Machine Learning and Computer Vision Group

Deep Learning with TensorFlow

http://cvml.ist.ac.at/courses/DLWT_W18

Lecture 9: Variational Autoencoders

Introduction to Variational Autoencoders

Alexandra Peste

IST Austria

January 14, 2019

Table of Contents

- Autoencoders
 - The problem of dimensionality reduction
 - Autoencoders
 - Limitations
- Variational Autoencoders
 - Intuition behind VAEs
 - General Architecture
 - Probabilistic View of VAEs
 - Learning in VAEs
 - Applications

Outline

- Autoencoders
 - The problem of dimensionality reduction
 - Autoencoders
 - Limitations
- Variational Autoencoders
 - Intuition behind VAEs
 - General Architecture
 - Probabilistic View of VAEs
 - Learning in VAEs
 - Applications

Why care about dimensionality reduction?

Which sequence is easier to memorize? 1

- 40, 27, 25, 36, 81, 57, 10, 73, 19, 68 ?
- 50, 25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20?

Reducing the dimensionality of the data helps to:

- store information more efficiently
- discover new patterns in the data, which were initially hidden from us

Unsupervised learning!

Alexandra VAE

Principal Component Analysis

- $X \in \mathbb{R}^{N \times D}$ matrix data, with zero-mean columns
- Find the orthogonal directions $w \in \mathbb{R}^D$ along which the data has the greatest variance and project on them
- first principal component: $w_1 = \operatorname{argmax}_{\|w\|=1} \|Xw\|^2$
- SVD: $X = U\Sigma W^T$, $W \in \mathbb{R}^{D\times D}$, $W^TW = I_D$; PCA decomposition using the first k < D components: find $W_k = [W^1, W^2, \dots, W^k]$ and set $X_k = XW_k$

PCA Visualization of MNIST

Outline

- Autoencoders
 - The problem of dimensionality reduction
 - Autoencoders
 - Limitations
- Variational Autoencoders
 - Intuition behind VAEs
 - General Architecture
 - Probabilistic View of VAEs
 - Learning in VAEs
 - Applications

Alexandra

- Train by minimizing $\mathbb{E}_{x \sim D}[\|x \hat{x}\|^2]$
- Avoid overfitting by tying the weights of the encoder and decoder $W_{L-\ell+1} = W_{\ell}^T, \forall \ell \in \overline{1, L/2}$
- Can use the encoder to initialize a NN for classifiying the labels - AE learns more interesting features
- Caution: A too powerful AE might learn the identity map between input and reconstructions, making the coding layer represent just random noise

²Image from [Ger17]

- Train by minimizing $\mathbb{E}_{x \sim D}[\|x \hat{x}\|^2]$
- Avoid overfitting by tying the weights of the encoder and decoder: $W_{L-\ell+1} = W_{\ell}^T, \forall \ell \in \overline{1, L/2}$
- Can use the encoder to initialize a NN for classifiying the labels - AE learns more interesting features
- Caution: A too powerful AE might learn the identity map between input and reconstructions, making the coding layer represent just random noise

→□→→□→→□→→□→□ ● のQで

Alexandra

²Image from [Ger17]

- Train by minimizing $\mathbb{E}_{x \sim D}[\|x \hat{x}\|^2]$
- Avoid overfitting by tying the weights of the encoder and decoder: $W_{L-\ell+1} = W_{\ell}^T, \forall \ell \in \overline{1, L/2}$
- Can use the encoder to initialize a NN for classifiying the labels - AE learns more interesting features
- Caution: A too powerful AE might learn the identity map between input and reconstructions, making the coding layer represent just random noise

Alexandra

²Image from [Ger17]

- Train by minimizing $\mathbb{E}_{x \sim D}[\|x \hat{x}\|^2]$
- Avoid overfitting by tying the weights of the encoder and decoder: $W_{L-\ell+1} = W_{\ell}^T, \forall \ell \in \overline{1, L/2}$
- Can use the encoder to initialize a NN for classifiying the labels - AE learns more interesting features
- Caution: A too powerful AE might learn the identity map between input and reconstructions, making the coding layer represent just random noise

Outline

- Autoencoders
 - The problem of dimensionality reduction
 - Autoencoders
 - Limitations
- Variational Autoencoders
 - Intuition behind VAEs
 - General Architecture
 - Probabilistic View of VAEs
 - Learning in VAEs
 - Applications

