Machine Learning and
Computer Vision Group il RUSTRIA

Institute of Science and Technology

Deep Learning with TensorFlow
http://cvml.ist.ac.at/courses/DLWT_W18

Lecture 9:
Variational Autoencoders

Introduction to Variational Autoencoders

Alexandra Peste

IST Austria

January 14, 2019

Alexandra VAE 1/32

Table of Contents

© Autoencoders
@ The problem of dimensionality reduction
o Autoencoders
@ Limitations

@ Variational Autoencoders
@ Intuition behind VAEs
@ General Architecture
@ Probabilistic View of VAEs
@ Learning in VAEs
@ Applications

Alexandra VAE 2/32

© Autoencoders
@ The problem of dimensionality reduction

Alexandra VAE 3/32

Why care about dimensionality reduction?

Which sequence is easier to memorize? !
e 40, 27, 25, 36, 81, 57, 10, 73, 19, 68 ?
e 50, 25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 207

Reducing the dimensionality of the data helps to:

@ store information more efficiently

@ discover new patterns in the data, which were initially hidden from us

Unsupervised learning!

1Example from [Ger17]
Alexandra VAE

4/

Principal Component Analysis

o X € RN*P matrix data, with zero-mean columns

e Find the orthogonal directions w € R along which the data has the greatest
variance and project on them

o first principal component: wy = argmax”,,,,H::l||XWH2

o SVD: X = USWT W eRP*P WTW = Ip; PCA decomposition using
the first k < D components: find W, = [W*, W2, ..., W] and set
X = XW

Alexandra VAE 5/32

PCA Visualization of MNIST

label
4l e 0
e 1
e 2
e 3
27 o 4
5
@ 6
04 7
e 8
o P
-2 1 style
e 10.0
_4 4
PR : i s

© Autoencoders

@ Autoencoders

Alexandra VAE 7/32

General Architecture and Training of Autoencoders

4 @ Train by minimizing
784 units [Outputs] <—— Reconstructions]EXND[HX —)?||2]

(= inputs)
300 units Hidden 3

150 units [HIgllele 2

<—— Codings

300 units

784 units [Inputs]

Stacked Autoencoder >

Alexandra VAE

8 /32

General Architecture and Training of Autoencoders

4 @ Train by minimizing
. X a2
784 units [Outputs] <—— Reconstructions]EXND[HX — X||]
(= inputs)
300 units idden 3 @ Avoid overfitting by tying the

150 units |HE[CEPR| <— Codings weights of the encoder and decoder:

Wi o1 =W Vel L)2

300 units

784 units [Inputs]

Stacked Autoencoder >

Alexandra VAE 8 /32

General Architecture and Training of Autoencoders

4 @ Train by minimizing
784 units [Outputs] <—— Reconstructions]EXND[HX —)?||2]

(= inputs)
300 units Hidden 3

150 units [HIgllele 2

@ Avoid overfitting by tying the
<— Codings weights of the encoder and decoder:
Wi o1 =W Vel L)2

300 units

784units[Inputs] @ Can use the encoder to initialize a
NN for classifiying the labels - AE
learns more interesting features

Stacked Autoencoder >

Alexandra VAE

General Architecture and Training of Autoencoders

t

784 units [Outputs] <—— Reconstructions

300 units Hidden 3

150 units [HIgllele 2

<—— Codings

300 units

784 units [Inputs]

Stacked Autoencoder >

(= inputs)

2Image from [Ger17]

Alexandra

VAE

Train by minimizing
5112
Ex~plllx = £[I°]

Avoid overfitting by tying the
weights of the encoder and decoder:
Wi o1 =W Vel L)2

Can use the encoder to initialize a
NN for classifiying the labels - AE
learns more interesting features

Caution: A too powerful AE might
learn the identity map between
input and reconstructions, making
the coding layer represent just
random noise

/ 32

© Autoencoders

@ Limitations

Alexandra VAE 9/32

Autoencoders have their limitations:

Latent Space @ they can memorize the train set —-

100 representations learned are not meaningful

804 .

