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© Autoencoders
@ The problem of dimensionality reduction
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Why care about dimensionality reduction?

Which sequence is easier to memorize? !
e 40, 27, 25, 36, 81, 57, 10, 73, 19, 68 ?
e 50, 25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 207

Reducing the dimensionality of the data helps to:

@ store information more efficiently

@ discover new patterns in the data, which were initially hidden from us

Unsupervised learning!

1Example from [Ger17]
Alexandra VAE
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Principal Component Analysis

o X € RN*P matrix data, with zero-mean columns

e Find the orthogonal directions w € R along which the data has the greatest
variance and project on them

o first principal component: wy = argmax”,,,,H::l||XWH2

o SVD: X = USWT W eRP*P WTW = Ip; PCA decomposition using
the first k < D components: find W, = [W*, W2, ..., W] and set
X = XW
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PCA Visualization of MNIST
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© Autoencoders

@ Autoencoders
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General Architecture and Training of Autoencoders

4 @ Train by minimizing
784 units [ Outputs ] <—— Reconstructions ]EXND[HX — )?||2]

(= inputs)
300 units Hidden 3

150 units [HIgllele 2

<—— Codings

300 units

784 units [ Inputs ]

Stacked Autoencoder >
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General Architecture and Training of Autoencoders
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(= inputs)
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300 units
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General Architecture and Training of Autoencoders

t

784 units [ Outputs ] <—— Reconstructions

300 units Hidden 3

150 units [HIgllele 2

<—— Codings

300 units

784 units [ Inputs ]

Stacked Autoencoder >

(= inputs)

2Image from [Ger17]
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Train by minimizing
5112
Ex~plllx = £[I°]

Avoid overfitting by tying the
weights of the encoder and decoder:
Wi o1 =W Vel L)2

Can use the encoder to initialize a
NN for classifiying the labels - AE
learns more interesting features

Caution: A too powerful AE might
learn the identity map between
input and reconstructions, making
the coding layer represent just
random noise
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@ Limitations
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Autoencoders have their limitations:

Latent Space @ they can memorize the train set —-

100 representations learned are not meaningful

804 .

60 1

©ONOU A WN RO

404

204

=20 0 20 40

MNIST latent space *
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Autoencoders have their limitatio

Latent Space @ they can memorize the train set =

100 representations learned are not meaningful

801 @ the latent space has no structure, no

guarantee that distances in the original
space are preserved in the encoding space

601 it

©ONOU A WN RO

40
@ a small perturbation to an encoding

should decode to a something similar to
the original image

204

=20 0 20 40

@ the encodings of the train set should cover
MNIST latent space > the latent space nicely = sampling any
point from the latent space will decode
into a reasonable image

3Image from https://github.com/greentfrapp/keras-aae
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@ Variational Autoencoders
@ Intuition behind VAEs
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Generative Models in Deep Learning

“What | cannot create, | do not understand” - Richard Feynman

Real or generated? *

4 Images from [KALLL7], [HHS ™ 18]
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What are VAEs?

o AEs with a distribution on the valid codes
for each input (s.t. small perturbations
don't affect too much the reconstruction)

encode > decode >
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input hidden output a random code will result in a valid image
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What are VAEs?

o AEs with a distribution on the valid codes
for each input (s.t. small perturbations
don't affect too much the reconstruction)

encode > decode >

@ the distributions of all latent codes cover the
space nicely = initializing the decoder with
input hidden output a random code will result in a valid image

% @ Loss function: Reconstruction error +
Regularization on the encoder
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What are VAEs?

encode >

decode >

AEs with a distribution on the valid codes
for each input (s.t. small perturbations
don't affect too much the reconstruction)

the distributions of all latent codes cover the
space nicely = initializing the decoder with
a random code will result in a valid image

