
An Efficient Divide-and-Conquer Cascade for Nonlinear Object Detection

Christoph H. Lampert
Max Planck Institute for Biological Cybernetics, Tübingen, Germany

chl@tuebingen.mpg.de

Abstract

We introduce a method to accelerate the evaluation of
object detection cascades with the help of a divide-and-
conquer procedure in the space of candidate regions. Com-
pared to the exhaustive procedure that thus far is the state-
of-the-art for cascade evaluation, the proposed method re-
quires fewer evaluations of the classifier functions, thereby
speeding up the search. Furthermore, we show how the
recently developed efficient subwindow search (ESS) pro-
cedure [11] can be integrated into the last stage of our
method. This allows us to use our method to act not only
as a faster procedure for cascade evaluation, but also as
a tool to perform efficient branch-and-bound object detec-
tion with nonlinear quality functions, in particular kernel-
ized support vector machines. Experiments on the PASCAL
VOC 2006 dataset show an acceleration of more than 50%
by our method compared to standard cascade evaluation.

1. Introduction
Reliable real-time object detection in natural images and

videos is a long-time dream of computer vision. And in-
deed, in terms of their detection quality, general purpose
object detectors have made significant progress over the last
years. However, this is partially owed to the use of better
classifier functions, more training images and multiple fea-
ture sets, all of which has increased the methods’ runtime.
Real-time systems for state-of-the-art object detection of ar-
bitrary categories are therefore still not in reach. A partic-
ularly problematic class of methods are the most successful
sliding window approaches, on which we will concentrate in
this work. They detect objects by classifying a large number
of candidate subwindows of the image whether they show
an instance of the target object class or not. Because for
natural images, locations, aspect ratio and size of the objects
are all unknown, typically several hundred thousand regions
have to be checked for each image, and each one requires
a potentially costly classifier evaluation. To overcome this
computational bottleneck, several techniques have been de-
veloped, most prominently classifier cascades and methods
based on global optimization.

(a) Classical cascade evaluation: each possible candidate region is evalu-
ated independently of the others (left to right). For each region, the stages
are checked iteratively (top to bottom) until a negative classifier score oc-
curs. If all scores are positive, the region is considered a detection.

(b) Efficient subwindow cascade: the algorithm starts with a single candi-
date set in stage 1 that contains all possible object locations (left). Depend-
ing on the quality bounds, the candidate region set is either accepted as a
whole, rejected as a whole, or split into disjoint parts that are separately
processed further. Accepted candidate sets are advanced to the next classi-
fier stage or returned as detection if they already were in the last stage.

Figure 1. Schematics of cascade evaluation (simplified to 2D).
Top: classical procedure; bottom: proposed divide-and-conquer
method.

1.1. Classifier Cascades
Classifier cascades detect the location of object in-

stances in an image by applying multiple classification
functions sequentially to each possible candidate win-
dow [15, 20]. A candidate window is accepted as a detec-
tion only if all stages come to a positive decision. Each
of the classifiers is fast, but relatively weak. The conjunc-
tion rule makes the set of weak individual classifiers into
a single strong classifier, and it allows very fast evaluation
of classifier cascades: as soon as one of the stages rejects a
candidate region, we do not have to evaluate the later stages.
Because most candidate regions in a sliding window setup
do not show an object of interest, most cascade evaluations
end after only few substages; the average number of clas-
sifier evaluations per window is much lower than the total
length of the cascade.

One can further benefit from the fact that later stages in
a cascade will be evaluated much less frequently than early

ones, by combining weak (and fast) classifiers in the early
stages with strong (but slow) classifiers towards the end of
the cascade. As result one obtain a more powerful classifier
than from a cascade consisting only of weak classifiers, but
which is still faster in object detection tasks than a single
strong classifier, because the fast early stages filter out most
negative candidates. Cascade classifiers of this type form
the basis of many state-of-the-art object detection systems
today, for example [4, 8, 19, 23].