60 1

©ONOU A WN RO

404

204

=20 0 20 40

MNIST latent space *

Alexandra VAE 10 / 32

https://github.com/greentfrapp/keras-aae

Autoencoders have their limitations:

Latent Space @ they can memorize the train set =
oo | I C Y representations learned are not meaningful
2
3
801 4 @ the latent space has no structure, no
5 . . « .
0l BE 6 guarantee that distances in the original
7 . .
8 space are preserved in the encoding space
40 4 9

204

=20 0 20 40

MNIST latent space *

Alexandra VAE 10 / 32

https://github.com/greentfrapp/keras-aae

Autoencoders have their limitation

Latent Space @ they can memorize the train set —-

100 representations learned are not meaningful

80 . @ the latent space has no structure, no
guarantee that distances in the original

space are preserved in the encoding space

60 1

©ONOU A WN RO

40 4
@ a small perturbation to an encoding

should decode to a something similar to
the original image

204

=20 0 20 40

MNIST latent space *

Alexandra VAE 10 / 32

https://github.com/greentfrapp/keras-aae

Autoencoders have their limitatio

Latent Space @ they can memorize the train set =

100 representations learned are not meaningful

801 @ the latent space has no structure, no

guarantee that distances in the original
space are preserved in the encoding space

601 it

©ONOU A WN RO

40
@ a small perturbation to an encoding

should decode to a something similar to
the original image

204

=20 0 20 40

@ the encodings of the train set should cover
MNIST latent space > the latent space nicely = sampling any
point from the latent space will decode
into a reasonable image

3Image from https://github.com/greentfrapp/keras-aae

Alexandra VAE 10 / 32

https://github.com/greentfrapp/keras-aae

@ Variational Autoencoders
@ Intuition behind VAEs

Alexandra VAE 11 /32

Generative Models in Deep Learning

“What | cannot create, | do not understand” - Richard Feynman

Real or generated? *

4 Images from [KALLL7], [HHS ™ 18]
Alexandra VAE 12 /32

What are VAEs?

o AEs with a distribution on the valid codes
for each input (s.t. small perturbations
don't affect too much the reconstruction)

encode > decode >

Alexandra VAE 13 /32

https://blog.fastforwardlabs.com/2016/08/22/under-the-hood-of-the-variational-autoencoder-in.html

What are VAEs?

o AEs with a distribution on the valid codes
for each input (s.t. small perturbations
don't affect too much the reconstruction)

encode > decode >

@ the distributions of all latent codes cover the
space nicely = initializing the decoder with
input hidden output a random code will result in a valid image

Alexandra VAE 13 /32

https://blog.fastforwardlabs.com/2016/08/22/under-the-hood-of-the-variational-autoencoder-in.html

What are VAEs?

o AEs with a distribution on the valid codes
for each input (s.t. small perturbations
don't affect too much the reconstruction)

encode > decode >

@ the distributions of all latent codes cover the
space nicely = initializing the decoder with
input hidden output a random code will result in a valid image

% @ Loss function: Reconstruction error +
Regularization on the encoder

Alexandra VAE 13 /32

https://blog.fastforwardlabs.com/2016/08/22/under-the-hood-of-the-variational-autoencoder-in.html

What are VAEs?

encode >

decode >

AEs with a distribution on the valid codes
for each input (s.t. small perturbations
don't affect too much the reconstruction)

the distributions of all latent codes cover the
space nicely = initializing the decoder with
a random code will result in a valid image

Loss function: Reconstruction error +
Regularization on the encoder

they are probabilistic models, rooted in the
fied of variational inference = we actually

have a theory why they work! &

5
Image from https://blog.fastforwardlabs.com/2016/08/22/under-the-hood-of-the-variational-autoencoder-in.html

Alexandra

VAE 13 /32

https://blog.fastforwardlabs.com/2016/08/22/under-the-hood-of-the-variational-autoencoder-in.html

o~
2]
<
>
>
=
=

EZIHHEIE 1
O]]S [0 o] N ool el

Generative

Noise ~ N(0,1)