Alexandra

MNIST latent space ³

- \bullet they can memorize the train set \Longrightarrow representations learned are not meaningful
- the latent space has no structure, no guarantee that distances in the original space are preserved in the encoding space
- a small perturbation to an encoding should decode to a something similar to the original image
- the encodings of the train set should cover the latent space nicely

 sampling any point from the latent space will decode into a reasonable image

Image from https://github.com/greentfrapp/keras-aae

MNIST latent space ³

- \bullet they can memorize the train set \Longrightarrow representations learned are not meaningful
- the latent space has no structure, no guarantee that distances in the original space are preserved in the encoding space
- a small perturbation to an encoding should decode to a something similar to the original image

Alexandra VAE

Image from https://github.com/greentfrapp/keras-aae

MNIST latent space ³

- \bullet they can memorize the train set \Longrightarrow representations learned are not meaningful
- the latent space has no structure, no guarantee that distances in the original space are preserved in the encoding space
- a small perturbation to an encoding should decode to a something similar to the original image

Alexandra VAE

Image from https://github.com/greentfrapp/keras-aae

MNIST latent space ³

- \bullet they can memorize the train set \Longrightarrow representations learned are not meaningful
- the latent space has no structure, no guarantee that distances in the original space are preserved in the encoding space
- a small perturbation to an encoding should decode to a something similar to the original image

VAF

³ Image from https://github.com/greentfrapp/keras-aae

Outline

- Autoencoders
 - The problem of dimensionality reduction
 - Autoencoders
 - Limitations
- 2 Variational Autoencoders
 - Intuition behind VAEs
 - General Architecture
 - Probabilistic View of VAEs
 - Learning in VAEs
 - Applications

Generative Models in Deep Learning

"What I cannot create, I do not understand" - Richard Feynman

Real or generated? 4

Alexandra

- AEs with a distribution on the valid codes for each input (s.t. small perturbations don't affect too much the reconstruction)
 - the distributions of all latent codes cover the space nicely \implies initializing the decoder with a random code will result in a valid image
- Loss function: Reconstruction error + Regularization on the encoder
- they are probabilistic models, rooted in the fied of variational inference
 we actually have a theory why they work!

age from https://blog.fastforwardlabs.com/2016/08/22/under-the-hood-of-the-vating:bend @tbento를:bindh≧ib =

 AEs with a distribution on the valid codes for each input (s.t. small perturbations don't affect too much the reconstruction)

- the distributions of all latent codes cover the space nicely
 initializing the decoder with a random code will result in a valid image
- Loss function: Reconstruction error + Regularization on the encoder
- they are probabilistic models, rooted in the fied of variational inference
 we actually have a theory why they work!

13 / 32

blmage from https://blog.fastforwardlabs.com/2016/08/22/under-the-hood-of-the-watinibnat-fatbento-er>inthæl>

VAEs 5

- AEs with a distribution on the valid codes for each input (s.t. small perturbations don't affect too much the reconstruction)
- the distributions of all latent codes cover the space nicely
 initializing the decoder with a random code will result in a valid image
- Loss function: Reconstruction error + Regularization on the encoder
 - they are probabilistic models, rooted in the fied of variational inference ⇒ we actually have a theory why they work! ▲

VAEs ⁵

- AEs with a distribution on the valid codes for each input (s.t. small perturbations don't affect too much the reconstruction)
- the distributions of all latent codes cover the space nicely
 initializing the decoder with a random code will result in a valid image
- Loss function: Reconstruction error + Regularization on the encoder
- they are probabilistic models, rooted in the fied of variational inference
 we actually have a theory why they work!

Alexandra VAE 13 / 32

 $^{5\\} Image from https://blog.fastforwardlabs.com/2016/08/22/under-the-hood-of-the-variational-autoencoder-in.html-hood-of-the-variational-autoencoder-in.h$

Why VAEs?

- Encode meaningfully the input in a lower dimensional space
- Initialize the decoder with $\mathcal{N}(0,I)$ to generate samples similar to the train set

Outline

- Autoencoders
 - The problem of dimensionality reduction
 - Autoencoders
 - Limitations
- Variational Autoencoders
 - Intuition behind VAEs
 - General Architecture
 - Probabilistic View of VAEs
 - Learning in VAEs
 - Applications

Encoder regularization

- The encoder with weights ϕ learns a distribution $q_{\phi}(\mathbf{z}|\mathbf{x})$ over the valid codes $\mathbf{z} \in \mathbb{R}^K$ of \mathbf{x} ; easiest choice for $q_{\phi}(\mathbf{z}|\mathbf{x}) : \mathcal{N}(\mu_{\phi}, \sigma_{\phi}^2 I)$
- ullet We assume the space of our latent codes, before seeing old x, is $p(old z) \sim \mathcal{N}(0,I)$
- Enforce $q_{\phi}(\mathbf{z}|\mathbf{x})$ for all \mathbf{x} to cover the latent space nicely \Longrightarrow we make $q_{\phi}(\mathbf{z}|\mathbf{x})$ close to $\mathcal{N}(0,I)$ (hint: Use KL divergence)
- Define the regularization term:

$$\mathbb{E}_{\mathsf{x} \sim \mathcal{D}}[\,\mathsf{KL}ig(q_\phi(\mathsf{z}|\mathsf{x})||p(\mathsf{z})ig)]$$