1.2. Global Optimization

A second line of research for accelerating object detec-
tion tasks is the application of global optimization tech-
niques. This is based on the observation that the exhaustive
search pattern used by classical sliding window techniques
is suboptimal—it ignores the fact that neighboring regions
in image space typically have similar feature representa-
tions and therefore correlated classifier scores. Lampert et
al. [10] introduced efficient subwindow search (ESS), which
performs a branch-and-bound search to identify the candi-
date region of highest classification score in an image. ESS
is often more efficient than sliding-window approaches, be-
cause it uses information about potentially large sets of can-
didate regions in each step. More exactly, ESS bounds of
the classification score over such region sets instead of com-
puting the exact score of each region contained, and thereby
ESS is able to avoid many computations for nonpromis-
ing image regions. Similar global optimization approaches
have been proposed for nearest-neighbor based object de-
tection [9, 21] and for action localization in videos [22].

Unfortunately, ESS achieves a significant acceleration
only for simple – typically linear – classifiers. For non-
linear classifier functions, as they are necessary for object
detection of highest-quality, one obtains only loose qual-
ity bounds, and a branch-and-bound search based on these
does not yield a significant speedup. In [19], which de-
scribes one of the current best methods for object detection,
Vedaldi et al. conclude about ESS: “Unfortunately, we still
found it necessary to visit several thousand regions per im-
age, which [...] makes this approach inpractical. This mo-
tivates the use of a cascade of classifiers.”

In the rest of this paper, we will show that the use of
cascaded classifiers and of global optimization techniques
are not mutually exclusive concepts. We will introduce an
evaluation scheme for classifier cascades, termed efficient
subwindow cascade (ESC), that combines the speed advan-
tages of both techniques: it avoids classifier evaluations by
relying on a representation of sets of regions instead of indi-
vidual regions, and it supports the early-stopping property
of classifiers that are the conjunction of simpler stages.

2. Efficient Subwindow Cascade
We first fix the notation for use in the following sections.

Let f be a classifier function that assigns a score to any
subregion of an image. Although the concept generalizes
to arbitrary shapes, we only consider box-shaped regions
here, i.e. f : Y → R, where Y denotes the set of all rectan-
gular subregions. To keep the notation concise, we do not
write out the dependence of f the image we are currently
considering. With f(y) > 0 indicating that a region y does
show an instance of the object of interest, whereas f(y) ≤ 0
means that it does not, object detection is defined as the task
of computing

D := {y ∈ Y : f(y) > 0}, (1)

i.e. the set of all regions with positive classification score.
Cascaded classifiers are a special case of the above situ-

ation, in which f is a conjunction of multiple subclassifiers,
or stages, f1, . . . , fK , such that for all y ∈ Y

f(y) > 0 ⇔ ∀k ∈ {1, . . . ,K} : fk(y) > 0. (2)

When evaluating the subclassifiers iteratively, we obtain a
filtration, Y = D0 ⊃ D1 ⊃ · · · ⊃ DK = D, where the
intermediate detection sets Dk := {y ∈ Dk−1 : fk(y) >
0}, approximate D with increasing quality.

2.1. Divide-and-Conquer Object Detection
The cascade structure provides us with a canonical way

to determine D: for every y ∈ Y , we iteratively test the
subclassifiers. If fk(y) < 0 for any k < K, we stop the
evaluation because y 6∈ Dk implies y 6∈ D. Figure 1(a) il-
lustrates this process schematically for a two-stage cascade.

However, an exhaustive search over all elements y ∈ Y
is not the only way to determineD and other methods might
offer computational advantages. Schneiderman proposed
feature-centric evaluation [16], but this requires a special
form a additive classifier and did not find wide-spread use.