@ Encode meaningfully the input in a lower dimensional space

o Initialize the decoder with N(0, /) to generate samples similar to the

train set

/ 32

14

VAE

Alexandra

@ Variational Autoencoders

@ General Architecture

Alexandra VAE 15 / 32

Encoder regularization

@ The encoder with weights ¢ learns a distribution g,;(z|x) over the valid codes
z € R of x ; easiest choice for g4(z|x) : N (g, a3 1)

@ We assume the space of our latent codes, before seeing x, is p(z) ~ N(0, /)

@ Enforce g4(z|x) for all x to cover the latent space nicely = we make
g4(z|x) close to N'(0, /) (hint: Use KL divergence)

@ Define the regularization term:

KL(qs(2[x)llp(2))

Alexandra VAE 16 / 32

Encoder regularization

The encoder with weights ¢ learns a distribution g4(z|x) over the valid codes
z € R of x ; easiest choice for g4(z|x) : N (g, a3 1)

@ We assume the space of our latent codes, before seeing x, is p(z) ~ N(0, /)

Enforce g4(z|x) for all x to cover the latent space nicely = we make
g4(z|x) close to N'(0, /) (hint: Use KL divergence)

Define the regularization term:

Ex~p[KL(g4(z[x)|p(2))]

K
1
For independent Gaussian distributions: KL = 5 Z[ai + 42 —Inos —1]
k=1

Alexandra VAE 16 / 32

The Reconstruction Term

@ Given z ~ g4(z|x), the decoder with weights ¢ learns the most likely
reconstruction of x — po(x|z)

o ||x — &||? is equivalent with py(-|z) = N (%,1)

@ other choices for py(x|z): Bernoulli distributions, if x € {0,1}"

Alexandra VAE 17 / 32

The Reconstruction Term

Given z ~ gg(z|x), the decoder with weights ¢ learns the most likely
reconstruction of x — po(x|z)

|x — %||? is equivalent with py(-|z) = N(X,1)

other choices for py(x|z): Bernoulli distributions, if x € {0, 1}V

In general, the reconstruction term:

In py(x|2)

Alexandra VAE 17 / 32

The Reconstruction Term

Given z ~ gg(z|x), the decoder with weights ¢ learns the most likely
reconstruction of x — po(x|z)

|x — %||? is equivalent with py(-|z) = N(X,1)

other choices for py(x|z): Bernoulli distributions, if x € {0, 1}V

In general, the reconstruction term:

Eq,(zx[In po(x|z)]

Alexandra VAE 17 / 32

The Reconstruction Term

Given z ~ gg(z|x), the decoder with weights ¢ learns the most likely
reconstruction of x — po(x|z)

|x — %||? is equivalent with py(-|z) = N(X,1)

other choices for py(x|z): Bernoulli distributions, if x € {0, 1}V

In general, the reconstruction term:

EXND[Eqd)(Z‘X)[In p()(X|Z)]]

Alexandra VAE 17 / 32

The Evidence Lower Bound (ELBO)

@ For a single data point x, ELBO is defined as:
L(0,6:x) = Eq,@linpa(x|2)] — KL(gs(2x) || pa(2))

Reconstruction Regularization

Alexandra VAE 18 / 32

The Evidence Lower Bound (ELBO)

@ For a single data point x, ELBO is defined as:
L(0,6:x) = Eq,@linpa(x|2)] — KL(gs(2x) || pa(2))

Reconstruction Regularization

@ Learning in VAEs <= finding:

¢*,0* = argmaxE,p[L(0, ¢; x)] ~ arg max ZL(G ®; Xn)
6,0

Alexandra VAE 18 / 32

The Evidence Lower Bound (ELBO)

@ For a single data point x, ELBO is defined as:
L(0,6:x) = Eq,@linpa(x|2)] — KL(gs(2x) || pa(2))

Reconstruction Regularization

@ Learning in VAEs <= finding:
¢*,0* = argmaxE,p[L(0, ¢; x)] ~ arg max ZL(G ®; Xn)
#,0

e ELBO is a lower bound on In pg(x) = VAE does MLE implicitly! [[ié

Alexandra VAE 18 / 32

The Evidence Lower Bound (ELBO)

