{Parity}(p) = \Diamond \square \neg B\). Likewise, priority function \(p' : S \rightarrow \{0, 1, 2\}\),

\[
p'(s) = \begin{cases}
1 & \text{if } s \in B \\
2 & \text{if } s \not\in B
\end{cases}
\]

gives rise to \(\text{Parity}(p') = \Diamond \square \neg B\), which covers co-Büchi objectives.

The passage from \(p\) to \(p'\) is part of a more general principle: Given a priority function \(p\), we can calculate a \(p'\) such that \(\text{Parity}(p')\) is the complement of \(\text{Parity}(p)\); we achieve this by setting \(p'(s) = p(s) + 1\). The property that the complement of a parity objective is again a parity objective is called self-duality.

1.3. \(\omega\)-Regular Languages, Büchi Automata, and Parity Automata. Recall that a regular language is a set of finite words over the alphabet \(\Sigma\) that can be described by one of the following means which are mutually equivalent.

- a non-deterministic finite automaton (NFA)
- a deterministic finite automaton (DFA)

\(^1\)The proof of this statement is Lemma 2 in Appendix A.
\(^2\)cf. Lemma 3
a regular expression using the operations union \((r_1 \cup r_2)\), concatenation \((r_1r_2)\), and Kleene star \((r^*)\)

A **finite automaton** is a tuple \(A_F = (Q, \Sigma, \Delta, q_0, F)\) where \(Q\) is a set of states, \(\Sigma\) is an alphabet, \(\Delta \subseteq Q \times \Sigma \times Q\) is a transition relation, \(q_0 \in Q\) is a starting state, and \(F \subseteq Q\) is a set of accepting states. The language **accepted by** \(A\) is defined by

\[
L(A_F) = \{w \in \Sigma^* : \text{there exists a run of } A \text{ on word } w \text{ that ends in } F\}.
\]

We introduce two more types of automata—Büchi automata and parity automata, which can be used to describe \(\omega\)-regular languages. An \(\omega\)-regular language \(L\) over an alphabet \(\Sigma\) is a set of infinite words on \(\Sigma\), i.e., \(L \subseteq \Sigma^\omega\), that can be described in one of the following mutually equivalent ways (Theorem 1).

- a non-deterministic Büchi automaton (NBA)
- a non-deterministic parity automaton (NPA)
- a deterministic\(^3\) parity automaton (DPA)
- an \(\omega\)-regular expression using the operations union, concatenation, Kleene star, and omega iteration \((r^\omega)\)
- a linear-time logic (LTL) formula

A **Büchi automaton** is a tuple \(A_B = (Q, \Sigma, \Delta, q_0, F)\) like in the definition of finite automata. The difference to finite automata is the way in which its **accepted language** is defined, namely by

\[
L(A_B) = \{w \in \Sigma^\omega : \text{some run of } A \text{ on word } w \text{ visits } F \text{ infinitely often}\}.
\]

The expressive power of deterministic Büchi automata (DBA) is strictly weaker than that of NBA (Lemma 1).

A **parity automaton** is a tuple \(A_P = (Q, \Sigma, \Delta, q_0, p)\) where \(Q\), \(\Sigma\), \(\Delta\), \(q_0\) are like in the definition of finite automata, and \(p : Q \rightarrow \{0, 1, \ldots, d\}\) is a priority function. The **accepted language** of \(A\) is defined as

\[
L(A_P) = \left\{ w \in \Sigma^\omega : \text{there exists run } R \text{ of } A \text{ on } w \text{ s.t. } \min_{s \in \text{Inf}(R)} p(s) \text{ is even} \right\}.
\]

Theorem 1. The following statements are true:

1. For every NBA \(A_B\) there exists an NPA \(A_P\) such that \(L(A_B) = L(A_P)\).
2. For every NPA \(A_P\) there exists an \(\omega\)-regular expression \(r\) with the property that \(L(A_P) = L(r)\).
3. For every \(\omega\)-regular expression \(r\) there exists an LTL formula \(\varphi\) such that \(L(r) = L(\varphi)\).
4. For every LTL formula \(\varphi\) there exists an NBA \(A_B\) such that \(L(\varphi) = L(A_B)\).

We illustrate Theorem 1 with the help of two examples.

