Probabilistic Graphical Models Christoph Lampert <chl@ist.ac.at> TA: all of us <pgm_2016@lists.ist.ac.at> Exercise Sheet 3 v1.0

1 Maximum Likelihood Parameter Estimation: Gaussians

(Reminder: an estimator \hat{E} is called *unbiased*, if it's expected valued is the true target value E, *i.e.* $\mathbb{E}\hat{E} = E$) In the lecture we saw: the maximum likelihood parameter estimates for a Gaussian random variable are (for samples x_1, \ldots, x_n):

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$

- a) Show that the estimator $\hat{\mu}$ is *unbiased*.
- b) Show that the estimator $\hat{\sigma}^2$ is not unbiased.
- c) Can you construct an *unbiased* estimator of σ^2 ?

2 Maximum Likelihood Parameter Estimation: Coin Toss

In the lecture we showed how to derive the maximum-likelihood parameter estimation rules for a coin toss using constrained optimization with Lagrangian multipliers.

a) Derive the same result but using the parameterization $p(\texttt{head}) = \theta$ and $p(\texttt{tail}) = 1 - \theta$ (which makes things much easier).

3 Conditionals

Two research labs work independently on the relationship between discrete variables X and Y. Lab A proudly announces that they have ascertained the distribution p(x|y) from data (let's call it $p_A(x|y)$). Lab B proudly announces that they have ascertained p(y|x) from data (called $p_B(y|x)$).

- a) Is it always possible to find a joint distribution p(x, y) consistent with the results of both labs?
- b) Is it possible to define consistent marginals p(x) and p(y), in the sense that $p(x) = \sum_{y} p_A(x|y)p(y)$ and $p(y) = \sum_{x} p_B(y|x)p(x)$? If so, explain how to find such marginals. If not, explain why not.

4 Estimating Entropy

(Reminder: the *entropy* of a discrete random variable $X \sim p(x)$ is $H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$.)

For a set of samples x_1, x_2, \ldots , study the following *plug-in estimator* of the entropy

$$\hat{H}_n(X) = -\sum_{x \in \mathcal{X}} \hat{p}_n(x) \log \hat{p}_n(x)$$

where $\hat{p}_n(x) = \frac{1}{n} \sum_{i=1}^n [x_i = x]$ is the maximum likelihood estimate of the probability distribution.

4.1 Simulation

Consider a random variable X with $\mathcal{X} = \{1, 2, 3, 4\}$ and $p(x) = (\frac{1}{4}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6})$. Write a program/routine that for given $k \in \mathbb{N}$:

- a) produces k samples i.i.d. from p
- b) from the samples, computes the maximum likelihood estimate of $\hat{p}(x)$
- c) computes the entropy of the estimated distribution (make sure that it handles $0 \log 0$ correctly)

For each $k \in \{1, 5, 10, 20, 50, 100, 200, 500, 1000\}$ run the program 100 times.

- d) plot the average estimated entropy for each k and their standard error of the mean (=standard deviation divided by the square root of the number of repeats). Make sure to choose a reasonable parametrization of the axes.
- e) plot the true entropy as a constant line in the same figure
- f) interpret your results

4.2 Analysis

- g) Show that $\hat{H}_n(X)$ is *biased* as an estimator of the true entropy.
- h) Show that it underestimates the true entropy, *i.e.* $\mathbb{E}\hat{H}_n(X) H(X) \ge 0$.
- i) Is $\hat{H}_n(X)$ consistent?

Hint: You should be able to solve g) yourself. If you cannot solve h) and/or i), feel free to consult the literature, e.g. [G. P. Basharin, On a Statistical Estimate for the Entropy of a Sequence of Independent Random Variables, Theory of Probability & Its Applications 1959 4:3, 333-336].

4.3 Alternatives

For continuous random variables, the plug-in estimator cannot be used directly, since we cannot estimate \hat{p} that easily.

j) Search the literature to find at least different ways to estimate the entropy of a continuous random variables.