@ For a single data point x, ELBO is defined as:
L(0,6:x) = Eq,@linpa(x|2)] — KL(gs(2x) || pa(2))

Reconstruction Regularization

@ Learning in VAEs <= finding:

N
¢*,0* = argmax E,.p[L(0, ¢; x)] ~ arg max L Z L(8, p; xp)
o #,0 N n=1

s

e ELBO is a lower bound on In pg(x) = VAE does MLE implicitly! [[ié

@ ¢ and 0 are learned simultaneously by backpropagation
(ASampIing layer! How do we backprop through stochastic layers?)

Alexandra VAE 18 / 32

@ Variational Autoencoders

@ Probabilistic View of VAEs

Alexandra VAE 19 / 32

VAEs as PGMs

We assume our observations x are the result of a hidden
random variable z ~ p(z), through fj.
Our goal: infer py(z|x) — intractable problem

Alexandra VAE 20 / 32

VAEs as PGMs

We assume our observations x are the result of a hidden
random variable z ~ p(z), through fj.
Our goal: infer py(z|x) — intractable problem

Use variational inference to find g, (z|x) ~ pg(z|x),

qo(z 1) | fa()
by minimizing KL(g4(z|x) || ps(z|x)). :

Alexandra VAE 20 / 32

VAEs as PGMs

We assume our observations x are the result of a hidden seeeeanes
random variable z ~ p(z), through fj.
Our goal: infer py(z|x) — intractable problem

Lae(z] %) | fo-)
Use variational inference to find g, (z|x) ~ pg(z|x), :

by minimizing KL(g4(z|x) || ps(z|x)).

Equivalent easier problem:
maximize a lower bound of the log likelihood.

Alexandra VAE 20 / 32

Defining the Evidence Lower Bound (ELBO)

How to derive the bound?

_ zIx npe(xvz) 7 = np@(xaz) zlx zlx
o) = [au(alx) n 202z = B | 10 2B KLl (220

Therefore,

In py(x) > Eq, (21x) ['n Polx. Z)} = L(0, ¢ x)

qs(2|x)

Defining the Evidence Lower Bound (ELBO)

How to derive the bound?

_ zIx npe(xvz) 7 = np@(xaz) zlx zlx
o) = [au(alx) n 202z = B | 10 2B KLl (220

Therefore,
po(x,z)
qs(2|x)

In pa(x) > Eq, (z1x) [In } = L(0, $; x)

ELBO can be further rewritten into the familiar form

L(0, ¢:x) = Eq, =z lIn po(x[2)] — KL(q4(2[x)[|p(2))

Alexandra VAE 21 /32

@ Variational Autoencoders

@ Learning in VAEs

Alexandra VAE 22 /32

How to deal with stochastic layers?

encode > decode >
Inference Genera tive

Latent
Distribution

sampling from N (11, o°1) in the middle °

o If we sample directly from N (p4, ail), the graph losses the dependence on
the encoder’s parameters =—> we can't backpropagate

Alexandra VAE

https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder

How to deal with stochastic layers?

encode > decode >
Inference Genera tive

Latent
Distribution

sampling from N (11, o°1) in the middle °

o If we sample directly from N (p4, ail), the graph losses the dependence on
the encoder’s parameters =—> we can't backpropagate

o Use reparameterization trick: first sample ¢ ~ N(0, /), and feed
Z = jiy + 04 © € into the decoder (the same as z ~ N(ud,,oi/), but
backprop-friendly!)

Image from https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder

Alexandra VAE

https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder

Reparameterization Trick Visualized

X — f()]* X — fiz)|?