• For independent Gaussian distributions: $KL = \frac{1}{2} \sum_{k=1}^{K} [\sigma_k^2 + \mu_k^2 - \ln \sigma_k^2 - 1]$

Encoder regularization

- The encoder with weights ϕ learns a distribution $q_{\phi}(\mathbf{z}|\mathbf{x})$ over the valid codes $\mathbf{z} \in \mathbb{R}^K$ of \mathbf{x} ; easiest choice for $q_{\phi}(\mathbf{z}|\mathbf{x}) : \mathcal{N}(\mu_{\phi}, \sigma_{\phi}^2 I)$
- ullet We assume the space of our latent codes, before seeing old x, is $p(old z) \sim \mathcal{N}(0,I)$
- Enforce $q_{\phi}(\mathbf{z}|\mathbf{x})$ for all \mathbf{x} to cover the latent space nicely \Longrightarrow we make $q_{\phi}(\mathbf{z}|\mathbf{x})$ close to $\mathcal{N}(0,I)$ (hint: Use KL divergence)
- Define the regularization term:

$$\mathbb{E}_{\mathsf{x} \sim \mathcal{D}}[\mathsf{KL}(q_{\phi}(\mathsf{z}|\mathsf{x})||p(\mathsf{z}))]$$

• For independent Gaussian distributions: $KL = \frac{1}{2} \sum_{k=1}^{K} [\sigma_k^2 + \mu_k^2 - \ln \sigma_k^2 - 1]$

Alexandra VAE 16 / 3

- Given $\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$, the decoder with weights θ learns the most likely reconstruction of $\mathbf{x} \implies p_{\theta}(\mathbf{x}|\mathbf{z})$
- $\|x \hat{x}\|^2$ is equivalent with $p_{\theta}(\cdot|\mathbf{z}) = \mathcal{N}(\mathbf{\hat{x}}, \mathbf{I})$
- ullet other choices for $p_{ heta}(\mathbf{x}|\mathbf{z})$: Bernoulli distributions, if $\mathbf{x} \in \{0,1\}^N$
- In general, the reconstruction term:

$$\mathbb{E}_{x \mapsto \theta} [\mathbb{E}_{q_{\theta}(\mathbf{z}|\mathbf{x})} [\ln p_{\theta}(\mathbf{x}|\mathbf{z})]]$$

- Given $\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$, the decoder with weights θ learns the most likely reconstruction of $\mathbf{x} \implies p_{\theta}(\mathbf{x}|\mathbf{z})$
- $\|x \hat{x}\|^2$ is equivalent with $p_{\theta}(\cdot|\mathbf{z}) = \mathcal{N}(\mathbf{\hat{x}}, \mathbf{I})$
- ullet other choices for $p_{ heta}(\mathbf{x}|\mathbf{z})$: Bernoulli distributions, if $\mathbf{x} \in \{0,1\}^N$
- In general, the reconstruction term:

$$\mathbb{E}_{\mathsf{x} \sim \mathcal{D}}[\mathbb{E}_{q_{\phi}(\mathsf{z}|\mathsf{x})}[\operatorname{\mathsf{In}} p_{ heta}(\mathsf{x}|\mathsf{z})]]$$

Alexandra VAE 17 /

- Given $\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$, the decoder with weights θ learns the most likely reconstruction of $\mathbf{x} \implies p_{\theta}(\mathbf{x}|\mathbf{z})$
- $\|x \hat{x}\|^2$ is equivalent with $p_{\theta}(\cdot|\mathbf{z}) = \mathcal{N}(\mathbf{\hat{x}}, \mathbf{I})$
- ullet other choices for $p_{ heta}(\mathbf{x}|\mathbf{z})$: Bernoulli distributions, if $\mathbf{x} \in \{0,1\}^N$
- In general, the reconstruction term:

$$\mathbb{E}_{\mathsf{x} \sim \mathcal{D}}[\mathbb{E}_{q_{\phi}(\mathsf{z}|\mathsf{x})}[\operatorname{\mathsf{In}} p_{ heta}(\mathsf{x}|\mathsf{z})]]$$