Example 1. Consider the alphabet \(\Sigma = \{a, b\}\) and the language \(L_1\) that includes all words in \(\Sigma^\omega\) that contain infinitely many \(a\)’s. It can be described by the \(\omega\)-regular expression \(r = (b^*a)^\omega\). Equivalently, \(L_1\) is expressible as the accepted language of the following NBA:

\[^3\text{The equivalence of NPA and DPA is non-trivial. Its proof can be found in Chapters 1 and 3 of Erich Grädel, Wolfgang Thomas, and Thomas Wilke (eds.), Automata Logics, and Infinite Games: A Guide to Current Research, Lecture Notes in Computer Science 2500, Springer, 2002.}\]
Example 2. Consider the alphabet of Example 1 and the language $L_2 = \Sigma^\omega \setminus L_1$ that is the complement of L_1. This language includes all words in Σ^ω that are eventually constantly equal to b. It can be described by the ω-regular expression $r = (a \cup b)^* b^\omega$. Equivalently, L_2 is expressible as the accepted language of the following NBA:

Lemma 1. There exists an ω-regular language that is not expressible by a DBA.

Proof. Consider language L_2 of Example 2. We claim that no DBA accepts L_2. Let n be the number of A’s states.

Step 1. We can assume without loss of generality that all states $q \in Q$ are reachable from q_0, i.e., for every $q \in Q$ there exists a finite word $w_q \in \Sigma^*$ such that the application of w_q to A ends in state q. We could otherwise remove the non-reachable states and arrive at a DBA that accepts the same language as A and possesses the above property.

Step 2. For every $q \in Q$, the run of A on the infinite word $w_q b^\omega$ contains a cycle that is traversed infinitely often and that contains a state in F. Otherwise A would not accept language L_2, which contains $w_q b^\omega$. Of course, this cycle is completely traversed after n steps starting from q.

Step 3. For every $j \geq n$, the infinite word $w = (b^j a)^\omega \notin L_2$ is accepted by A. For every positive integer m, set $w_m = (b^j a)^m$. It is $w = \lim_{m \to \infty} w_m$. By Step 2, the run on $w_m b^j a$ contains at least one state in F. Hence the run on $w = (b^j a)$ contains some state in F infinitely often, which causes A to accept w; a contradiction to the fact that A describes language L_2 because $w \notin L_2$. \hfill \Box

1.4. Single-Player Parity Games are PTIME. For single-player game graphs $G = (S, E)$ and parity objectives $\text{Parity}(p)$ on G, the task of calculating the winning set (i.e., the set of states starting from which a winning strategy for $\text{Parity}(p)$ exists) is solvable in polynomial time. To show this, we present a polynomial-time algorithm (Algorithm 1 on page 4).

Algorithm 1 is in PTIME, more specifically, its running time is in $O(d \cdot |E|)$, because computing maximal strongly connected components can be done in $O(|E|)$.

Algorithm 1 is correct: For a state s to be in the winning set, it is necessary and sufficient that either (a) s is contained in a cycle whose minimal priority is even or (b) s can reach a state that satisfies (a). This equivalence is a consequence of memoryless determinacy (Theorem 2). Code lines 3–8 identify exactly those states that are contained in a cycle whose minimal priority is equal to $2k$. Hence lines 1–10 determine all nodes that satisfy (a). Line 11 adds those nodes satisfying (b).

4That is, all states are player 1 states.
2. The Memoryless Determinacy Theorem for Parity Objectives

Theorem 2. For all game graphs G and all parity objectives $\text{Parity}(p)$ holds:

1. Determinacy: $\langle\langle 1 \rangle\rangle(\text{Parity}(p)) = \Pi \setminus \langle\langle 2 \rangle\rangle(\neg \text{Parity}(p))$
2. Existence of memoryless strategies:

\[
\langle\langle 1 \rangle\rangle(\text{Parity}(p)) = \{ s \in S : \exists \sigma_1 \in \Sigma_1^M \forall \sigma_2 \in \Sigma_2 : \pi(s, \sigma_1, \sigma_2) \in \text{Parity}(p) \} \\
\langle\langle 2 \rangle\rangle(\neg \text{Parity}(p)) = \{ s \in S : \exists \sigma_2 \in \Sigma_2^M \forall \sigma_1 \in \Sigma_1 : \pi(s, \sigma_1, \sigma_2) \in \neg \text{Parity}(p) \}
\]

Proof sketch. We prove both (1) and (2) by induction on d. The case $d = 0$ is trivial, for then $\langle\langle 1 \rangle\rangle(\text{Parity}(p)) = S$ with any strategy.

For the induction step, we assume without loss of generality that at least one state has priority 0 or 1. There are two cases: (a) some state has priority 0 and (b) no state has priority 0. We show how to handle case (a). For the following exposition, it might be helpful to refer to Figure 1 on page 5.