Decoder [KLIN (u(X), 2(X))|[IN(0,1)) l Decoder
[KLIN (u(X), S(X))IN(0, 1)]] (;) A N ")

- - — 1
‘Sample z from N (p(X), B(X JJ| |

Encoder

(@)

Encoder | Sample ¢ from A(0, T)
(@]

8| mage from [Doc1]
Alexandra VAE 24 / 32

Backpropagation Formulas

o Gradient w.r.t. 0:
VoL(p,0;x) = VoEq, (z1x)[In po(x|2)] = Eq, (z1x)[Ve In ps(z]x)]

S
1
VeL(¢,0:x) ~ < > Vol py(x|z®) \/

s=1

Alexandra VAE 25 /32

Backpropagation Formulas

o Gradient w.r.t. 0:
VoL(p,0;x) = VoEq, (z1x)[In po(x|2)] = Eq, (z1x)[Ve In ps(z]x)]

S
1
VeL(¢,0:x) ~ < > Vol py(x|z®) \/

s=1

o Gradient w.r.t ¢:
Vo L($,0:x) = V4Eq, 21 [In pa(x|2)] — Vi KL(q4(2[x)[[p(2))
S

Eq,@xlln pa(x|2)] = < Z In pg x|z) — no explicit dependence on ¢ X
SS

Alexandra VAE 25 /32

Backpropagation Formulas

o Gradient w.r.t. 0:
VoL(p,0;x) = VoEq, (z1x)[In po(x|2)] = Eq, (z1x)[Ve In ps(z]x)]

S
1
VeL(¢,0:x) ~ < > Vol py(x|z®) \/

s=1

o Gradient w.r.t ¢:
Vo L($,0:x) = V4Eq, 21 [In pa(x|2)] — Vi KL(q4(2[x)[[p(2))
S

Eq,@xlln pa(x|2)] = < Z In pg x|z) — no explicit dependence on ¢ X
SS

e How to compute V4E,, (zx)[In po(x|2)] 7

Alexandra VAE 25 /32

Reparameterization Trick - General Case

e Find r.v. € ~ r(-) and gg(-) diff. function, s.t. z = g,(e)

Alexandra VAE 26 / 32

Reparameterization Trick - General Case

e Find r.v. € ~ r(-) and gg(-) diff. function, s.t. z = g,(e)

® Eq, (2 [In po(x|2)] = Er(c)[In po(x|gs(€))]

Alexandra VAE 26 / 32

Reparameterization Trick - General Case

e Find r.v. € ~ r(-) and gg(-) diff. function, s.t. z = g,(e)
® Eq,zpolIn po(x|2)] = Er(o)[In po(x|gs(€))]

0 VyL(h,0;x) = VE,()[VyIn po(xgs(e))]

Alexandra VAE 26 / 32

Reparameterization Trick - General Case

e Find r.v. € ~ r(-) and gg(-) diff. function, s.t. z = g,(e)
® Eq,zpolIn po(x|2)] = Er(o)[In po(x|gs(€))]

0 VyL(h,0;x) = VE,()[VyIn po(xgs(e))]

@ Can use MC approx. V4£L(9,0;x) ZV¢ In po (x| gy (e e))) \/

Alexandra VAE 26 / 32

Reparameterization Trick - General Case

e Find r.v. € ~ r(-) and gg(-) diff. function, s.t. z = g,(e)

Eq, zholIn po(x[2)] = Erq)[In po(xlgs(€))]

Ve L($,0;x) = VyE, [V In po(x|gs(e))]

@ Can use MC approx. V4£L(9,0;x) ZV¢ In po (x| gy (e e))) \/

e For Gaussian distributions, gy(€) = pg + 0y © €, with € ~ N (0, /)

Alexandra VAE 26 / 32

@ Variational Autoencoders

@ Applications

Alexandra VAE 27 / 32

Implementation using tf.contrib.distributions

Full example at:
https://danijar.com/building-variational-auto-encoders-in-tensorflow/