- Given $\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$, the decoder with weights θ learns the most likely reconstruction of $\mathbf{x} \implies p_{\theta}(\mathbf{x}|\mathbf{z})$
- $\|x \hat{x}\|^2$ is equivalent with $p_{\theta}(\cdot|\mathbf{z}) = \mathcal{N}(\mathbf{\hat{x}}, \mathbf{I})$
- ullet other choices for $p_{ heta}(\mathbf{x}|\mathbf{z})$: Bernoulli distributions, if $\mathbf{x} \in \{0,1\}^N$
- In general, the reconstruction term:

$$\mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\operatorname{In} p_{\theta}(\mathbf{x}|\mathbf{z})]]$$

Alexandra

• For a single data point x, ELBO is defined as:

$$\mathcal{L}(\theta, \phi; \mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] - \frac{\mathit{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \mid\mid p_{\theta}(\mathbf{z}))}{}$$

Reconstruction

Regularization

$$\phi^{\star}, \theta^{\star} = \arg\max_{\phi, \theta} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[\mathcal{L}(\theta, \phi; \mathbf{x})] \approx \arg\max_{\phi, \theta} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(\theta, \phi; \mathbf{x}_n)$$

- ullet ELBO is a lower bound on $\ln p_{ heta}({\sf x}) \Longrightarrow {\sf VAE}$ does MLE implicitly!

VAE Alexandra

• For a single data point x, ELBO is defined as:

$$\mathcal{L}(\theta, \phi; \mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] - \frac{\mathit{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \mid\mid p_{\theta}(\mathbf{z}))}{}$$

Reconstruction

Regularization

• Learning in VAEs ←⇒ finding:

$$\phi^{\star}, \theta^{\star} = \operatorname*{arg\,max}_{\phi, \theta} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[\mathcal{L}(\theta, \phi; \mathbf{x})] \approx \operatorname*{arg\,max}_{\phi, \theta} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(\theta, \phi; \mathbf{x}_n)$$

- ullet ELBO is a lower bound on $\ln p_{ heta}(\mathbf{x}) \Longrightarrow ext{VAE}$ does MLE implicitly!

VAE Alexandra

• For a single data point x, ELBO is defined as:

$$\mathcal{L}(heta, \phi; \mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{ heta}(\mathbf{x}|\mathbf{z})] - \frac{\mathit{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \mid\mid p_{ heta}(\mathbf{z}))}{}$$

Reconstruction

Regularization

• Learning in VAEs ←⇒ finding:

$$\phi^{\star}, \theta^{\star} = \operatorname*{arg\,max}_{\phi, \theta} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[\mathcal{L}(\theta, \phi; \mathbf{x})] \approx \operatorname*{arg\,max}_{\phi, \theta} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(\theta, \phi; \mathbf{x}_n)$$

ullet ELBO is a lower bound on $\ln p_{ heta}(\mathbf{x}) \Longrightarrow \mathsf{VAE}$ does MLE implicitly!

VAE Alexandra

• For a single data point x, ELBO is defined as:

$$\mathcal{L}(heta, \phi; \mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{ heta}(\mathbf{x}|\mathbf{z})] - \frac{\mathit{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \mid\mid p_{ heta}(\mathbf{z}))}{}$$

Reconstruction

Regularization

• Learning in VAEs ←⇒ finding:

$$\phi^{\star}, \theta^{\star} = \operatorname*{arg\,max}_{\phi, \theta} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[\mathcal{L}(\theta, \phi; \mathbf{x})] \approx \operatorname*{arg\,max}_{\phi, \theta} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(\theta, \phi; \mathbf{x}_n)$$

ullet ELBO is a lower bound on $\ln p_{ heta}(\mathbf{x}) \Longrightarrow \mathsf{VAE}$ does MLE implicitly!

 \bullet ϕ and θ are learned simultaneously by backpropagation (\(\lambda \) Sampling layer! How do we backprop through stochastic layers?)

Alexandra VAE

Outline

- Autoencoders
 - The problem of dimensionality reduction
 - Autoencoders
 - Limitations
- Variational Autoencoders
 - Intuition behind VAEs
 - General Architecture
 - Probabilistic View of VAEs
 - Learning in VAEs
 - Applications

VAEs as PGMs

We assume our observations \mathbf{x} are the result of a hidden random variable $\mathbf{z} \sim p(z)$, through f_{θ} . Our goal: infer $p_{\theta}(\mathbf{z}|\mathbf{x}) \longrightarrow \underline{\text{intractable}}$ problem

Use variational inference to find $q_{\phi}(\mathbf{z}|\mathbf{x}) \approx p_{\theta}(\mathbf{z}|\mathbf{x})$, by minimizing $\mathsf{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z}|\mathbf{x}))$.

