
Bayes Optimal DDoS Mitigation by Adaptive
History-Based IP Filtering

Markus Goldstein∗, Christoph Lampert∗, Matthias Reif∗, Armin Stahl∗ and Thomas Breuel∗†
∗German Research Center for Artificial Intelligence DFKI GmbH

Research Group Image Understanding and Pattern Recognition (IUPR)
D-67663 Kaiserslautern, Germany

†Technical University of Kaiserslautern
Department of Computer Science
D-67663 Kaiserslautern, Germany

Email: {goldstein,lampert,reif,stahl,breuel}@iupr.dfki.de

Abstract—Distributed Denial of Service (DDoS) attacks are
today the most destabilizing factor in the global internet and
there is a strong need for sophisticated solutions. We introduce a
formal statistical framework and derive a Bayes optimal packet
classifier from it. Our proposed practical algorithm “Adaptive
History-Based IP Filtering” (AHIF) mitigates DDoS attacks near
the victim and outperforms existing methods by at least 32%
in terms of collateral damage. Furthermore, it adjusts to the
strength of an ongoing attack and ensures availability of the
attacked server. In contrast to other adaptive solutions, firewall
rulesets used to resist an attack can be precalculated before an
attack takes place. This ensures an immediate response in a DDoS
emergency. For evaluation, simulated DDoS attacks and two real-
world user traffic datasets are used.

I. INTRODUCTION

Distributed Denial of Service attacks (DDoS) have become
a major threat in the internet today. Large scaled networks of
infected PCs (bots or zombies) combine their bandwidth and
computational power in order to overload a publicly available
service and denial it for legal users. Due to the open structure
of the internet, all public servers are vulnerable to DDoS
attacks. The bots are usually acquired automatically by hackers
who use software tools to scan through the network, detecting
vulnerabilities and exploiting the target machine.

DDoS attacks have become more and more frequent in
the last years. The attacks against large e-commerce sites in
February 2000 [1] and the attacks against root DNS servers
in 2003 [2] and 2007 have drawn public attention to the prob-
lem of DDoS attacks. Today, mainly mid-sized websites are
attacked by criminals in order to extort protection money from
their owners without attracting too much public attention [3].
Besides that, also Internet Service Providers (ISP) have to deal
with the problem that DDoS traffic is congesting their link
bandwidths [4].

Also the bot software evolved alarmingly over time. Early
tools like TFN, Stacheldraht, Trinoo or Mstream used un-
encrypted and hierarchically organized communication struc-
tures. Most of these tools used TCP-SYN, UDP or ICMP
floods with possibly identifiable parameters. Since some of
these attacks have successfully been mitigated, a new genera-
tion of bots arose. SDBot, Agobot or the very enhanced Phat-

bot are known representatives which use IRC as a robust and
secure communication [5]. These tools also contain methods
for spreading themselves and have more sophisticated attack
algorithms, which could be upgraded over the internet. The
attack traffic from those tools looks like legal traffic on the
transport layer, which makes it nearly impossible to filter it
effectively with standard firewalls.

Mitigating DDoS attacks at the origin or within the core
of the internet seems to be an impossible task due to the dis-
tributed and authorization-free nature of the IP based network.
Approaches to achieve this objective typically rely on changing
current internet protocols [6], [7] and are therefore not easily
applicable.

Ingress filtering as described in RFC 2827 [8] also helps
mitigating DDoS attacks with forged source IP addresses (IP
spoofing) and should be applied by every ISP. Since ingress
filtering only helps other ISPs on the internet and not the one
who is actually applying it, it took quite a long time until it was
setup in many places. Furthermore, Savage et al. [9] suggested
IP Traceback to find the source of spoofed IP addresses by
probabilistically marking packets. Nowadays, IP spoofing is
not that common any more in DDoS attacks, except for the
last octet of an IP address.

Today, there is a strong need to mitigate DDoS attacks
near the target, which seems to be the only solution to the
problem in the current internet infrastructure. The aim of such
a protection system is to limit their destabilizing effect on the
server through identifying malicious requests.