Loss function: Reconstruction error +
Regularization on the encoder

they are probabilistic models, rooted in the
fied of variational inference = we actually

have a theory why they work! &

5
Image from https://blog.fastforwardlabs.com/2016/08/22/under-the-hood-of-the-variational-autoencoder-in.html
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Generative

Noise ~ N(0,1)

@ Encode meaningfully the input in a lower dimensional space

o Initialize the decoder with N(0, /) to generate samples similar to the

train set
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@ Variational Autoencoders

@ General Architecture
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Encoder regularization

@ The encoder with weights ¢ learns a distribution g,;(z|x) over the valid codes
z € R of x ; easiest choice for g4(z|x) : N (g, a3 1)

@ We assume the space of our latent codes, before seeing x, is p(z) ~ N(0, /)

@ Enforce g4(z|x) for all x to cover the latent space nicely = we make
g4(z|x) close to N'(0, /) (hint: Use KL divergence)

@ Define the regularization term:

KL(qs(2[x)llp(2))
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Encoder regularization

The encoder with weights ¢ learns a distribution g4(z|x) over the valid codes
z € R of x ; easiest choice for g4(z|x) : N (g, a3 1)

@ We assume the space of our latent codes, before seeing x, is p(z) ~ N(0, /)

Enforce g4(z|x) for all x to cover the latent space nicely = we make
g4(z|x) close to N'(0, /) (hint: Use KL divergence)

Define the regularization term:

Ex~p[KL(g4(z[x)|p(2))]

K
1
For independent Gaussian distributions: KL = 5 Z[ai + 42 —Inos —1]
k=1
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The Reconstruction Term

@ Given z ~ g4(z|x), the decoder with weights ¢ learns the most likely
reconstruction of x — po(x|z)

o ||x — &||? is equivalent with py(-|z) = N (%,1)

@ other choices for py(x|z): Bernoulli distributions, if x € {0,1}"
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The Reconstruction Term

Given z ~ gg(z|x), the decoder with weights ¢ learns the most likely
reconstruction of x — po(x|z)

|x — %||? is equivalent with py(-|z) = N(X,1)

other choices for py(x|z): Bernoulli distributions, if x € {0, 1}V

In general, the reconstruction term:

In py(x|2)
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The Reconstruction Term

Given z ~ gg(z|x), the decoder with weights ¢ learns the most likely
reconstruction of x — po(x|z)

|x — %||? is equivalent with py(-|z) = N(X,1)

other choices for py(x|z): Bernoulli distributions, if x € {0, 1}V

In general, the reconstruction term:

EXND[Eqd)(Z‘X)[ In p()(X|Z)]]
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The Evidence Lower Bound (ELBO)

@ For a single data point x, ELBO is defined as:
L(0,6:x) = Eq,@linpa(x|2)] — KL(gs(2x) || pa(2))

Reconstruction Regularization
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The Evidence Lower Bound (ELBO)

@ For a single data point x, ELBO is defined as:
L(0,6:x) = Eq,@linpa(x|2)] — KL(gs(2x) || pa(2))

Reconstruction Regularization

@ Learning in VAEs <= finding:

¢*,0* = argmaxE,p[L(0, ¢; x)] ~ arg max ZL(G ®; Xn)
6,0
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The Evidence Lower Bound (ELBO)

@ For a single data point x, ELBO is defined as:
L(0,6:x) = Eq,@linpa(x|2)] — KL(gs(2x) || pa(2))

Reconstruction Regularization

@ Learning in VAEs <= finding:
¢*,0* = argmaxE,p[L(0, ¢; x)] ~ arg max ZL(G ®; Xn)
#,0

e ELBO is a lower bound on In pg(x) = VAE does MLE implicitly! [[ié
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The Evidence Lower Bound (ELBO)

@ For a single data point x, ELBO is defined as:
L(0,6:x) = Eq,@linpa(x|2)] — KL(gs(2x) || pa(2))

Reconstruction Regularization

@ Learning in VAEs <= finding:

N
¢*,0* = argmax E,.p[L(0, ¢; x)] ~ arg max L Z L(8, p; xp)
o #,0 N n=1

s

e ELBO is a lower bound on In pg(x) = VAE does MLE implicitly! [[ié

@ ¢ and 0 are learned simultaneously by backpropagation
(ASampIing layer! How do we backprop through stochastic layers?)
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@ Variational Autoencoders

@ Probabilistic View of VAEs
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VAEs as PGMs

We assume our observations x are the result of a hidden
random variable z ~ p(z), through fj.
Our goal: infer py(z|x) — intractable problem
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VAEs as PGMs

We assume our observations x are the result of a hidden
random variable z ~ p(z), through fj.
Our goal: infer py(z|x) — intractable problem

Use variational inference to find g, (z|x) ~ pg(z|x),

qo(z 1) | fa()
by minimizing KL(g4(z|x) || ps(z|x)). :
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VAEs as PGMs

We assume our observations x are the result of a hidden seeeeanes
random variable z ~ p(z), through fj.
Our goal: infer py(z|x) — intractable problem

Lae(z ] %) | fo-)
Use variational inference to find g, (z|x) ~ pg(z|x), :

by minimizing KL(g4(z|x) || ps(z|x)).

Equivalent easier problem:
maximize a lower bound of the log likelihood.

Alexandra VAE 20 / 32



Defining the Evidence Lower Bound (ELBO)

How to derive the bound?

_ zIx npe(xvz) 7 = np@(xaz) zlx zlx
o) = [ au(alx) n 202z = B | 10 2B KLl (220

Therefore,

In py(x) > Eq, (21x) ['n Polx. Z)} = L(0, ¢ x)

qs(2|x)




Defining the Evidence Lower Bound (ELBO)

How to derive the bound?

_ zIx npe(xvz) 7 = np@(xaz) zlx zlx
o) = [ au(alx) n 202z = B | 10 2B KLl (220

Therefore,
po(x,z)
qs(2|x)

In pa(x) > Eq, (z1x) [In } = L(0, $; x)

ELBO can be further rewritten into the familiar form

L(0, ¢:x) = Eq, =z lIn po(x[2)] — KL(q4(2[x)[|p(2))
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@ Variational Autoencoders

@ Learning in VAEs
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How to deal with stochastic layers?

encode > decode >
Inference Genera tive

Latent
Distribution

sampling from N (11, o°1) in the middle °

o If we sample directly from N (p4, ail), the graph losses the dependence on
the encoder’s parameters =—> we can't backpropagate

Alexandra VAE



https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder

How to deal with stochastic layers?

encode > decode >
Inference Genera tive

Latent
Distribution

sampling from N (11, o°1) in the middle °

o If we sample directly from N (p4, ail), the graph losses the dependence on
the encoder’s parameters =—> we can't backpropagate

o Use reparameterization trick: first sample ¢ ~ N(0, /), and feed
Z = jiy + 04 © € into the decoder (the same as z ~ N(ud,,oi/), but
backprop-friendly! )

Image from https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder
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https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder

Reparameterization Trick Visualized

X — f()]* X — fiz)|?

Decoder [ KLIN (u(X), 2(X))|[IN(0,1)) l Decoder
[KLIN (u(X), S(X))IN(0, 1)]] (;) A N ")

- - — 1
‘Sample z from N (p(X), B(X JJ| |

Encoder

(@)

Encoder | Sample ¢ from A(0, T)
(@]

8| mage from [Doc1]
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Backpropagation Formulas

o Gradient w.r.t. 0:
VoL(p,0;x) = VoEq, (z1x)[In po(x|2)] = Eq, (z1x)[Ve In ps(z]x)]

S
1
VeL(¢,0:x) ~ < > Vol py(x|z®) \/

s=1
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Backpropagation Formulas

o Gradient w.r.t. 0:
VoL(p,0;x) = VoEq, (z1x)[In po(x|2)] = Eq, (z1x)[Ve In ps(z]x)]