Equivalent easier problem: maximize a lower bound of the log likelihood.

VAEs as PGMs

We assume our observations \mathbf{x} are the result of a hidden random variable $\mathbf{z} \sim p(z)$, through f_{θ} . Our goal: infer $p_{\theta}(\mathbf{z}|\mathbf{x}) \longrightarrow \text{intractable problem}$

Use variational inference to find $q_{\phi}(\mathbf{z}|\mathbf{x}) \approx p_{\theta}(\mathbf{z}|\mathbf{x})$, by minimizing $\mathsf{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z}|\mathbf{x}))$.

Equivalent easier problem: maximize a lower bound of the log likelihood.

VAEs as PGMs

We assume our observations \mathbf{x} are the result of a hidden random variable $\mathbf{z} \sim p(z)$, through f_{θ} . Our goal: infer $p_{\theta}(\mathbf{z}|\mathbf{x}) \longrightarrow \underline{\text{intractable}}$ problem

Use variational inference to find $q_{\phi}(\mathbf{z}|\mathbf{x}) \approx p_{\theta}(\mathbf{z}|\mathbf{x})$, by minimizing $\mathsf{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z}|\mathbf{x}))$.

Equivalent easier problem: maximize a lower bound of the log likelihood.

Defining the Evidence Lower Bound (ELBO)

How to derive the bound?

$$\ln p_{\theta}(\mathbf{x}) = \int q_{\phi}(\mathbf{z}|\mathbf{x}) \ln \frac{p_{\theta}(\mathbf{x},\mathbf{z})}{p_{\theta}(\mathbf{z}|\mathbf{x})} \mathbf{dz} = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg[\ln \frac{p_{\theta}(\mathbf{x},\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg] + \mathsf{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x}))$$

Therefore,

$$\ln p_{\theta}(\mathbf{x}) \geq \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg[\ln \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg] = \mathcal{L}(\theta, \phi; \mathbf{x})$$

ELBO can be further rewritten into the familiar form

$$\mathcal{L}(\theta, \phi; \mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] - \mathsf{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

Alexandra VAE 21 / 3

Defining the Evidence Lower Bound (ELBO)

How to derive the bound?

$$\ln p_{\theta}(\mathbf{x}) = \int q_{\phi}(\mathbf{z}|\mathbf{x}) \ln \frac{p_{\theta}(\mathbf{x},\mathbf{z})}{p_{\theta}(\mathbf{z}|\mathbf{x})} \mathbf{dz} = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg[\ln \frac{p_{\theta}(\mathbf{x},\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg] + \mathsf{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x}))$$

Therefore,

$$\ln p_{\theta}(\mathbf{x}) \geq \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg[\ln \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \bigg] = \mathcal{L}(\theta, \phi; \mathbf{x})$$

ELBO can be further rewritten into the familiar form

$$\mathcal{L}(\theta, \phi; \mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] - \mathsf{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

Alexandra VAE 21 / 32

Outline

- - The problem of dimensionality reduction
 - Autoencoders
 - Limitations
- Variational Autoencoders
 - Intuition behind VAEs
 - General Architecture
 - Probabilistic View of VAEs
 - Learning in VAEs
 - Applications

VAE

How to deal with stochastic layers?

sampling from $\mathcal{N}(\mu, \sigma^2 I)$ in the middle ⁶

- If we sample directly from $\mathcal{N}(\mu_{\phi}, \sigma_{\phi}^2 I)$, the graph losses the dependence on the encoder's parameters \Longrightarrow we can't backpropagate
- Use reparameterization trick: first sample $\epsilon \sim \mathcal{N}(0, I)$, and feed $\mathbf{z} = \mu_{\phi} + \sigma_{\phi} \odot \epsilon$ into the decoder (the same as $z \sim \mathcal{N}(\mu_{\phi}, \sigma_{\phi}^2 I)$, but backprop-friendly!)

◆ロト ◆団ト ◆草ト ◆草ト 草 めなぐ

 $Image\ from\ https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder for the control of the con$

How to deal with stochastic layers?

sampling from $\mathcal{N}(\mu, \sigma^2 I)$ in the middle ⁶

- If we sample directly from $\mathcal{N}(\mu_{\phi}, \sigma_{\phi}^2 I)$, the graph losses the dependence on the encoder's parameters \Longrightarrow we can't backpropagate
- Use **reparameterization trick**: first sample $\epsilon \sim \mathcal{N}(0, I)$, and feed $\mathbf{z} = \mu_{\phi} + \sigma_{\phi} \odot \epsilon$ into the decoder (the same as $z \sim \mathcal{N}(\mu_{\phi}, \sigma_{\phi}^2 I)$, but backprop-friendly!)