Let $W_2 = \langle\langle 2 \rangle\rangle(\neg \text{Parity}(p))$ (not necessarily with memoryless strategies) and $W_1 = S \setminus W_2$. Denote by Z the set of states in W_1 with priority 0 and define $A = \langle\langle 1 \rangle\rangle(\diamondsuit Z)$. It is $A \subseteq W_1$, because if player 1 can force to reach Z (hence W_1) from state s, then player 2 does not have a winning strategy starting from s. Moreover, set $B = W_1 \setminus A$. The subgraph induced by B is a game graph (i.e., every state has a successor in B) because otherwise, there exists a state $s \in B$ such that $E(s) \cap B = \emptyset$; but this is not possible:

- If $s \in B$ is a player 1 state, clearly, $E(s) \cap W_1 \neq \emptyset$. But also $E(s) \cap A = \emptyset$, which implies $E(s) \cap B = E(s) \cap A^c \cap W_1 = E(s) \cap W_1 \neq \emptyset$.
- If $s \in B$ is a player 2 state, then $E(s) \subseteq W_1$ and $E(s) \not\subseteq A$, which implies $E(s) \cap B = E(s) \cap W_1 \cap A_c = E(s) \cap A^c \neq \emptyset$.

By induction hypothesis (note that B does not contain priority 0), B can be partitioned into (B_1, B_2) such that player 1 has memoryless winning strategies in B’s subgame for states in B_1 and player 2 has memoryless winning strategies (in B’s subgame) for states in B_2. In fact, $B_2 = \emptyset$ since otherwise player 2 would have a winning strategy in the original game for states in B_2.

5Here, $A^c = S \setminus A$ denotes the complement of A.

Algorithm 1 PTIME algorithm for calculating the winning set of $\text{Parity}(p)$

1. $W \leftarrow \emptyset$
2. for $k = 0$ to $\lfloor d/2 \rfloor$ do
3. Compute maximal strongly connected components C_j of G.
4. for all components C_j do
5. if C_j contains a state with priority $2k$ then
6. $W \leftarrow W \cup C_j$
7. end if
8. end for
9. Remove all states with priority $\leq 2k + 1$ from G.
10. end for
11. $W \leftarrow$ attractor set of W
We show that player 1 has a memoryless winning strategy on W_1. Denote by σ_A player 1’s memoryless winning strategy6 for reaching Z starting from A. Let σ_B player 1’s memoryless winning strategy for satisfying $\text{Parity}(p)$ starting from B. Finally, choose $\sigma^*_1 \in \Sigma^M_1$ equal to σ_A on A and equal to σ_B on B. We claim that σ^*_1 is winning for player 1 on W_1.

Let $\sigma_2 \in \Sigma_2$ be any player 2 strategy and let $s \in W_1$. The claim is that $\pi = \pi(s, \sigma^*_1, \sigma_2) \in \text{Parity}(p)$. We distinguish two cases:

(A) π visits A infinitely often. Then, because σ^*_1 is equal to σ_A on A, π visits Z infinitely often; hence $\min_{s \in \text{Inf}(\pi)} p(s) = 0$.

(B) π visits A only finitely often. Then, from some time on, player 2 chooses not to enter A anymore. Hence after ignoring a finite prefix, play π is in fact a play of the subgame induced by B, in which case σ_B is a winning strategy for player 1.

\[\square \]

3. Time Complexity

3.1. Problem Definition. We consider the decision problem for parity objectives:

Input: game graph $G = ((S, E), (S_1, S_2))$, priority function p, state $s \in S$

Output: “Yes” if and only if $s \in \langle 1 \rangle \langle \text{Parity}(p) \rangle$

3.2. Parity Decision is in $\text{NP} \cap \text{coNP}$. In this section, we show that the decision problem for parity objectives is in both NP and coNP. It is not known whether it is solvable in polynomial time or not. Because of self-duality of parity objectives, it suffices to show the problem’s inclusion in NP. To show inclusion in NP, we need two things:

- a representation of a “Yes”-witness that takes polynomial memory space (i.e., it takes polynomial time to write it onto the string)

6It is a general fact that there exists a single strategy $\sigma_1 \in \Sigma_1$ that wins against all player 2 strategies for plays starting from player 1’s winning set. When restricting the choice of σ_1 to memoryless strategies in Σ^M_1 and when considering reachability games, this also holds. We show that it holds when considering parity games.
a polynomial-time procedure to check the witness.

We choose the witness to be a memoryless winning strategy for player 1, i.e., a function \(\sigma_1 : S_1 \to E \).