After discussing the problem of near target DDoS mitigation
in Section II in detail, we give a short overview of Bayesian
Decision Theory in Section III. Then, we introduce a novel
Bayes optimal framework for implementing DDoS mitigation
systems in Section IV and V. In order to demonstrate the
practical impact of our framework, we present results of a
first experimental evaluation based on real-life and simulated
data in Section VI. Finally, we conclude in Section VII
with a discussion of our system and an outlook of possible
improvements.

II. NEAR TARGET DDOS MITIGATION

In the following, we focus on DDoS mitigation, which relies
on a successful DDoS detection algorithm. Carl et al. [10] give
a survey about recent DDoS detection research.

Only few solutions on near target DDoS mitigation have
been proposed [11], [12], [13], [14], [15], [16]. Peng et al. [17]
propose a mechanism called History-based IP Filtering (HIF),
which keeps track of previously seen hosts and is effective
in large scaled attacks. Pack et al. [18] also use the idea
of modelling historic traffic, but extends this approach with
clustering observed traffic and creating a limited number of
Access Control Lists (ACL) heuristically. This approach is very
compute intensive and therefore limited to a small historic time
span.

In this paper, we propose a new method to mitigate DDoS
attacks based on observed data. The system does not aim at
the detection of such attacks, but at the automatic creation of
filter rules for IP firewalls like iptables, nf-HiPAC or Cisco
ACLs that will allow the server to continue serving legitimate
users even while under a large scaled DDoS attack.

In contrast to all previous approaches, we rely on a rigorous
statistical framework of Bayesian decision theory. This allows
us to abstract from the implementational details and obtain
theoretical predictions about performance, identifying decision
rules which are optimal in the chosen scenario. The main
contributions of our work are (1) we present a statistical
framework for mitigating DDoS attacks based on Bayesian
decision theory to infer optimal rules and (2) we present a
new method based on this framework called Adaptive History-
Based IP Filtering (AHIF), which minimizes collateral damage
(blocking legal users) during near target DDoS mitigation.

Unlike other approaches, our method can be used to prepare
certain filter rule sets before a DDoS attack takes place. Not
analyzing IP traffic during an attack in order to mitigate it
has a number of advantages: (1) The mitigation can take
place immediately once an attack has been detected. (2) The
resources of the firewall system can be used completely for
attack packet filtering and (3) Rules can be propagated to
distributed firewalls in order to filter out DDoS traffic at the
borders of an ISP core network (edge router).

III. BAYESIAN DECISION THEORY

In this section we will give a short overview of the statistical
background that we need, following the notation of Duda et
al. [19].

In the following, the term “request” is not necessarily
associated with a user request, it is a request in an abstract
way. It might be an IP packet captured on the wire, an e-mail,
which is delivered, or a HTTP request sent to a webserver.
Since we will use Apache logfiles as our primary data source
in Section VI, we refer to HTTP requests pointed to our target
server.

Requests are modeled as discrete random variables xi from
a feature space X . We assume that they are independently
and identically distributed. Each request is either caused by a
legal user request or by an attack attempt, and we denote this

origin by assigning a label yi ∈ {L,I} to each request, where
L stands for legal and I for illegal.

During normal operation, all requests come from legal users
and follow a probability distribution P (x|L). In the case of an
attack, additional attack requests reach the host following a
distribution P (x|I). To the server, the labels yi are unknown,
and it can only measure the raw arriving requests and their
distribution P (x). This will be a mixture between P (x|L) and
P (x|I), but the mixing coefficients are unknown.

In this setup, filtering can be stated as a classification task:
for each request it must be decided whether to accept (A)
or reject (R) it. Each such decision causes a certain loss,
where this term is used in an abstract sense, not necessarily
referring to a financial value or IP packet loss.

At the time of decision, it is unknown if an arriving request
is legal or illegal, and we therefore cannot determine the
exact loss. However, in a statistical sense we can calculate
the expected loss for classifying a request x:

loss(R|x) = λ(R|L)P (L|x) + λ(R|I)P (I|x)
loss(A|x) = λ(A|L)P (L|x) + λ(A|I)P (I|x)

where λ(ω|y) is the loss that is associated with deciding for
class ω ∈ {A,R} for a sample that is of type y ∈ {L,I}.
P (L|x) and P (I|x) are the posterior probabilities, i.e. the
probabilities for a request x reaching the server to be of type
L or I.