We will follow a divide-and-conquer strategy instead.
Assume that functions f

k
, fk : 2Y → R exist that bound

the values of fk from above and below, i.e. for any Y ⊂ Y:

f
k
(Y) ≤ f(y) ≤ fk(Y), for any y ∈ Y , (3)

and that the bounds are exact for single element sets,

f
k
(Y) = f(y) = fk(Y) for Y = {y}. (4)

Then we formulate a new procedure for computing D that
we call efficient subwindow cascade (ESC). Algorithm 1
shows the algorithm in pseudo-code; Figure 1(b) illustrates
it schematically. Its main difference between the new algo-
rithm and an exhaustive search procedure is that ESC works
with sets of candidate regions Y ⊂ Y as its basic working
unit, instead of with individual regions y ∈ Y .

Algorithm 1 Efficient Subwindow Cascade
Require: classifiers f1, . . . , fK
Require: bounding functions f

1
, f1, . . . , fK , fK

Output: D as defined by (1)
MAIN:

1: D = TRAVERSE(Y, 1)
2: return D

TRAVERSE(Y, k):
3: if fk(Y) ≤ 0 then
4: return ∅
5: end if
6: if f

k
(Y) > 0 then

7: if k < K then
8: return TRAVERSE(Y, k + 1)
9: else

10: return Y
11: end if
12: end if
13: split Y1 ∪̇Y2 ← Y with Y1 6= ∅, Y2 6= ∅
14: D1 = TRAVERSE(Y1, k)
15: D2 = TRAVERSE(Y2, k)
16: return D1 ∪ D2

Starting with Y = Y in stage k = 1 (line 1), ESC
recursively traverses a binary search tree. In each step we
first compute fk(Y) (line 3). If this is less than or equal to
0, we know that all elements y ∈ Y have a negative score
fk(y) ≤ 0, which implies y 6∈ D. Consequently we do not
have to evaluate this subtree any further. Otherwise, we
compute f

k
(Y) (line 6). If this is larger than 0, we know

that all elements y ∈ Y have a score fk(y) > 0, which
implies y ∈ Dk. Further processing of the elements of Y
with fk would not yield additional information. Therefore
if k < K, we advance the whole subtree Y to the stage
k + 1 (line 8), otherwise, we return all elements of Y as
detections (line 10). If neither fk(Y) ≤ 0 nor f

k
(Y) > 0

hold, the quality bounds were not yet tight enough to make
a definite statement. We split the candidate set Y into
two disjoint, non-empty parts (line 13) and we recursively
process both subtrees. Note that such a split is always
possible, because line 13 can only be reached for Y that
contain at least two elements. For single element sets,
Y = {y}, condition (4) ensures that fk(Y) = f

k
(Y), and

consequently, either of the conditions in line 3 or line 6
would have been triggered. The correctness of the ESC
algorithm follows from the following two propositions.

Proposition 1: Algorithm 1 terminates for any finite Y .

Proposition 2: Algorithm 1 returnsD as defined in Eq. (1).

The proofs are based on inductions over k and the size
of Y . We omit them here for reasons of limited space.

2.2. ε-insensitive Detection
For practical purposes it is not always necessary to

threshold the classifiers fk exactly at 0. We can create an
ε-insensitive version of Algorithm 1 by replacing the condi-
tions in line 3 by fk(Y) ≤ ε, and in line 6 by f

k
(Y) > −ε.

The resulting algorithm will require fewer splits until con-
vergence and therefore run faster, at the expense of return-
ing only an approximate version of D. By similar a argu-
ment as above, one can show that all regions with at least
one score fk(y) ≤ −ε will be rejected, and that all regions
with only scores fk(y) > ε will be accepted.