The procedure to check \(\sigma_1 \) works as follows: First, modify the game graph \(G \) to graph \(G' \) by fixing the choices of \(\sigma_1 \); that is, for every \(s \in S_1 \), remove all edges in \(E(s) \) except for \(\sigma_1(s) \). After that, define all states in \(G' \) to belong to the same player and apply Algorithm 1 from Section 1.4. Strategy \(\sigma_1 \) is a correct witness if and only if \(s \) is not contained in the winning set output by Algorithm 1.

3.3. Classical \textsc{EXPTIME} Algorithm

We give an exponential-time algorithm (Algorithm 2) for calculating the winning set \(W_1 = \ll 1 \rr \langle \text{Parity}(p) \rangle \), hence for solving the decision problem, of arbitrary parity games. The intuition is to mimic the proof of memoryless determinacy. Refer to Figure 2 for a pictorial representation of a loop iteration in the algorithm.

Algorithm 2 Classical Parity Algorithm

1: \(W'_2 \leftarrow \emptyset \)
2: repeat
3: \(W_2 \leftarrow W'_2 \)
4: \(Z \leftarrow \{ s \in S : p(s) = 0 \} \)
5: \(B \leftarrow S \setminus \ll 1 \rr \langle \Diamond Z \rangle \)
6: Recursively calculate \(W^B_2 \), player 2’s winning set in the subgame induced by the subset \(B \).
7: \(W'_2 \leftarrow W_2 \cup \ll 2 \rr \langle \Diamond W^B_2 \rangle \)
8: Remove \(W'_2 \) from the game graph \((S, E) \).
9: until \(W_2 = W'_2 \)
10: \(W_1 \leftarrow \) the complement of \(W_2 \) in the original game graph.

Algorithm 2 is correct: Variable \(W_2 \) increases and is a subset of \(\ll 2 \rr \langle \neg \text{Parity}(p) \rangle \) at any time, because \(W^B_2 \subseteq \ll 2 \rr \langle \neg \text{Parity}(p) \rangle \) in any iteration. Also, variable \(W_1 \) satisfies \(W_1 \subseteq \ll 1 \rr \langle \text{Parity}(p) \rangle \) at the end of the algorithm, because player 1 wins in this subgame and removing the sets \(\ll 2 \rr \langle \Diamond W^B_2 \rangle \) from the game graph does not limit player 2’s choices.

![Figure 2. A single iteration in Algorithm 2](image)

Let’s analyze the running time of Algorithm 2. Denote by \(T(n, m, d) \) the worst-case time complexity of the algorithm when run on a game graph with \(n \) states,
m edges, and priorities 0 through d. It is $T(n, m, 0) = O(1)$ and $T(n, m, d) \leq n \cdot (O(m) + T(n, m, d - 1))$, because the loop is iterates at most n times and each iteration takes $O(m) + T(n, m, d - 1)$ time. We deduce $T(n, m, d) = O(n^{d-1} \cdot m)$ by induction.

Appendix A. Proofs Left Out in the Main Text

Lemma 2. For $B \subseteq S$ and priority function p defined in equation (2) it holds that $\text{Parity}(p) = \Box B$.

Proof. Let $\pi \in \text{Parity}(p)$. It follows from the definition that $\text{Inf}(\pi)$ contains at least one state s with even $p(s)$, hence $p(s) = 0$. But this means that $s \in B \cap \text{Inf}(\pi)$; therefore this intersection is not empty and we have shown $\text{Parity}(p) \subseteq \Box B$.

Let now $\pi \in \Box B$. By definition, $B \cap \text{Inf}(\pi) \neq \emptyset$. Hence there exists a state s that is contained in $\text{Inf}(\pi)$ and also contained in B, which means $p(s) = 0$. But then $\min_{s \in \text{Inf}(\pi)} p(s) = 0$ is an even number. \Box

Lemma 3. Let $G = (S, E)$ be a graph and $p : S \to \{0, 1, \ldots, d\}$ be a priority function. Then p' defined as $p'(s) = p(s) + 1$ satisfies $\text{Parity}(p') = \Pi \setminus \text{Parity}(p)$.

Proof. The set $\Pi \setminus \text{Parity}(p)$ contains exactly those paths π for which $\min_{s \in \text{Inf}(\pi)} p(s)$ is odd. But this is equivalent to $\min_{s \in \text{Inf}(\pi)} p(s) + 1$ being even. \Box

E-mail address: tnowak@ecs.tuwien.ac.at