Whether the system accepts or rejects a request can be stated
as a decision function α : X → {R,A}. Any such function
comes with an expected overall loss, called the risk:

risk(α) =
∑
x∈X

loss(α(x)|x)P (x).

Bayesian decision theory tells us that the best choice of a
classifier (decision function) is one that minimizes risk(α).

IV. BAYES OPTIMAL FILTERING OF NETWORK PACKETS

A. Classification Risk

In the setup of filtering requests, the loss that we associate
with our decision is asymmetric. Accepting legal requests and
rejecting malicious requests is the targeted behavior, and we
associate a loss of 0 with it.

Accepting malicious requests may lead to a loss ε ∈ [0, 1], if
the server is beyond its resources. But as long as the server has
enough resources, there is no downside in accepting a request
by an attacker. Therefore, we assign the loss of ε = 0, but only
under the constraint, that the server load (or the bandwidth
usage) does not exceed its capacity.

On the other hand, it is always damaging to reject a request
by a legal user and we assign a positive loss with that. Since
the units in which we measure this loss are arbitrary, we can
normalize the resulting loss matrix λ to be

λ(ω|y) legal illegal
accept 0 ε
reject 1 0

For the classification risk of a request directed to a server
running below its capacity, we then obtain

risk(α) =
∑

{α(x)=R}

P (L|x)P (x), (1)

which we can rewrite using Bayes rule as

risk(α) = P (L)
∑

{α(x)=R}

P (x|L). (2)

P (L) denotes the class prior. It does not depend on the actual
requests or the classifier and therefore stays constant.

To summarize, a Bayes optimal packet filter minimizes
risk(α) while at the same time adhering strictly to the global
constaint that the server can only handle a limited number of
requests per time unit. This Bayesian risk is also referred to
as collateral damage [18].

B. Optimal Classifier

To construct such an optimal filter, we first look at the
situation of static filtering: a number of requests x1, . . . , xM
arrive within a certain time span, but the server is only able to
handle N events out of those. From Equation (2) we see that
the empirical risk, i.e. the excepted loss on this sample set is

risk(α) = P (L)
∑

{α(xi)=R}

P (xi|L) (3)

Since all terms in Equation (3) are positive, each dropped
request (i.e. xi with α(xi) = R) can only increase the risk. It is
therefore advisable to drop only as many requests as necessary
to prevent a server overload, that is M −N .

Also from Equation (3) we see that the higher the class
conditional density P (xi|L) for a request, the more the risk
increases when dropping it.

The optimal classifier α∗ is therefore given by

α∗(xi) :=


reject if xi is one of the M −N

requests with lowest P (xi|L),
accept otherwise,

(4)

In other words, this is the classifier that let only N packages
with highest P (xi|L) pass.

C. Practical Filtering

In practice, dropping requests has to be performed depend-
ing on the server load, i.e. each request has to be decided on
without information about which and how many other requests
will arrive in the future.

Instead of comparing all requests by their P (xi|L) value,
we have to set a variable threshold θ on this quantity and
define a parametric family of classifiers

αθ(x) :=

{
accept if P (x|L) ≥ θ,
reject if P (x|L) < θ,

(5)

A high value for theta, i.e. θ ≥ max(P (xi|L)), will cause all
requests to be rejected, including the legal ones. For θ = 0,
every request will be accepted, including all the malicious

ones. For a very small θ, e.g. θ → 0, every request with
P (xi|L) > 0 will be accepted. For θ → 0, our approach is
comparable to HIF proposed by Peng et al. [17].