2.3. Integration of Efficient Subwindow Search
ESC relies on the same two concepts that are also at the

core of ESS’s efficiency: the interior representation that re-
lies on sets of regions instead of individual regions and the
bounding functions that can make statements about multi-
ple object in a single step. The main difference between the
two methods is the task they solve: ESC returns all regions
of positive classification score, whereas ESS returns exactly
one or some other predefined number. Because the number
of output required from ESS is typically small, it benefits
from a branch-and-bound strategy that targets its computa-
tion on only the few best states and prunes all others. This
prevents ESS from being directly applicable to cascades; in
the intermediate stages, statements about all candidate re-
gions are required, not only about the ones of highest score.
On the other hand, in the interior stages of a cascade, we
also do not need the exact classification scores of the can-
didate regions, we only need their sign, and this is what
enables ESC to accelerate cascade processing.

Note that for the last stage of the cascade the situation
can be different. Depending on the intended use for the de-
tection output, we might indeed only be interested in a few
detections of the last stage, preferably the ones with max-
imal fK score over D. Because the underlying represen-
tation of ESC and ESS are compatible, we can include an
ESS-like branch-and-bound search procedure into ESC in
this case: instead of running TRAVERSE in the K-th stage,
we form a priority queue that contains all region sets that
formed the output of stage K − 1 with priority value given
by fK . From there we continue with the ESS branch-and-
bound procedure. The initialization ensures that only re-
gions y ∈ DK−1 become candidates for ESS. Maximizing
fK over this set provides us with a list of elements of DK

(that is D) in order of decreasing fK score. We stop the
search after a predefined number of detections or when the
scores become nonpositive, as this means that all of the el-
ements of D have been identified.

Note that this trick works only in the last stage, whereas
in the intermediate stages, regular ESC has to be used. This
is because only ESC takes sets of regions as input as well as
output. ESS makes use of region sets for initialization, but it

outputs individual regions. Consequently, if one tried, e.g.,
to concatenate several ESS stages, all stage after the first
would not benefit from the region set representation any-
more and would work as ordinary sliding window stages.

2.4. Non-Maximum Suppression
When object detection is just one stage of a bigger sys-

tem, one is often not really interested in all possible y ∈ Y
of positive classification score, but only in a few represen-
tative locations that correspond best to the true object lo-
cations. All other elements of D correspond to duplicate
detections of slightly different position or shape. To iden-
tify the relevant objects in D one typically applies non-
maximum suppression, either in form of a clustering algo-
rithm such as mean-shift [7], or by a greedy selection strat-
egy that iteratively scans all detections in order of decreas-
ing score and discards all regions that overlap too much with
a previous, non-discarded detection.

Both setups are easy to apply to the output of ESC. For
clustering approaches, we can make use of the fact that the
output of ESC is already a representation of D in terms of
region sets with adjacent image coordinates and presumably
homogeneous image contents. We can therefore speed up
the clustering by performing it on the level of region sets,
e.g., treating each of them as one sample in a mean-shift
procedure, weighted by the number of regions it contains.
Greedy techniques can be also be sped up, because the co-
ordinate parameterization of the region sets allows us to es-
timate their minimal and maximal overlap with the detec-
tions so far. Consequently, we can discard many detections
based only on their overlap, without the need to compute
their exact score. This step is similar to adding an additional
ESS-like stage to the ESC cascade and can be implemented
using only the components already used in Algorithm 1.

3. Cascade Learning
The main topic of this paper is the problem of effi-

ciently evaluating cascaded classifiers, not the question how
to learn them from training data. However, ESC can also be
used to speed up cascade training, as we will sketch in this
section.

Detection cascades are typically trained by a bootstrap-
ping procedure [20]: given a set of training images with
annotation of the object locations, we train a first stage us-
ing the ground truth regions as positive training examples
and randomly sampled background region as negative train-
ing examples. In subsequent stages, we extend the negative
training sets by the false positive detection of the previous
stage. In each stage, the classifier bias is adjusted such that
as many examples as possible are rejected without introduc-
ing too many missed detections.

Iterative training of this kind is effective, but often slow.
We can use ESC to mitigate this problem: because each

initial section of the cascade is again a detection cascade,
the step of identifying the false positives during training of
a stage fk can be performed efficiently by calling ESC to
the stages f1, . . . , fk−1.