←ロト→部・→注・→注・ 注 ・ 夕 Q

Image from https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder

Reparameterization Trick Visualized

8

Alexandra

^{8&}lt;sub>Image from [Doe16]</sub>

Backpropagation Formulas

• Gradient w.r.t. θ :

Gradient w.r.t.
$$\theta$$
:
$$\nabla_{\theta} \mathcal{L}(\phi, \theta; \mathbf{x}) = \nabla_{\theta} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\nabla_{\theta} \ln p_{\theta}(\mathbf{z}|\mathbf{x})]$$

$$\nabla_{\theta} \mathcal{L}(\phi, \theta; \mathbf{x}) \approx \frac{1}{S} \sum_{s=1}^{S} \nabla_{\theta} \ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(s)})$$

ullet Gradient w.r.t ϕ

$$\begin{split} &\nabla_{\phi}\mathcal{L}(\phi,\theta;\mathbf{x}) = \nabla_{\phi}\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] - \nabla_{\phi}\operatorname{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) \\ &\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] \approx \frac{1}{S}\sum_{s}^{S}\ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(s)}) \longrightarrow \text{no explicit dependence of } \\ &\mathbf{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] \approx \frac{1}{S}\sum_{s}^{S}\ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(s)}) \longrightarrow \text{no explicit dependence of } \\ &\mathbf{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] \approx \frac{1}{S}\sum_{s}^{S}\ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(s)}) \longrightarrow \text{no explicit dependence of } \\ &\mathbf{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] \approx \frac{1}{S}\sum_{s}^{S}\ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(s)}) \longrightarrow \text{no explicit dependence of } \\ &\mathbf{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] \approx \frac{1}{S}\sum_{s}^{S}\ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(s)}) \longrightarrow \text{no explicit dependence of } \\ &\mathbf{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] \approx \frac{1}{S}\sum_{s}^{S}\ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(s)}) \longrightarrow \text{no explicit dependence of } \\ &\mathbf{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] \approx \frac{1}{S}\sum_{s}^{S}\ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(s)}) \longrightarrow \text{no explicit dependence of } \\ &\mathbf{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] \approx \frac{1}{S}\sum_{s}^{S}\ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(s)}) \longrightarrow \text{no explicit dependence of } \\ &\mathbf{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] \approx \frac{1}{S}\sum_{s}^{S}\ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(s)}) \longrightarrow \text{no explicit dependence of } \\ &\mathbf{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] = \frac{1}{S}\sum_{s}^{S}\ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(s)}) \longrightarrow \text{no explicit dependence } \\ &\mathbf{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] = \frac{1}{S}\sum_{s}^{S}\ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(s)}) = \frac{1}{S}\sum_{s}^{S}\ln p_{\theta}(\mathbf{z}|\mathbf{z}^{(s)}) = \frac{1}{S}\sum_{s}^{S}\ln p$$

 $\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] pprox \overline{S} \sum_{s=1} \ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(s)}) \longrightarrow \text{no explicit dependence on } \phi$

• How to compute $\nabla_{\phi}\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{z}|\mathbf{x})]$

Backpropagation Formulas

Gradient w.r.t. θ:

Gradient w.r.t.
$$\theta$$
:
$$\nabla_{\theta} \mathcal{L}(\phi, \theta; \mathbf{x}) = \nabla_{\theta} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\nabla_{\theta} \ln p_{\theta}(\mathbf{z}|\mathbf{x})]$$

$$\nabla_{\theta} \mathcal{L}(\phi, \theta; \mathbf{x}) \approx \frac{1}{S} \sum_{s=1}^{S} \nabla_{\theta} \ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(s)})$$

• Gradient w.r.t ϕ :

$$\nabla_{\phi} \mathcal{L}(\phi, \theta; \mathbf{x}) = \nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\ln p_{\theta}(\mathbf{x}|\mathbf{z})] - \nabla_{\phi} \operatorname{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\ln p_{\theta}(\mathbf{x}|\mathbf{z})] \approx \frac{1}{S} \sum_{\mathbf{z}=1}^{S} \ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(\mathbf{s})}) \longrightarrow \text{no explicit dependence on } \phi$$

Backpropagation Formulas

Gradient w.r.t. θ:
$$\begin{split} &\nabla_{\theta} \mathcal{L}(\phi, \theta; \mathbf{x}) = \nabla_{\theta} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\nabla_{\theta} \ln p_{\theta}(\mathbf{z}|\mathbf{x})] \\ &\nabla_{\theta} \mathcal{L}(\phi, \theta; \mathbf{x}) \approx \frac{1}{S} \sum_{s=1}^{S} \nabla_{\theta} \ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(s)}) \end{split}$$

• Gradient w.r.t
$$\phi$$
:
$$\nabla_{\phi} \mathcal{L}(\phi, \theta; \mathbf{x}) = \nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] - \nabla_{\phi} \operatorname{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] \approx \frac{1}{S} \sum_{i=1}^{S} \ln p_{\theta}(\mathbf{x}|\mathbf{z}^{(\mathbf{s})}) \longrightarrow \text{no explicit dependence on } \phi$$

• How to compute $\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})]$?

