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Why care about dimensionality reduction?

Which sequence is easier to memorize? 1

40, 27, 25, 36, 81, 57, 10, 73, 19, 68 ?

50, 25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20?

Reducing the dimensionality of the data helps to:

store information more efficiently

discover new patterns in the data, which were initially hidden from us

Unsupervised learning!

1Example from [Ger17]
Alexandra VAE 4 / 32



Principal Component Analysis

X ∈ RN×D matrix data, with zero-mean columns

Find the orthogonal directions w ∈ RD along which the data has the greatest
variance and project on them

first principal component: w1 = argmax‖w‖=1‖Xw‖2

SVD: X = UΣW T , W ∈ RD×D , W TW = ID ; PCA decomposition using
the first k < D components: find Wk = [W 1,W 2, . . . ,W k ] and set
Xk = XWk

Alexandra VAE 5 / 32



PCA Visualization of MNIST
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General Architecture and Training of Autoencoders

Stacked Autoencoder 2

Train by minimizing
Ex∼D [‖x − x̂‖2]

Avoid overfitting by tying the
weights of the encoder and decoder:
WL−`+1 = W T

` ,∀` ∈ 1, L/2

Can use the encoder to initialize a
NN for classifiying the labels - AE
learns more interesting features

Caution: A too powerful AE might
learn the identity map between
input and reconstructions, making
the coding layer represent just
random noise

2Image from [Ger17]
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Autoencoders have their limitations:

MNIST latent space 3

they can memorize the train set =⇒
representations learned are not meaningful

the latent space has no structure, no
guarantee that distances in the original
space are preserved in the encoding space

a small perturbation to an encoding
should decode to a something similar to
the original image

the encodings of the train set should cover
the latent space nicely =⇒ sampling any
point from the latent space will decode
into a reasonable image

3
Image from https://github.com/greentfrapp/keras-aae
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Generative Models in Deep Learning

“What I cannot create, I do not understand” - Richard Feynman

Real or generated? 4

4
Images from [KALL17], [HHS+18]
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What are VAEs?

VAEs 5

AEs with a distribution on the valid codes
for each input (s.t. small perturbations
don’t affect too much the reconstruction)

the distributions of all latent codes cover the
space nicely =⇒ initializing the decoder with
a random code will result in a valid image

Loss function: Reconstruction error +
Regularization on the encoder

they are probabilistic models, rooted in the
fied of variational inference =⇒ we actually

have a theory why they work!

5
Image from https://blog.fastforwardlabs.com/2016/08/22/under-the-hood-of-the-variational-autoencoder-in.html
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Why VAEs?

Encode meaningfully the input in a lower dimensional space

Initialize the decoder with N (0, I ) to generate samples similar to the
train set

Alexandra VAE 14 / 32
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Encoder regularization

The encoder with weights φ learns a distribution qφ(z|x) over the valid codes
z ∈ RK of x ; easiest choice for qφ(z|x) : N (µφ, σ

2
φI )

We assume the space of our latent codes, before seeing x, is p(z) ∼ N (0, I )

Enforce qφ(z|x) for all x to cover the latent space nicely =⇒ we make
qφ(z|x) close to N (0, I ) (hint: Use KL divergence)

Define the regularization term:

Ex∼D[ KL(qφ(z|x)||p(z))]

For independent Gaussian distributions: KL =
1

2

K∑
k=1

[σ2
k + µ2

k − lnσ2
k − 1]
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The Reconstruction Term

Given z ∼ qφ(z|x), the decoder with weights θ learns the most likely
reconstruction of x =⇒ pθ(x|z)

‖x − x̂‖2 is equivalent with pθ(·|z) = N (x̂, I)

other choices for pθ(x|z): Bernoulli distributions, if x ∈ {0, 1}N

In general, the reconstruction term:

Ex∼D[Eqφ(z|x)[ ln pθ(x|z)]]
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The Evidence Lower Bound (ELBO)

For a single data point x, ELBO is defined as:

L(θ, φ; x) = Eqφ(z|x)[ln pθ(x|z)] − KL(qφ(z|x) || pθ(z))

Reconstruction Regularization

Learning in VAEs ⇐⇒ finding:

φ?, θ? = arg max
φ,θ

Ex∼D[L(θ, φ; x)] ≈ arg max
φ,θ

1

N

N∑
n=1

L(θ, φ; xn)

ELBO is a lower bound on ln pθ(x) =⇒ VAE does MLE implicitly!U
φ and θ are learned simultaneously by backpropagation
( !4Sampling layer! How do we backprop through stochastic layers?)
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VAEs as PGMs

We assume our observations x are the result of a hidden
random variable z ∼ p(z), through fθ.
Our goal: infer pθ(z|x) −→ intractable problem

z

x

fθ(·)qφ(z | x)
Use variational inference to find qφ(z|x) ≈ pθ(z|x),

by minimizing KL(qφ(z|x) ‖ pθ(z|x)).