4. Bounding Functions
In Section 2 we have assumed that quality bounding

function fk and f
k

are given to us, which fulfill condition
(3). In the following we will construct such bounds for dif-
ferent classifier functions, in particular for support vector
machines (SVMs) with linear and commonly used nonlin-
ear kernels. For simplicity of notation, we only consider
histogram based image representation.

Upper bounds fulfilling same conditions as fk are also
required for ESS, and [10] derives them for linear SVMs.
Similarly, [9] lists upper bounds for several distance func-
tions in the context of nearest-neighbor classifiers, but these
can also serve as components of SVM kernels. In contrast
to previous methods, ESC requires not only upper bounds
on the quality function, but also lower ones. These have not
appeared in the literature before, but they can be derived
using the same principle: in particular, let f be the deci-
sion function of a distance- or kernel-based classifier, e.g. a
support vector machine:

f(y) =
∑

i
αik(hi, hy) + b, (5)

where hy is a histogram representation of the image con-
tents in the region y, the histograms h1, . . . , hm are pro-
totypes, e.g. support vectors, α1, . . . , αm are real-valued
coefficients, and b is a constant bias term. For any non-
negative kernel or distance function1 upper and lower
bounds for any Y ⊂ Y are given by

f(Y) =
∑
{αi>0}

αik(hi, hY) +
∑
{αi<0}

αik(hi, hY) + b, (6)

f(Y) =
∑
{αi>0}

αik(hi, hY) +
∑
{αi<0}

αik(hi, hY) + b, (7)

where hY denotes the interval-valued histogram of all his-
tograms that occur for elements of Y , and k(hj , h′) and
k(hj , h′) are upper and lower bounds of the kernel function
itself. Table 1 lists examples of these. Note that the func-
tional form given there is not necessarily the fastest way
to compute the values. See, e.g., [10] and [13] on how to
speed up the evaluation of linear kernels and the histogram
intersection kernel, respectively.

5. Experimental Evaluation
We evaluate the performance of ESC compared to sin-

gle stage detection and to ordinary, i.e. exhaustive, cascade
1Only the function values that actually occur must be non-negative.

Equations (6) and (7) hold, e.g., also for SVMs with linear kernel, because
the histograms that we assume as input have no negative entries.

kernel function k(h, hy) upper bound k(h, hY) lower bound k(h, hY)

linear
P

j hjh
y
j

P
j hjh

Y
j

P
j hjh

Y
j

histogram
intersection

P
j min(hj , h

y
j)

P
j min(hj , h

Y
j)

P
j min(hj , h

Y
j)

χ2 −
P

j χ
2(hj , h

y
j) with −

P
j χ

2(hj , h
Y
j) with −

P
j χ

2(hj , hY
j) with

χ2(hj , h
y
j) =

(hj−h
y
j)2

hj+h
y
j

χ2(hj , h
′
j) =

8>>><>>>:
(hj−hY

j)2

hj+hY
j

for hj < hY
j ,

(hj−h
Y
j)2

hj+h
Y
j

for hj > h
Y
j ,

0 otherwise.

χ2(hj , h′j) = max
“

(hj−hY
j)2

hj+hY
j

,
(hj−h

Y
j)2

hj+h
Y
j

”

χ2-RBF exp
“
− γ

P
j χ

2(hj , h
y
j)
”

exp
“
− γ

P
j χ

2(hj , h
Y
j)
”

exp
“
− γ

P
j χ

2(hj , hY
j)
”

Table 1. Bounding functions for commonly used kernel functions. hy
j denotes the j-th bin of the histogram representation of a region y.

h
Y
j and hY

j denotes the large and smallest possible values that hy
j can take for any y ∈ Y . For unnormalized bag-of-word histogram, these

are the histograms of the largest and small rectangle in Y ; for normalized histograms, they can be computed using the method of [9].

evaluation. We have performed extensive experiments on
the PASCAL VOC 2006 [3] dataset that consists of 5304
image of natural scenes. The dataset contains manual anno-
tation of the locations of all objects from 10 object classes
in form of bounding boxes. In all experiments we used the
train and val parts of the data for model selection. After-
wards, we retrained the models on all of trainval and we
report results on the test part. To avoid a selection bias we
include all object categories in our study, including those
for which the chosen bag of visual word representations is
known to be inferior to methods based on prototypes [1],
edge-orientation [2, 5], or shape [6], for example.