- ullet Find r.v. $\epsilon \sim r(\cdot)$ and $g_\phi(\cdot)$ diff. function, s.t. ${f z} = g_\phi(\epsilon)$
- $\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] = \mathbb{E}_{r(\epsilon)}[\ln p_{\theta}(\mathbf{x}|g_{\phi}(\epsilon))]$
- $\bullet \ \nabla_{\phi} \mathcal{L}(\phi, \theta; \mathbf{x}) = \nabla_{\phi} \mathbb{E}_{r(\epsilon)} [\nabla_{\phi} \ln p_{\theta}(\mathbf{x} | g_{\phi}(\epsilon))]$
- Can use MC approx. $\nabla_{\phi} \mathcal{L}(\phi, \theta; \mathbf{x}) \approx \frac{1}{S} \sum_{s=1}^{S} \nabla_{\phi} \ln p_{\theta}(\mathbf{x} | g_{\phi}(\epsilon^{(s)}))$
- For Gaussian distributions, $g_{\phi}(\epsilon) = \mu_{\phi} + \sigma_{\phi} \odot \epsilon$, with $\epsilon \sim \mathcal{N}(0, I)$

- ullet Find r.v. $\epsilon \sim r(\cdot)$ and $g_\phi(\cdot)$ diff. function, s.t. ${f z} = g_\phi(\epsilon)$
- $\bullet \ \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] = \mathbb{E}_{r(\epsilon)}[\ln p_{\theta}(\mathbf{x}|g_{\phi}(\epsilon))]$
- $\bullet \ \nabla_{\phi} \mathcal{L}(\phi, \theta; \mathbf{x}) = \nabla_{\phi} \mathbb{E}_{r(\epsilon)} [\nabla_{\phi} \ln p_{\theta}(\mathbf{x} | g_{\phi}(\epsilon))]$
- Can use MC approx. $\nabla_{\phi} \mathcal{L}(\phi, \theta; \mathbf{x}) \approx \frac{1}{S} \sum_{s=1}^{S} \nabla_{\phi} \ln p_{\theta}(\mathbf{x} | g_{\phi}(\epsilon^{(s)}))$
- For Gaussian distributions, $g_{\phi}(\epsilon) = \mu_{\phi} + \sigma_{\phi} \odot \epsilon$, with $\epsilon \sim \mathcal{N}(0, I)$

- ullet Find r.v. $\epsilon \sim r(\cdot)$ and $g_\phi(\cdot)$ diff. function, s.t. $\mathbf{z} = g_\phi(\epsilon)$
- $\bullet \ \mathbb{E}_{q_{\phi}(\mathsf{z}|\mathsf{x})}[\mathsf{ln}\, p_{\theta}(\mathsf{x}|\mathsf{z})] = \mathbb{E}_{r(\epsilon)}[\mathsf{ln}\, p_{\theta}(\mathsf{x}|g_{\phi}(\epsilon))]$
- $\bullet \ \nabla_{\phi} \mathcal{L}(\phi, \theta; \mathbf{x}) = \nabla_{\phi} \mathbb{E}_{r(\epsilon)} [\nabla_{\phi} \ln p_{\theta}(\mathbf{x} | g_{\phi}(\epsilon))]$
- Can use MC approx. $\nabla_{\phi} \mathcal{L}(\phi, \theta; \mathbf{x}) \approx \frac{1}{S} \sum_{s=1}^{S} \nabla_{\phi} \ln p_{\theta}(\mathbf{x} | g_{\phi}(\epsilon^{(s)}))$
- For Gaussian distributions, $g_{\phi}(\epsilon) = \mu_{\phi} + \sigma_{\phi} \odot \epsilon$, with $\epsilon \sim \mathcal{N}(0, I)$