However, a low value like θ → 0 yields a classifier that
accepts too many requests in the case of an attack, thus
not preventing the overload. θ = 0 can be considered as
the normal operation mode of the mitigation system without
dropping any connections, whereas during an ongoing attack,
a higher, but not too restrictive threshold is better. To find
the optimal threshold value, we adjust the parameter in an
adaptive process: starting from θ = 0, we monitor the requests
passing the mitigation system. If more requests are measured
than the server could constantly handle, we raise the threshold.
If θ > 0 and the measured connections are below the limit,
we lower the threshold. For a constant attack strength, this
scheme converges to a limit θ∗, where the resulting classifier
αθ∗ is tuned to let the server operate just below its maximum
acceptable load level. If the attack load varies over time, θ
will adapt to it, keeping the server always below its capacity
limit.

We will show next that the expected performance of αθ∗ is
in fact the same as for optimal classifier α∗. For this, we look
again at a unit time span with M samples xi arriving. αθ∗
will filter them immediately, and because of the way θ∗ was
chosen, on average it will accept just as many requests as the
server can handle, i.e. N out of M . Also by construction, all
accepted requests have a higher P (xi|L) value than all rejected
ones.
αθ∗ therefore shows the same filtering behavior as α∗: it

accepts the N requests with highest likelihood P (xi|L) and
reject the remaining M −N ones.

D. Estimating P (x|L)
As it is obvious from the previous section, it is crucial

to know P (x|L) for building a Bayes optimal classifier.
Fortunately, this quantity is relatively easy to obtain, since it
depends only on the distribution of legal user requests and does
not require any information on a possible upcoming attack.

Generally, pattern recognition provides many ways and
algorithms to estimate P (x|L) from previously observed data.
For a first evaluation of our framework, we estimate P (x|L)
directly from a histogram count. Given a large number of
training samples x1, . . . , xK , i.e. requests from a characteristic
server observed without ongoing DDoS attacks, we estimate

P (x|L) ≈ 1
K
|{i : xi = x; i = 1, . . . ,K}| , (6)

where |.| denotes the number of elements in the set. If the
number of training is too small for a reliable histogram count,
one can rely on smoothing or interpolation or any other method
for non-parametric density estimates, but one has to be aware
that —depending on the representation chosen for x— this
only might be a heuristic procedure.

V. FINDING FILTER RULES

In a practical implementation, the classifier α must be
efficiently representable. In our scenario we want a set of

firewall instructions for the nf-HiPAC firewall.
This imposes two restrictions: (1) Our feature vector x must

only rely on features which can be efficiently calculated from
the requests and checked by firewall rules. (2) The number of
rules a system can process in real time is limited.

First, we choose the most significant n = 24 bit of the
sender IP as unique feature from a request (alternatives will
be discussed in Section VII). The resulting feature space has
224 entries. The reason for neglecting (at least) the last 8 bit
of the sender IP has two main reasons: (1) IP addresses can be
spoofed easily on the last 8 bits by bots like current malware
does and (2) many users often use different IPs within a 24
bit network mask (due to changing hosts or using DHCP).

Still this approach could result in 224 rules whereas a
firewall system operates usually with a maximum amount
well below this value. We therefore only use positive Access
Control Lists (ACL) and aggregate rules in order to reduce
their number. A binary tree with a maximum depth of n is
created, each leaf represents one “accept” ACL of a n-bit
network. Then, the tree is processed bottom up and whenever
two leaves share the same father, both are deleted (pruning).
The remaining father node automatically becomes a new leaf
node (new ACL) with an one bit smaller network mask. If
there are only nodes with one descendent left, the minimum
number of rules has been found.

For example, if there are two leaf nodes, representing
the networks 131.246.64.0/24 and 131.246.65.0/24 they are
pruned and result in a new leaf node 131.246.64.0/23.

This algorithm results in the minimum number of rules
for our given feature based on n and can be considered as
a “lossless compression”. Please note, that this is the upper
boundary for rules, which may occur. By choosing the θ∗, the
actual number of rules in the firewall might be lower.

It might turn out, that the number of rules is still too much to
be applicable on a firewall. In this case we have to use a “lossy
compression”: We select one bit less of the sender’s IP address
as our unique feature and rebuild the tree with n = n − 1.
This process is iterative until it results in an appropriate upper
boundary for applicable firewall rules. But having less rules
comes at a price: the classifier α will move away from the
Bayes optimal classifier α∗.