5.1. Image Representation
We preprocessed each image into a set of keypoint lo-

calization with assigned integer cluster index. We identified
5,000–10,000 keypoints per image at Harris-Laplace loca-
tions as well as on a regular grid. We extracted WSIFT
descriptor [18] at these locations and quantized them using
a 512 entry codebook that was obtained by k-means cluster-
ing from a random subset of the descriptors. All classifiers
in the following sections work with bag of visual words rep-
resentation, i.e. regions are represented by the histograms of
cluster indices of the keypoints that fall into them.

Note that a detection system based on this representation
is unlikely to beat the state-of-the-art in object detection.
Multiple publications over the last years have shown that
detection performance is improved by the use of densely
samples feature points and large codebooks [14], multiple
sets of feature descriptors [19], spatial pyramid representa-
tions [12], and the use of image context [17].

We chose the simple setup because in this paper we do
not argue in favor of a new object detection method, but we
rather show the benefits of a divide-and-conquer strategy
for cascade evaluation, in contrast to an exhaustive evalu-
ation or to single-stage setups. We therefore believe that
reproducibility is more important than highest overall accu-

racy. The use of a very compact representation and clas-
sifiers with few meta-parameters enables us to release the
pre-processed feature data together with our source code2.

5.2. Cascade Setup
For each of the 10 object categories we trained a detec-

tion cascade of 1, 2, 3, 5 and 10 linear SVMs using the
procedure described in Section 3. For each stage, three
bootstrapping iterations were performed to collect addi-
tional false detections. For the experiments on classification
speed, we additionally trained an SVM with χ2-RBF kernel
as a nonlinear stage to put after the linear ones. We fixed the
kernel’s bandwidth parameter to the inverse of the mean of
the χ2-distances within the training set and we used 10-fold
cross validation to determine the C parameter. To make
the training and evaluation of a large number of cascades
tractable, we quantize the image coordinates to multiples
of 8 for the linear, and 16 for the nonlinear experiments.
During cascade evaluation, we activate a score insensitivity
of ε = 0.25 and we adapted the threshold of the exhaus-
tive evaluation to ε to ensure a fair comparison. When out-
putting multiple detections per image, we used greedy non-
maximum suppression with an overlap threshold of 0.8.

5.3. Evaluation of Detection Quality
Several methods to evaluate the quality of a multi-stage

object detection system have been proposed. We follow
Vedaldi et al.’s [19] setup of measuring recall vs. overlap.
Object detection is seen as a regression-like problem in this
case, where the quality of a method is judged by how well it
predicts the coordinates of the ground truth object bounding
boxes in previously unseen test images.

Recall–overlap evaluation has the advantage that it re-
quires only a local ranking of the detected regions within an
image, not a global ranking of detections between images.
The latter kind is required by retrieval-based measures, in

2available at http://www.christoph-lampert.org.

particular average precision (AP) that is in the PASCAL
VOC challenges. Although not directly related to the ob-
ject positions, the global ranking is known to have a strong
influence on the AP score when most image in the datasets
do not show the target class.

The details of our evaluation procedure are as follows:
for each test image containing the object class, we let the
detection systems extract a fixed number of candidate im-
ages. For each ground truth region y, we then calculate its
maximal overlap with any of the returned regions y′, us-
ing the area overlap measure, ∆(y, y′) = area(y ∩ y′)

area(y ∪ y′) . From
the results we derive overlap–recall curves: for any thresh-
old, θ ∈ [0, 1], we compute the fraction of ground truth
boxes which are identified with at least overlap θ, and plot
it against the threshold value. Figure 2 shows the resulting
plots for the two classes bicycle and cat. Table 2 summa-
rizes the results in more compact form, reporting the area
under curve for all classes and cascade setups.

