Machine Learning and Computer Vision Group

Deep Learning with TensorFlow

 http://cvml.ist.ac.at/courses/DLWT_W18Lecture 10: Deep Q-Learning

Q-Learning - Deep Learning with TensorFlow (DLWT) '18

Mathias Lechner

IST Austria

mathias.lechner@ist.ac.at
January 20, 2019

Overview

(1) Reinforcement Learning

- Definitions
- Different approaches
(2) Q-Learning
- With tables
- Deep-Q-Networks (DQN)
(3) Advanced methods

Types of Machine Learning

Supervised Learning:
Given: Labeled samples $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{n}, y_{n}\right)$
Task: Find $f: x \mapsto \hat{y}$, that has minimal loss $L(y, \hat{y})$

Types of Machine Learning

Supervised Learning:
Given: Labeled samples $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{n}, y_{n}\right)$
Task: Find $f: x \mapsto \hat{y}$, that has minimal loss $L(y, \hat{y})$

Reinforcement Learning:
Given: Interactive environment
Task: Find interacting policy, that maximizes reward

Types of Machine Learning

Supervised Learning:
Given: Labeled samples $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{n}, y_{n}\right)$
Task: Find $f: x \mapsto \hat{y}$, that has minimal loss $L(y, \hat{y})$

Reinforcement Learning:
Given: Interactive environment
Task: Find interacting policy, that maximizes reward

> What's an "Interactive environment"?

Markov-Decision-Process (MDP)

- $M D P=(S, A, P, R)$
- Set of states S
- Set of actions A
- Initial state distribution $P_{0}=\mathbb{P}\left[s_{0}\right]$
- Transition probability $P\left(s, a, s^{\prime}\right)=\mathbb{P}\left[s^{\prime} \mid s, a\right]$
- Reward function $R: S \rightarrow \mathbb{R}$

Markov-Decision-Process (MDP)

- $M D P=(S, A, P, R)$
- Set of states S
- Set of actions A
- Initial state distribution $P_{0}=\mathbb{P}\left[s_{0}\right]$
- Transition probability $P\left(s, a, s^{\prime}\right)=\mathbb{P}\left[s^{\prime} \mid s, a\right]$
- Reward function $R: S \rightarrow \mathbb{R}$
- Policy π : $S \rightarrow A$

Markov-Decision-Process (MDP)

- $M D P=(S, A, P, R)$
- Set of states S
- Set of actions A
- Initial state distribution $P_{0}=\mathbb{P}\left[s_{0}\right]$
- Transition probability $P\left(s, a, s^{\prime}\right)=\mathbb{P}\left[s^{\prime} \mid s, a\right]$
- Reward function $R: S \rightarrow \mathbb{R}$
- Policy π : $S \rightarrow A$

```
state = env.reset()
for _ in range(1000):
    action = policy(state)
    state, reward, done, info
    = env.step(action)
```


Markov-Decision-Process (MDP)

- $M D P=(S, A, P, R)$
- Set of states S
- Set of actions A
- Initial state distribution $P_{0}=\mathbb{P}\left[s_{0}\right]$
- Transition probability $P\left(s, a, s^{\prime}\right)=\mathbb{P}\left[s^{\prime} \mid s, a\right]$
- Reward function $R: S \rightarrow \mathbb{R}$
- Policy π : $S \rightarrow A$

Markov-Decision-Process (MDP)

- $M D P=(S, A, P, R)$
- Set of states S
- Set of actions A
- Initial state distribution $P_{0}=\mathbb{P}\left[s_{0}\right]$
- Transition probability $P\left(s, a, s^{\prime}\right)=\mathbb{P}\left[s^{\prime} \mid s, a\right]$
- Reward function $R: S \rightarrow \mathbb{R}$
- Policy $\pi: S \rightarrow A$

$$
s_{0} \xrightarrow{a_{0}}
$$

Markov-Decision-Process (MDP)