- Find r.v. $\epsilon \sim r(\cdot)$ and $g_{\phi}(\cdot)$ diff. function, s.t. $\mathbf{z} = g_{\phi}(\epsilon)$
- $\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] = \mathbb{E}_{r(\epsilon)}[\ln p_{\theta}(\mathbf{x}|g_{\phi}(\epsilon))]$
- $\nabla_{\phi} \mathcal{L}(\phi, \theta; \mathbf{x}) = \nabla_{\phi} \mathbb{E}_{r(\epsilon)} [\nabla_{\phi} \ln p_{\theta}(\mathbf{x} | g_{\phi}(\epsilon))]$
- Can use MC approx. $\nabla_{\phi} \mathcal{L}(\phi, \theta; \mathbf{x}) \approx \frac{1}{5} \sum_{s}^{S} \nabla_{\phi} \ln p_{\theta}(\mathbf{x}|g_{\phi}(\epsilon^{(s)}))$

- Find r.v. $\epsilon \sim r(\cdot)$ and $g_{\phi}(\cdot)$ diff. function, s.t. $\mathbf{z} = g_{\phi}(\epsilon)$
- $\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\ln p_{\theta}(\mathbf{x}|\mathbf{z})] = \mathbb{E}_{r(\epsilon)}[\ln p_{\theta}(\mathbf{x}|g_{\phi}(\epsilon))]$
- $\nabla_{\phi} \mathcal{L}(\phi, \theta; \mathbf{x}) = \nabla_{\phi} \mathbb{E}_{r(\epsilon)} [\nabla_{\phi} \ln p_{\theta}(\mathbf{x} | g_{\phi}(\epsilon))]$
- Can use MC approx. $\nabla_{\phi} \mathcal{L}(\phi, \theta; \mathbf{x}) \approx \frac{1}{S} \sum_{i=1}^{S} \nabla_{\phi} \ln p_{\theta}(\mathbf{x} | g_{\phi}(\epsilon^{(s)}))$
- For Gaussian distributions, $g_{\phi}(\epsilon) = \mu_{\phi} + \sigma_{\phi} \odot \epsilon$, with $\epsilon \sim \mathcal{N}(0, I)$

Alexandra

Outline

- Autoencoders
 - The problem of dimensionality reduction
 - Autoencoders
 - Limitations
- Variational Autoencoders
 - Intuition behind VAEs
 - General Architecture
 - Probabilistic View of VAEs
 - Learning in VAEs
 - Applications

Implementation using tf.contrib.distributions

```
Full example at:
# https://danijar.com/building-variational-auto-encoders-in-tensorflow/
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input data
tfd = tf.contrib.distributions
def make encoder(data, code size):
 x = tf.layers.flatten(data)
 x = tf.layers.dense(x, 200, tf.nn.relu)
 x = tf.layers.dense(x, 200, tf.nn.relu)
 loc = tf.layers.dense(x, code size)
 scale = tf.lavers.dense(x. code size. tf.nn.softplus)
 return tfd.MultivariateNormalDiag(loc, scale)
def make_prior(code size):
 loc = tf.zeros(code size)
 scale = tf.ones(code size)
 return tfd.MultivariateNormalDiag(loc. scale)
def make decoder(code, data shape);
 x = code
 x = tf.lavers.dense(x, 200, tf.nn.relu)
 x = tf.layers.dense(x, 200, tf.nn.relu)
 logit = tf.lavers.dense(x. np.prod(data shape))
 logit = tf.reshape(logit, [-1] + data shape)
 return tfd.Independent(tfd.Bernoulli(logit), 2)
data = tf.placeholder(tf.float32, [None, 28, 28])
make_encoder = tf.make_template('encoder', make_encoder)
make decoder = tf.make template('decoder', make decoder)
# Define the model.
prior = make prior(code size=2)
posterior = make encoder(data, code size=2)
code = posterior.sample()
# Define the loss.
likelihood = make decoder(code, [28, 28]).log prob(data)
divergence = tfd.kl divergence(posterior, prior)
elbo = tf.reduce_mean(likelihood - divergence)
optimize = tf.train.AdamOptimizer(0.001).minimize(-elbo)
samples = make decoder(prior.sample(10), [28, 28]).mean()
```

Learned Latent Manifold

MNIST latent manifold 9

Thank you!

30 / 32

References I

[Doe16] Carl Doersch.
Tutorial on variational autoencoders.
CoRR, abs/1606.05908, 2016.

[Ger17] Aurelien Geron.

Hands-on machine learning with Scikit-Learn and TensorFlow:

concepts, tools, and techniques to build intelligent systems.

O'Reilly Media, 2017.

- [HHS+18] Huaibo Huang, Ran He, Zhenan Sun, Tieniu Tan, et al. Introvae: Introspective variational autoencoders for photographic image synthesis.
 In Advances in Neural Information Processing Systems, pages 52–63, 2018.
- [KALL17] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality, stability, and variation.

 arXiv preprint arXiv:1710.10196, 2017.

Alexandra VAE 31 / 32

References II

[KW13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Alexandra VAE 32 / 32