Overall, the results show that cascades of linear classi-
fiers are indeed able to improve detection quality over sin-
gle stage classifiers. For all classes, longer cascades result
in stronger overlap with the ground truth locations, pro-
vided that enough candidate regions from each image are
taken into account. However, if only few regions from each
image are used, the picture from our experiments is more
diverse: for the classes car, cat, and dog, accuracy still
grew monotonically with the cascade length. For the other
classes, a single stage classifier provided as good or better
overlap with the ground truth as a cascade. We believe that
this is not an indicator that the cascade training has failed,
since at high recall levels, the ground truth is recovered. We
rather believe that the local ranking of regions is better in the
first stage, which is trained directly with ground truth de-
tections versus background regions, than in the later stages
that are trained to suppress false positives. The results for
the cow and person classes, show a limitation of the rather
simple training procedure we used. If the classifier learned
in one stage differs only insignificantly from the previous
one, the training set does not change and all later stages re-
main practically identical. Enforcing diversity between the
stages could be a way to overcome this problem.

5.4. Evaluation of Detection Speed
The previous section established what we already as-

sumed true: that cascades even of simple linear classifiers
are able to improve the detection quality over single-stage
sliding window systems. In the following, we will show
that using ESC we are able to evaluate such cascades more
efficiently than before. In all cases we measure the perfor-
mance of different three setups of cascade evaluation: or-
dinary per-region evaluation (baseline), plain ESC as de-
scribed in Section 2.1 (ESC w/o ESS), and ESC with inte-
grated ESS stage from Section 2.3 (ESC). Each setup was

stages standard cascade ESC w/o ESS ESC
1 0.59± 0.01 0.58± 0.01 0.04± 0.01
2 0.51± 0.01 0.45± 0.01 0.44± 0.01
3 0.52± 0.01 0.45± 0.01 0.45± 0.01
5 0.53± 0.01 0.46± 0.01 0.46± 0.01

10 0.58± 0.01 0.49± 0.01 0.49± 0.01
Table 3. Mean runtime [in s] and standard deviation of the mean
over 1000 evaluations of linear cascades.

stages standard cascade ESC w/o ESS ESC
0+1† 1889± 104 949± 115 204± 19.6

1+1† 469± 34.5 346± 31.9 221± 10.0
2+1 134± 6.81 117.5± 7.37 66.1± 3.28
3+1 95.0± 6.35 83.2± 6.37 45.3± 2.31
5+1 85.4± 6.09 73.6± 6.07 40.3± 2.20
10+1 80.2± 5.90 68.3± 5.80 38.7± 2.16

Table 4. Mean runtime [in s] and standard deviation of the mean
over 1000 evaluations of cascades with nonlinear last stage.
(†: runtime estimated from 250 evaluations).

applied to all cascades of the previous section with and
without an additional nonlinear stage. To avoid variations
due to different hardware platforms, all timing experiments
were run on the same 2.8 GHz Linux PC. For keeping the
computation manageable, we selected 100 random test im-
ages and evaluated the classifiers of all 10 classes only on
these, thereby performing 1000 timing runs per cascade.

Table 3 and 4 shows the mean runtime and the standard
deviation of the mean. Table 5 and 6 show the number of
classifier or bound evaluations that were performed in each
stage during these experiments. While the absolute runtime
is more relevant for practical applications, the evaluation
count better reflects the differences between the methods,
because it is independent of implementational choices, and
excludes the time required for preprocessing, memory man-
agement and file I/O.