- $M D P=(S, A, P, R)$
- Set of states S
- Set of actions A
- Initial state distribution $P_{0}=\mathbb{P}\left[s_{0}\right]$
- Transition probability $P\left(s, a, s^{\prime}\right)=\mathbb{P}\left[s^{\prime} \mid s, a\right]$
- Reward function $R: S \rightarrow \mathbb{R}$
- Policy π : $S \rightarrow A$

$$
\begin{aligned}
& s_{0} \xrightarrow{a_{0}} r_{0}, s_{1} \\
& r_{0}=0
\end{aligned}
$$

x		
	o	

Markov-Decision-Process (MDP)

- $M D P=(S, A, P, R)$
- Set of states S
- Set of actions A
- Initial state distribution $P_{0}=\mathbb{P}\left[s_{0}\right]$
- Transition probability $P\left(s, a, s^{\prime}\right)=\mathbb{P}\left[s^{\prime} \mid s, a\right]$
- Reward function $R: S \rightarrow \mathbb{R}$
- Policy $\pi: S \rightarrow A$

$$
\begin{aligned}
& s_{0} \xrightarrow{a_{0}} r_{0}, s_{1} \xrightarrow{a_{l}} \\
& r_{0}=0
\end{aligned}
$$

X		X
	0	

Markov-Decision-Process (MDP)

- $M D P=(S, A, P, R)$
- Set of states S
- Set of actions A
- Initial state distribution $P_{0}=\mathbb{P}\left[s_{0}\right]$
- Transition probability $P\left(s, a, s^{\prime}\right)=\mathbb{P}\left[s^{\prime} \mid s, a\right]$
- Reward function $R: S \rightarrow \mathbb{R}$
- Policy $\pi: S \rightarrow A$

$$
\begin{array}{r}
s_{0} \xrightarrow{a_{0}} r_{0}, s_{1} \stackrel{a_{1}}{\rightarrow} r_{1}, s_{2} \\
r_{0}=0 \\
r_{1}=0
\end{array}
$$

x	o	x
	o	

Markov-Decision-Process (MDP)

- $M D P=(S, A, P, R)$
- Set of states S
- Set of actions A
- Initial state distribution $P_{0}=\mathbb{P}\left[s_{0}\right]$
- Transition probability $P\left(s, a, s^{\prime}\right)=\mathbb{P}\left[s^{\prime} \mid s, a\right]$
- Reward function $R: S \rightarrow \mathbb{R}$
- Policy $\pi: S \rightarrow A$

$$
\begin{gathered}
s_{0} \xrightarrow{a_{0}} r_{0}, s_{1} \xrightarrow{a_{1}} r_{1}, s_{2} \xrightarrow{a_{2}} \\
r_{0}=0 \\
r_{1}=0
\end{gathered}
$$

		x
x	0	x
	0	

Markov-Decision-Process (MDP)

- $M D P=(S, A, P, R)$
- Set of states S
- Set of actions A
- Initial state distribution $P_{0}=\mathbb{P}\left[s_{0}\right]$
- Transition probability $P\left(s, a, s^{\prime}\right)=\mathbb{P}\left[s^{\prime} \mid s, a\right]$
- Reward function $R: S \rightarrow \mathbb{R}$
- Policy $\pi: S \rightarrow A$

$$
\begin{gathered}
s_{0} \xrightarrow{a_{0}} r_{0}, s_{1} \xrightarrow{a_{1}} r_{1}, s_{2} \xrightarrow{a_{2}} r_{2}, s_{3} \\
r_{0}=0 \\
r_{1}=0 \\
r_{2}=-1
\end{gathered}
$$

```
```

state = env.reset()

```
```

state = env.reset()
for _ in range(1000):
for _ in range(1000):
action = policy(state)
action = policy(state)
state, reward, done, info \
state, reward, done, info \
= env.step(action)

```
```