Since the threshold θ∗ depends on the rate of incoming
traffic, we perform the rule generation for different discrete
values of θ. In the case of an attack, these precomputed
rulesets can be loaded and activated individually. For finding
the most appropriate rule, one can use the adaption procedure
as previously described in Section IV-C for θ∗.

VI. RESULTS

A. Datasets and simulated bot network

Two datasets have been used to illustrate the effectivity of
AHIF and compare it with other approaches. Both datasets
comprise 100 days of Apache logfile data.

The first dataset (DS-1) was obtained by the webserver
www.xvid.org, containing 53,828,308 requests from 1,284,213
different IP addresses. The addresses are highly distributed

over all IP ranges from 200 different countries. On average,
there are 6.23 HTTP requests per second (rps) with a maxi-
mum peak of 149 rps. We assume, that the server can handle
a maximum request rate of 3,000 rps.

Our second dataset (DS-2) contains data from an interna-
tionally operating web-community project. In total, 8,464,608
requests were observed with 144,995 different IP addresses,
which corresponds to 0.98 rps in average. As the website was
announced in the media, there was a flash crowd event, with
a peak of 325 rps. In DS-2, there are more recurring regular
users (IPs) and they sent in average 28.2% more requests than
in DS-1. For this server, we assume a maximum capacity of
1,000 rps.

Generation of attack traffic is done by simulating a bot
network comprising of 100,000 bots. All together, they are
able to send about 40,000 rps, which is clearly over both server
limits and therefore achieving a successful DDoS attack. Due
to the lack of real bot network data, we assumed, that the
source IP addresses of bots are randomly distributed over the
whole IP space. IP addresses for bots are selected such that
they do not belong to private networks, multicast addresses
or to networks, which are not assigned by the IANA (IANA-
reserved pool).

B. AHIF

In both datasets, the first 90 days are used as training data to
obtain the histogram counts and the last 10 days are used for
testing purposes. Within the 10 days of testing, we launch our
attack and studied the effectivity of our approach. To obtain
P (x|L) in the first 90 days, 48,633,275 requests in DS-1 and
7,628,328 requests in DS-2 are used.

To obtain the maximum number of possible firewall rules,
we used a standard PC with 2x Opteron 270 CPU, 4GB of
RAM running a Linux kernel 2.6.13.5 and nf-HiPAC version
0.9.1. The test setup was able to process about 100,000 firewall
rules (filtering source IP addresses) at a rate of about 40,000
packets per second.

For each n, the corresponding θ∗ could be found at the
intersection of the server capacity line and the curve in
Figure 1. We could easily see, that the best choice would be to
use n = 24, because it has the lowest θ∗ for all curves. But as
already mentioned in Section V, we are restriced in choosing
n, which depends on the maximum number of applicable rules.
In Figure 2 the dependency of θ and the number of rules is
shown. It can be seen, that n = 21 fits the rule constraint for
DS-1. Referring to Figure 1, it can be seen, that the best θ∗

in this case is 2.12 · 10−6.
The obtained optimal n = 21 and θ∗ = 2.12 ·10−6 are used

to compare our results in the following Section for DS-1. For
DS-2, the firewall rule constraint does not apply in our case
and we can select n = 24 and selecting an arbitrary small θ∗.

C. Comparing AHIF

As a baseline (BASE), we use the policy “drop requests
randomly such the server limit constraint is fullfilled”. Further-
more, we compare our method AHIF with HIF as proposed

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10

ac
ce

p
te

d
 r

eq
u

es
ts

theta e-06

server capacity
n=16
n=17
n=18
n=19
n=20
n=21
n=22
n=23
n=24

(a) DS-1

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60

ac
ce

p
te

d
 r

eq
u

es
ts

theta e-06

server capacity
n=16
n=17
n=18
n=19
n=20
n=21
n=22
n=23
n=24

(b) DS-2

Fig. 1. Simulation Results. The number of requests passing the firewall
during an attack depending on the decision boundary θ are plotted. Each curve
represents a different netmask in bits used as primary feature. The horizontal
red line shows the server limit.