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
tfd = tf.contrib.distributions

def make_encoder(data, code_size):
= tf.layers.flatten(data)
- tf.layers.dense(x, 200, tf.nn.relu)
- tf.layers.dense(x, 200, tf.nn.relu)
loc = tf.layers.dense(x, code_size)
scale = tf.layers.dense(x, code_size, tf.nn.softplus)
return tfd.MultivariateNormaldiag(loc, scale)

def make_prior(code_size):
loc = tf.zeros(code_size)
scale = tf.ones(code_size)
return tfd.MultivariateNormalDiag(loc, scale)

def make_decoder(code, data_shape):
code

= tf.layers.dense(x, 200, tf.nn.relu)

= tf.layers.dense(x, 200, tf.nn.relu)
logit = tf.layers.dense(x, np.prod(data_shape))
logit - tf.reshape(logit, [-1] + data_shape)
return tfd.Independent(tfd.Bernoulli(logit), 2)

data = tf.placeholder(tf.float3z, [Mone, 28, 28])
make_encoder = tf.make_template(, make_encoder)
make_decoder = tf.make_template(er’', make_decoder)

Define the model.
prior - make_prior(code_size=2)
posterior = make_encoder(data, code_size
code = posterior.sample()

Define the loss.

likelihood = make_decoder(code, [28, 28]).log_prob(data)
divergence = tfd.kl_divergence(posterior, prior)

elbo - tf.reduce_mean(likelihood - divergence)

optimize = tf.train.AdamOptimizer(1).minimize(-elbo)

samples = make_decoder(prior.sample(10), , 281).mean()

Alexandra VAE 28 / 32

=
&

TITTITTCOOAAAANNNNNNN
JTITITTITOOCASANNNNNNNN
TITITTITITCCOCAANNNNNNNN
FITTTITITCCASANNNNNNNN
FOTTTTTTToAANNNNNNN -
SO ooTTroeaanaNNNNNN m
FT T TSN NNNNN -~]
POPPPPPC T TIRNNNN - = =l _u
DOOONNNNP ORI RNN === — —| @
A OO OO 0000 00 O = — — 8
NAddNNNMy s S~~~~~~ w
Adadddadadaggeseyhy ANSNS~~~~ -
Adddddssvovww i vNNNNNN7 m
4433999999V VVVLNNNNNN 3
395999999V OOVVIVLNNNNYN| g
DI9HI9I9IVVVOOAVAVY UNNNY B
DIV VVO0O0OQQQUQV 0V UNNN\ 3
999990000000 QQQ 0 QL N\| o o
DI99I90900000QQQQ00 0N kel g
9990000000000Q00000 1 o e
- ~ - S 7 ¥ T ! = el
— 5
c o
5 !
° E E
3
g
= ?
© [0} H >
[] + =
[v) @ g
2 - g
a R 2
O g = B
o : ~ g g
N
= £ = §
c & ° i
© = g
> v _m
2 _ 5
+2 © “
c 2 Y E
() 3 2
S
T t g
N ©
— b <
[%
d © © < ~ o J. A_~ Ju R_vﬂ_u ...MM
(D) S
c OHANMYTINON®O s
S
@ 11]| o
K

https://blog.fastforwardlabs.com/2016/08/12/introducing-variational-autoencoders-in-prose-and.html

Thank you!

References |

[Doel6]

[Gerl7]

[HHS*18

[KALL17]

Carl Doersch.
Tutorial on variational autoencoders.
CoRR, abs/1606.05908, 2016.

Aurelien Geron.

Hands-on machine learning with Scikit-Learn and TensorFlow :
concepts, tools, and techniques to build intelligent systems.
O'Reilly Media, 2017.

| Huaibo Huang, Ran He, Zhenan Sun, Tieniu Tan, et al.
Introvae: Introspective variational autoencoders for photographic
image synthesis.
In Advances in Neural Information Processing Systems, pages 52—63,
2018.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability, and
variation.

arXiv preprint arXiv:1710.10196, 2017.

Alexandra VAE 31/32

References |l

[KW13] Diederik P Kingma and Max Welling.
Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

Alexandra VAE 32 /32

	Autoencoders
	The problem of dimensionality reduction
	Autoencoders
	Limitations

	Variational Autoencoders
	Intuition behind VAEs
	General Architecture
	Probabilistic View of VAEs
	Learning in VAEs
	Applications