S
1
VeL(¢,0:x) ~ < > Vol py(x|z®) \/

s=1

o Gradient w.r.t ¢:
Vo L($,0:x) = V4Eq, 21 [In pa(x|2)] — Vi KL(q4(2[x)[[p(2))
S

Eq,@xlln pa(x|2)] = < Z In pg x|z ) — no explicit dependence on ¢ X
SS
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Backpropagation Formulas

o Gradient w.r.t. 0:
VoL(p,0;x) = VoEq, (z1x)[In po(x|2)] = Eq, (z1x)[Ve In ps(z]x)]

S
1
VeL(¢,0:x) ~ < > Vol py(x|z®) \/

s=1

o Gradient w.r.t ¢:
Vo L($,0:x) = V4Eq, 21 [In pa(x|2)] — Vi KL(q4(2[x)[[p(2))
S

Eq,@xlln pa(x|2)] = < Z In pg x|z ) — no explicit dependence on ¢ X
SS

e How to compute V4E,, (zx)[In po(x|2)] 7
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Reparameterization Trick - General Case

e Find r.v. € ~ r(-) and gg(-) diff. function, s.t. z = g,(e)
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Reparameterization Trick - General Case

e Find r.v. € ~ r(-) and gg(-) diff. function, s.t. z = g,(e)
® Eq,zpolIn po(x|2)] = Er(o)[In po(x|gs(€))]

0 VyL(h,0;x) = VE,()[VyIn po(xgs(e))]
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Reparameterization Trick - General Case

e Find r.v. € ~ r(-) and gg(-) diff. function, s.t. z = g,(e)

Eq, zholIn po(x[2)] = Erq)[In po(xlgs(€))]

Ve L($,0;x) = VyE, [V In po(x|gs(e))]

@ Can use MC approx. V4£L(9,0;x) ZV¢ In po (x| gy (e e ))) \/

e For Gaussian distributions, gy(€) = pg + 0y © €, with € ~ N (0, /)
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@ Variational Autoencoders

@ Applications
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Implementation using tf.contrib.distributions

# Full example at:
# https://danijar.com/building-variational-auto-encoders-in-tensorflow/

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
tfd = tf.contrib.distributions

def make_encoder(data, code_size):
= tf.layers.flatten(data)
- tf.layers.dense(x, 200, tf.nn.relu)
- tf.layers.dense(x, 200, tf.nn.relu)
loc = tf.layers.dense(x, code_size)
scale = tf.layers.dense(x, code_size, tf.nn.softplus)
return tfd.MultivariateNormaldiag(loc, scale)

def make_prior(code_size):
loc = tf.zeros(code_size)
scale = tf.ones(code_size)
return tfd.MultivariateNormalDiag(loc, scale)

def make_decoder(code, data_shape):
code

= tf.layers.dense(x, 200, tf.nn.relu)

= tf.layers.dense(x, 200, tf.nn.relu)
logit = tf.layers.dense(x, np.prod(data_shape))
logit - tf.reshape(logit, [-1] + data_shape)
return tfd.Independent(tfd.Bernoulli(logit), 2)

data = tf.placeholder(tf.float3z, [Mone, 28, 28])
make_encoder = tf.make_template( , make_encoder)
make_decoder = tf.make_template( er’', make_decoder)

# Define the model.
prior - make_prior(code_size=2)
posterior = make_encoder(data, code_size
code = posterior.sample()

# Define the loss.

likelihood = make_decoder(code, [28, 28]).log_prob(data)
divergence = tfd.kl_divergence(posterior, prior)

elbo - tf.reduce_mean(likelihood - divergence)

optimize = tf.train.AdamOptimizer( 1).minimize(-elbo)

samples = make_decoder(prior.sample(10), , 281).mean()
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https://blog.fastforwardlabs.com/2016/08/12/introducing-variational-autoencoders-in-prose-and.html

Thank you!
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