TABLE I
COMPARING COLLATERAL DAMAGE (DENYING LEGAL USERS) OF
DIFFERENT APPROACHES. THE HIGHER VALUES FOR COLLATERAL

DAMAGE IN DS-2 ARE LIKELY DUE TO THE LOWER NUMBER OF TRAINING
SAMPLES WITHIN THE SAME TIME SPAN.

DS-1 DS-2
BASE (random) 4805457 (92.50%) 773559 (92.50%)
HIF (Peng et al.) 4283645 (82.46%) 572319 (68.44%)
AHIF (this paper) 768569 (14.79%) 389112 (46.53%)

by Peng et al. [17] as illustrated in Table I. Unfortunately,
we were not able to compare our method with the clustering
solution from Pack et al. [18], because the clustering would
at least require 66.0GB of memory with our smaller dataset
DS-2 and 90 days of training.

VII. DISCUSSION

A. Discussion of Results

The results show that our method is superior on both
datasets. A big advantage of our method is that our firewall

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 2 4 6 8 10

n
u

m
b

er
 o

f
ru

le
s

theta e-06

firewall capacity
n=16
n=17
n=18
n=19
n=20
n=21
n=22
n=23
n=24

(a) DS-1

 0

 20000

 40000

 60000

 80000

 100000

 0 10 20 30 40 50 60

n
u

m
b

er
 o

f
ru

le
s

theta e-06

firewall capacity
n=16
n=17
n=18
n=19
n=20
n=21
n=22
n=23
n=24

(b) DS-2

Fig. 2. Simulation Results. The number of resulting firewall rules is plotted
depending on θ and the used netmask n as feature. In DS-1, the horizontal
line shows the limit of applicable firewall rules, in DS-2 we are below the
limit for every n.

rules are prepared before a DDoS attack takes place. This
allows network operators (or an automated system) to react fast
to detected attacks. Through adapting the decision boundary
θ, it is also possible to mitigate attacks of changing strength.

BASE might be considered as a method currently applied
by system administrators, which rejects new connections if the
server limit has been reached. This is a widely used method
today, where users can see “Service Temporarily unavailable”
or similar interim pages.

HIF already decreases the collateral damage, but cannot
prevent many legal users from being excluded. Our adaptive
method performs very good on the large dataset DS-1 and also
outperformes HIF based on DS-2.

The reason, why our method performs better on DS-1, might
be due to the fact that there are more than 6 times as many
training samples in DS-1.

To summarize, our proposed algorithm is effective in miti-
gating highly distributed DDoS attacks and minimizes collat-
eral damage.

B. Future Outlook

We showed that our method is Bayes optimal in our scenario
chosen, but to make it applicable on the limited hardware of an
internet firewall, we had to rely on simplifying assumptions.
For estimating P (x|L), we only used histograms of historic
data. P (x|L) might be estimated by other features as well,
not necessarily referring to the source IP address. One might
think about using features like request rates, OS fingerprints,
country or time zone information. This would increase the
accuracy for estimating P (x|L) for hosts, which are unknown
to the server at the time of the attack and therefore increase
filter accuracy.

The advantage of our statistical treatment is that it is generic
and does not make use of specific properties of the features
chosen. The system can therefore easily be adapted to include
other, possibly more descriptive features in the future. Also,
we can easily integrate prior knowledge, e.g. if certain attack
patterns are known, the features can be chosen to reflect this.
This also carries over to the estimation process for P (x|L)
itself. Instead of a static procedure like the histogram count, a
higher order estimator like a Bayesian network can be used in
order to optimally combine multiple features. We are currently
investigating this field.

ACKNOWLEDGMENT

This work is part of NetCentric Security, a project
of Deutsche Telekom Laboratories supported by German
Research Center for Artificial Intelligence DFKI GmbH.

REFERENCES

[1] A. Harrison, “Cyberassaults hit Buy.com, eBay, CNN, and Ama-
zon.com,” February 2000,
Available at:
http://www.computerworld.com/printthis/2000/0,4814,43010,00.html.

[2] P. Vixie, G. Sneeringer, and M. Schleifer, “Events of 21–Oct–2002,”
November 2002, available at: http://d.root-servers.org/october21.txt.

