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1 Maximum Likelihood Parameter Estimation: Gaussians

(Reminder: an estimator Ê is called unbiased, if it’s expected valued is the true target value E, i.e. EÊ = E)

In the lecture we saw: the maximum likelihood parameter estimates for a Gaussian random variable are (for
samples x1, . . . , xn):

µ̂ =
1

n

n∑
i=1

xi σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2

a) Show that the estimator µ̂ is unbiased.

b) Show that the estimator σ̂2 is not unbiased.

c) Can you construct an unbiased estimator of σ2?

2 Maximum Likelihood Parameter Estimation: Coin Toss

In the lecture we showed how to derive the maximum-likelihood parameter estimation rules for a coin toss using
constrained optimization with Lagrangian multipliers.

a) Derive the same result but using the parameterization p(head) = θ and p(tail) = 1 − θ (which makes
things much easier).

3 Conditionals

Two research labs work independently on the relationship between discrete variables X and Y . Lab A proudly
announces that they have ascertained the distribution p(x|y) from data (let’s call it pA(x|y)). Lab B proudly
announces that they have ascertained p(y|x) from data (called pB(y|x)).

a) Is it always possible to find a joint distribution p(x, y) consistent with the results of both labs?

b) Is it possible to define consistent marginals p(x) and p(y), in the sense that p(x) =
∑

y pA(x|y)p(y) and
p(y) =

∑
x pB(y|x)p(x)? If so, explain how to find such marginals. If not, explain why not.

4 Estimating Entropy

(Reminder: the entropy of a discrete random variable X ∼ p(x) is H(X) = −
∑

x∈X p(x) log p(x).)

For a set of samples x1, x2, . . . , study the following plug-in estimator of the entropy

Ĥn(X) = −
∑
x∈X

p̂n(x) log p̂n(x)

where p̂n(x) = 1
n

∑n
i=1Jxi = xK is the maximum likelihood estimate of the probability distribution.
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4.1 Simulation

Consider a random variable X with X = {1, 2, 3, 4} and p(x) = (1
4
, 1
3
, 1
4
, 1
6
). Write a program/routine that for

given k ∈ N:

a) produces k samples i.i.d. from p

b) from the samples, computes the maximum likelihood estimate of p̂(x)

c) computes the entropy of the estimated distribution (make sure that it handles 0 log 0 correctly)

For each k ∈ {1, 5, 10, 20, 50, 100, 200, 500, 1000} run the program 100 times.

d) plot the average estimated entropy for each k and their standard error of the mean (=standard deviation
divided by the square root of the number of repeats). Make sure to choose a reasonable parametrization
of the axes.

e) plot the true entropy as a constant line in the same figure

f) interpret your results

4.2 Analysis

g) Show that Ĥn(X) is biased as an estimator of the true entropy.

h) Show that it underestimates the true entropy, i.e. EĤn(X)−H(X) ≥ 0.

i) Is Ĥn(X) consistent?

Hint: You should be able to solve g) yourself. If you cannot solve h) and/or i), feel free to consult the literature,
e.g. [G. P. Basharin, On a Statistical Estimate for the Entropy of a Sequence of Independent Random Variables,
Theory of Probability & Its Applications 1959 4:3, 333-336].

4.3 Alternatives

For continuous random variables, the plug-in estimator cannot be used directly, since we cannot estimate p̂ that
easily.

j) Search the literature to find at least different ways to estimate the entropy of a continuous random
variables.
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