 = env.step(action)
    ```
```


Objective

- Let's say we are in an arbitrary state s_{t}
- The optimal action would maximize sum of future rewards $r_{t}, r_{t+1}, \ldots r_{t+n}$

Objective

- Let's say we are in an arbitrary state s_{t}
- The optimal action would maximize sum of future rewards $r_{t}, r_{t+1}, \ldots r_{t+n}$
- But $n \rightarrow \infty$
- and r_{i} are random variables
- that depend on future actions

Objective

- Let's say we are in an arbitrary state s_{t}
- The optimal action would maximize sum of future rewards $r_{t}, r_{t+1}, \ldots r_{t+n}$
- But $n \rightarrow \infty$
- and r_{i} are random variables
- that depend on future actions

Optimal policy:

$$
\underset{\pi}{\operatorname{maximize}} \mathbb{E}[\underbrace{\sum_{i=t}^{t+n} r_{i} \gamma^{(i-t)}}_{R_{t}} \mid \pi]
$$

Different approaches to RL

Different approaches to RL

State-Action function

We define

$$
Q^{*}(s, a)=\max _{\pi} \mathbb{E}\left[R_{t} \mid s_{t}=s, a_{t}=a, \pi\right]
$$

State-Action function

We define

$$
Q^{*}(s, a)=\max _{\pi} \mathbb{E}\left[R_{t} \mid s_{t}=s, a_{t}=a, \pi\right]
$$

$Q^{*}(s, a)=$ What's the expected discounted return if we execute action a in state s and then follow the optimal policy

State-Action function

We define

$$
Q^{*}(s, a)=\max _{\pi} \mathbb{E}\left[R_{t} \mid s_{t}=s, a_{t}=a, \pi\right]
$$

$Q^{*}(s, a)=$ What's the expected discounted return if we execute action a in state s and then follow the optimal policy

By this definition $\max _{a} Q^{*}(s, a)$ is the optimal policy

State-Action function

We define

$$
Q^{*}(s, a)=\max _{\pi} \mathbb{E}\left[R_{t} \mid s_{t}=s, a_{t}=a, \pi\right]
$$

$Q^{*}(s, a)=$ What's the expected discounted return if we execute action a in state s and then follow the optimal policy

By this definition $\max _{a} Q^{*}(s, a)$ is the optimal policy

$$
Q^{*}(s, a)=\mathbb{E}_{s^{\prime}}\left[r+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)\right]
$$

State-Action function

We define

$$
Q^{*}(s, a)=\max _{\pi} \mathbb{E}\left[R_{t} \mid s_{t}=s, a_{t}=a, \pi\right]
$$

$Q^{*}(s, a)=$ What's the expected discounted return if we execute action a in state s and then follow the optimal policy

By this definition $\max _{a} Q^{*}(s, a)$ is the optimal policy

$$
Q^{*}(s, a)=\mathbb{E}_{s^{\prime}}\left[r+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)\right]
$$

This identity is know as Bellman equation

Q-Learning

Idea: Learn State-Action function by performing iterative Bellman updates

Q-Learning

Idea: Learn State-Action function by performing iterative Bellman updates

$$
Q_{i+1}(s, a):=\mathbb{E}_{s^{\prime}}\left[r+\gamma \max _{a^{\prime}} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right]
$$

Q-Learning

Idea: Learn State-Action function by performing iterative Bellman updates