Equivalent easier problem:
maximize a lower bound of the log likelihood.
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Defining the Evidence Lower Bound (ELBO)

How to derive the bound?

ln pθ(x) =

∫
qφ(z|x) ln

pθ(x, z)

pθ(z|x)
dz = Eqφ(z|x)

[
ln

pθ(x, z)

qφ(z|x)

]
+ KL(qφ(z|x)||pθ(z|x))

Therefore,

ln pθ(x) ≥ Eqφ(z|x)

[
ln

pθ(x, z)

qφ(z|x)

]
= L(θ, φ; x)

ELBO can be further rewritten into the familiar form

L(θ, φ; x) = Eqφ(z|x)[ln pθ(x|z)]− KL(qφ(z|x)||p(z))
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How to deal with stochastic layers?

sampling from N (µ, σ2I ) in the middle 6

If we sample directly from N (µφ, σ
2
φI ), the graph losses the dependence on

the encoder’s parameters =⇒ we can’t backpropagate

Use reparameterization trick: first sample ε ∼ N (0, I ), and feed
z = µφ + σφ � ε into the decoder (the same as z ∼ N (µφ, σ

2
φI ), but

backprop-friendly! )

7
Image from https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder
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Reparameterization Trick Visualized

8

8
Image from [Doe16]
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Backpropagation Formulas

Gradient w.r.t. θ:
∇θL(φ, θ; x) = ∇θEqφ(z|x)[ln pθ(x|z)] = Eqφ(z|x)[∇θ ln pθ(z|x)]

∇θL(φ, θ; x) ≈ 1

S

S∑
s=1

∇θ ln pθ(x|z(s)) X

Gradient w.r.t φ:
∇φL(φ, θ; x) = ∇φEqφ(z|x)[ln pθ(x|z)]−∇φ KL(qφ(z|x)||p(z))

Eqφ(z|x)[ln pθ(x|z)] ≈ 1

S

S∑
s=1

ln pθ(x|z(s)) −→ no explicit dependence on φ 7

How to compute ∇φEqφ(z|x)[ln pθ(x|z)] ?
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Reparameterization Trick - General Case

Find r.v. ε ∼ r(·) and gφ(·) diff. function, s.t. z = gφ(ε)

Eqφ(z|x)[ln pθ(x|z)] = Er(ε)[ln pθ(x|gφ(ε))]

∇φL(φ, θ; x) = ∇φEr(ε)[∇φ ln pθ(x|gφ(ε))]

Can use MC approx. ∇φL(φ, θ; x) ≈ 1

S

S∑
s=1

∇φ ln pθ(x|gφ(ε(s))) X

For Gaussian distributions, gφ(ε) = µφ + σφ � ε, with ε ∼ N (0, I )
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Eqφ(z|x)[ln pθ(x|z)] = Er(ε)[ln pθ(x|gφ(ε))]

∇φL(φ, θ; x) = ∇φEr(ε)[∇φ ln pθ(x|gφ(ε))]

Can use MC approx. ∇φL(φ, θ; x) ≈ 1

S

S∑
s=1

∇φ ln pθ(x|gφ(ε(s))) X

For Gaussian distributions, gφ(ε) = µφ + σφ � ε, with ε ∼ N (0, I )

Alexandra VAE 26 / 32



Outline

1 Autoencoders
The problem of dimensionality reduction
Autoencoders
Limitations

2 Variational Autoencoders
Intuition behind VAEs
General Architecture
Probabilistic View of VAEs
Learning in VAEs
Applications

Alexandra VAE 27 / 32



Implementation using tf.contrib.distributions
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Learned Latent Manifold

MNIST latent manifold 9

9
Image from https://blog.fastforwardlabs.com/2016/08/12/introducing-variational-autoencoders-in-prose-and.html
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Thank you!
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