[3] D. McPherson, C. Labovitz, and M. Hollyman, “World-
wide infrastructure security report,” 2007, available at:
http://www.arbornetworks.com/report.

[4] D. Pappalardo and E. Messmer, “Extortion via DDoS on the rise,” May
2005, available at: http://www.networkworld.com/news/2005/051605-
ddos-extortion.html?page=1.

[5] D. Dittrich, “Distributed Denial of Service (DDoS) Attacks/tools,”
available at: http://staff.washington.edu/dittrich/misc/ddos/.

[6] J. Leiwo, P. Nikander, and T. Aura, “Towards network denial of
service resistant protocols,” in In Proceedings of the 15th International
Information Security Conference (IFIP/SEC 2000), 2000.

[7] M. Handley and A. Greenhalgh, “Steps towards a DoS-resistant internet
architecture,” in FDNA ’04: Proceedings of the ACM SIGCOMM work-
shop on Future directions in network architecture. New York, NY,
USA: ACM Press, 2004, pp. 49–56.

[8] P. Ferguson and D. Senie, “Network ingress filtering: Defeating denial
of service attacks which employ ip source address spoofing,” United
States, 2000, available at: http://rfc.net/rfc2827.html.

[9] S. Savage, D. Wetherall, A. R. Karlin, and T. Anderson, “Practical
network support for IP traceback,” in SIGCOMM, 2000, pp. 295–306.

[10] G. Carl, G. Kesidis, R. R. Brooks, and S. Rai, “Denial-
of-service attack-detection techniques,” IEEE Internet
Computing, vol. 10, no. 1, pp. 82–89, 2006, available at:
http://doi.ieeecomputersociety.org/10.1109/MIC.2006.5.

[11] R. K. Chang, “Defending against Flooding-Based Distributed Denial-of-
Dervice Attacks: A Tutorial,” IEEE Communications Magazine, vol. 40,
no. 10, pp. 42–51, 2002.

[12] M. P. Collins and M. K. Reiter, “An empirical analysis of target-resident
dos filters.” in IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2004, pp. 103–114.

[13] C. Jin, H. Wang, and K. G. Shin, “Hop-count filtering: an effective
defense against spoofed ddos traffic,” in CCS ’03: Proceedings of
the 10th ACM conference on Computer and communications security.
New York, NY, USA: ACM Press, 2003, pp. 30–41, available at:
http://doi.acm.org/10.1145/948109.948116.

[14] T. K. T. Law, J. C. S. Lui, and D. K. Y. Yau, “You Can Run,
But You Can’t Hide: An Effective Statistical Methodology to Trace
Back DDoS Attackers,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 16, no. 9, pp. 799–813, 2005, available at:
http://dx.doi.org/10.1109/TPDS.2005.114.

[15] O. Paul, “Improving Web Servers Focused DoS Attacks Detection,” in
Proceedings of the IEEE/IST Workshop on Monitoring, Attack Detection
and Mitigation (MonAM 2006), Tuebingen, Germany, 2006.

[16] D. K. Y. Yau, J. C. S. Lui, F. Liang, and Y. Yam, “Defend-
ing Against Distributed Denial-of-Service Attacks With Max-Min
Fair Server-Centric Router Throttles,” IEEE/ACM Transactions on
Networking (TON), vol. 13, no. 1, pp. 29–42, 2005, available at:
http://dx.doi.org/10.1109/TNET.2004.842221.

[17] T. Peng, C. Leckie, and K. Ramamohanarao, “Protection from Dis-
tributed Denial of Service attack using history-based IP filtering,” in
Proceedings of the IEEE International Conference on Communications
(ICC 2003). Anchorage, AL, USA: IEEE, 2003.

[18] G. Pack, J. Yoon, E. Collins, and C. Estan, “On Filtering of DDoS
Attacks Based on Source Address Prefixes,” in Proceedings of the 2nd
International Conference on Security and Privacy in Communication
Networks (SecureComm 2006). IEEE, 2006.

[19] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd
Edition). Wiley-Interscience, 2000.