$$
Q_{i+1}(s, a):=\mathbb{E}_{s^{\prime}}\left[r+\gamma \max _{a^{\prime}} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right]
$$

This is known as value iteration algorithm and has been shown to converge to Q^{*} for $i \rightarrow \infty$

Q-Learning sampling

Learn State-Action function from samples $\left(s, a, r, s^{\prime}\right)$:

$$
Q^{*}(s, a) \approx r+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)
$$

Q-Learning sampling

Learn State-Action function from samples $\left(s, a, r, s^{\prime}\right)$:

$$
Q^{*}(s, a) \approx r+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)
$$

with

$$
\pi(s)=\underset{a}{\operatorname{argmax}} Q(s, a)
$$

Q-Learning sampling

Learn State-Action function from samples $\left(s, a, r, s^{\prime}\right)$:

$$
Q^{*}(s, a) \approx r+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)
$$

with

$$
\pi(s)=\underset{a}{\operatorname{argmax}} Q(s, a)
$$

or ε-greedy:

$$
\pi(s)= \begin{cases}\underset{a}{\operatorname{argmax}} Q(s, a) & \text { with probability } 1-\varepsilon \\ a \sim U(A) & \text { with probability } \varepsilon\end{cases}
$$

Q-Learning with tables

\[

\]

Q-Learning with tables

$$
\begin{aligned}
& \text { Q-Table } \\
& \begin{array}{|c|c|c|}
s & a & Q(s, a) \\
\hline \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots
\end{array}
\end{aligned}
$$

Questions?
(you need to implement such a table as part of the homework)

Beyond tables

- Using a table to store the Q function is inefficient
- Sparse entries
- No generalization

Beyond tables

- Using a table to store the Q function is inefficient
- Sparse entries
- No generalization
- Idea: Let's use a "deep" neural net $Q_{\theta}(s, a)$ to approximate $Q^{*}(s, a)$

Beyond tables

- Using a table to store the Q function is inefficient
- Sparse entries
- No generalization
- Idea: Let's use a "deep" neural net $Q_{\theta}(s, a)$ to approximate $Q^{*}(s, a)$

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529

Training procedure of a Deep Q-Network (DQN)

Training procedure of a Deep Q-Network (DQN)

Target value: For every sample (s, a, r, s^{\prime}) compute

$$
\hat{q}:=r+\gamma \max _{a^{\prime}} Q_{\theta}\left(s^{\prime}, a^{\prime}\right)
$$

Training procedure of a Deep Q-Network (DQN)

Target value: For every sample (s, a, r, s^{\prime}) compute

$$
\hat{q}:=r+\gamma \max _{a^{\prime}} Q_{\theta}\left(s^{\prime}, a^{\prime}\right)
$$

With squared error loss:

$$
L\left(Q_{\theta}, \hat{q}\right):=\left(Q_{\theta}(s, a)-\hat{q}\right)^{2}
$$

and gradient descent:

$$
\theta_{i+1}:=\theta_{i}-\alpha \frac{d L}{d \theta}
$$

How to encode Q-Network?

$$
Q_{\theta}: S \times A \rightarrow \mathbb{R}
$$

How to encode Q-Network?

$$
Q_{\theta}: S \times A \rightarrow \mathbb{R}
$$

DQN: First attempt:

```
s_input = tf.placeholder(tf.float32,shape=[state_dim])
a_input = tf.placeholder(tf.float32,shape=[action_dim])
x = tf.concat([s_input,a_input],axis=0)
h1 = tf.layers.dense(x,units=100,activation=tf.nn.tanh)
q_prediction = tf.layers.dense(h1,units=1)
```


How to encode Q-Network?

$$
Q_{\theta}: S \times A \rightarrow \mathbb{R}
$$

DQN: First attempt:

```
s_input = tf.placeholder(tf.float32,shape=[state_dim])
a_input = tf.placeholder(tf.float32,shape=[action_dim])
x = tf.concat([s_input,a_input],axis=0)
h1 = tf.layers.dense(x,units=100,activation=tf.nn.tanh)
q_prediction = tf.layers.dense(h1,units=1)
```


Question: Why is that a bad idea?

How to encode Q-Network?

$$
Q_{\theta}: S \times A \rightarrow \mathbb{R}
$$

DQN: First attempt:

```
s_input = tf.placeholder(tf.float32,shape=[state_dim])
a_input = tf.placeholder(tf.float32,shape=[action_dim])
x = tf.concat([s_input,a_input],axis=0)
h1 = tf.layers.dense(x,units=100,activation=tf.nn.tanh)
q_prediction = tf.layers.dense(h1,units=1)
```

Question: Why is that a bad idea?
$\max _{a^{\prime}} Q_{\theta}\left(s^{\prime}, a^{\prime}\right)$ requires $|A|$ evaluations of the network

How to encode a Q-Network?

$$
Q_{\theta}: S \rightarrow \mathbb{R}^{|A|}
$$

How to encode a Q-Network?

$$
Q_{\theta}: S \rightarrow \mathbb{R}^{|A|}
$$

DQN:
 Second attempt:

```
s_input = tf.placeholder(tf.float32,shape=[state_dim])
h1 = tf.layers.dense(s_input,units=100,activation=tf.nn.tanh)
q_prediction = tf.layers.dense(h1,units=num_of_possible_actions)
```


How to encode a Q-Network?

$$
Q_{\theta}: S \rightarrow \mathbb{R}^{|A|}
$$

DQN:

Second attempt:

```
s_input = tf.placeholder(tf.float32,shape=[state_dim])
h1 = tf.layers.dense(s_input,units=100,activation=tf.nn.tanh)
q_prediction = tf.layers.dense(h1,units=num_of_possible_actions)
```


$4 \square>4$ 岛

How to train a Q-Network?

How to train a Q-Network?

```
# ... Build the computation graph
target_q = tf.placeholder(tf.float32)
target_index = tf.placeholder(tf.int32)
loss = tf.square(target_q - q_prediction)
    * tf.one_hot(target_index,num_of_possible_actions)
update_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss)
# ... Learning updates
def updateQ(s,a,r,s_prime):
    q_next = tf_session.run(q_prediction,{s_input:s_prime})
    q_max = np.max(q_next)
    # Warning: Make sure that max is actually a valid action
    q = r + 0.99 * q_max
    tf_session.run(update_step,{s_input:s,target_index:a,target_q:q})
# ... Training loop
state = env.reset()
for _ in range(1000):
    action = policy(state)
    next_state, reward, done, info = env.step(action)
    # Learn
    updateQ(state,action,reward,next_state)
    state = next state
```


How does a Q-Network perform?

Cumulative reward over time on Tic-Tac-Toe

Questions so far?

Experience Replay Buffer

Experience Replay Buffer

- Batch multiple (s, a, r, s^{\prime}) updates together

```
# Replace
s_input = tf.placeholder(tf.float32,shape=[state_dim])
# with
s_input = tf.placeholder(tf.float32,shape=[None,state_dim])
```

- Stabilizes learning

Experience Replay Buffer

- Batch multiple (s, a, r, s^{\prime}) updates together

```
# Replace
s_input = tf.placeholder(tf.float32,shape=[state_dim])
# with
s_input = tf.placeholder(tf.float32,shape=[None,state_dim])
```

- Stabilizes learning
- Store $\left(s, a, r, s^{\prime}\right)$ in a buffer an re-use multiple times
- Increases efficiency

Advanced Methods

| Method | Included in |
| :---: | :---: |
| Experience Replay Buffer | DQN (2013/2015) |
| Double Q-Learning | |
| Prioritized Experience Replay | |
| Duelling Q networks | Rainbow (2017) |
| Multistep-Learning | |
| Distributional DQN | |
| Noisy Nets | Ape-X (2018) |

Performance

Performance

Conclusion

- Q-Learning with tables: $Q_{i+1}(s, a):=r+\gamma \max _{a^{\prime}} Q_{i}\left(s^{\prime}, a^{\prime}\right)$
- Poor scaling to large action/state spaces
- No generalization
- Solution: Approximation with neural net
- No convergence guarantee to Q^{*}
- Active research on improving Q-Learning
- e.g Experience Replay Buffer