The main observation from Table 3 is that for linear cas-
cades, the runtime does not depend much on the length of
the cascade. Consequently, we can turn an existing linear
detector into a cascade without computational cost at evalu-
ation time. Table 5 shows the reasons for this: most classi-
fier evaluations occur in the first one or two cascade stages.
Additional stages reduce the number of candidate regions
further, but they contribute little to the overall computing
time. When all subclassifiers are fast, a large part of the
overall runtime consists of overhead due to preprocessing
and memory management. Nevertheless, the results show a
small but significant speed advantage of ESC over the ex-
haustive evaluation in all setups.

For cascades with a nonlinear last stage the results differ
dramatically from the purely linear case. Table 4 shows that
all methods are much faster when applied to longer cascades
in comparison to shorter ones. Table 6 explains why: the
more linear stages we use, the more candidate regions are
rejected instead of ending up at the final, nonlinear stage.
Since the nonlinear classifier evaluations are much slower

0 0.2 0.4 0.6 0.8 1
overlap threshold

0

0.2

0.4

0.6

0.8

1

re
ca

ll

VOC 'cat' 1 detection

44.1
42.5
39.8
37.0
29.3

0 0.2 0.4 0.6 0.8 1
overlap threshold

0

0.2

0.4

0.6

0.8

1

re
ca

ll

VOC 'cat' 10 detection

65.0
61.6
60.7
58.2
48.9

0 0.2 0.4 0.6 0.8 1
overlap threshold

0

0.2

0.4

0.6

0.8

1

re
ca

ll

VOC 'cat' 100 detection

76.6
77.7
75.5
74.1
66.1

0 0.2 0.4 0.6 0.8 1
overlap threshold

0

0.2

0.4

0.6

0.8

1

re
ca

ll

VOC 'cat' 1000 detection

88.4
87.7
86.6
87.3
83.0

0 0.2 0.4 0.6 0.8 1
overlap threshold

0

0.2

0.4

0.6

0.8

1

re
ca

ll

VOC 'cat' 10000 detection

95.9
95.9
95.7
95.7
93.6

(a) Well-trained cascade (cat). All cascaded classifiers improve the overlap with the ground truth for all detection levels.

0 0.2 0.4 0.6 0.8 1
overlap threshold

0

0.2

0.4

0.6

0.8

1

re
ca

ll

VOC 'bicycle' 1 detection

17.5
10.9
10.7
10.4
14.8

0 0.2 0.4 0.6 0.8 1
overlap threshold

0

0.2

0.4

0.6

0.8

1

re
ca

ll

VOC 'bicycle' 10 detection

33.7
28.7
27.5
27.5
31.1

0 0.2 0.4 0.6 0.8 1
overlap threshold

0

0.2

0.4

0.6

0.8

1

re
ca

ll

VOC 'bicycle' 100 detection

49.4
46.4
45.6
45.9
43.5

0 0.2 0.4 0.6 0.8 1
overlap threshold

0

0.2

0.4

0.6

0.8

1

re
ca

ll

VOC 'bicycle' 1000 detection

66.9
66.3
65.7
66.0
62.4

0 0.2 0.4 0.6 0.8 1
overlap threshold

0

0.2

0.4

0.6

0.8

1

re
ca

ll

VOC 'bicycle' 10000 detection

91.1
90.8
91.1
90.5
80.5

(b) Problematic cascade (bicycle). When extracting a large number of detections from each image (100 to 10000), all cascade setups improve the detection
quality. At small detection numbers (1 or 10 detections per image) the 2 to 5-stage cascades decrease the detection accuracy compared to a single stage
detector, which is only overcome when using the longest, 10-stage cascade.

Figure 2. Overlap vs. recall plots for PASCAL VOC 2006 cat and bicycle categories (best viewed in color). In each plot, the x-axis denotes
the overlap threshold, the y-axis the fraction of identified ground truth boxes. Each row contains plots for 1, 10, 100, 1000 and 10000
detections per image (left to right). Each plot shows from top to bottom the curves for cascades of length 10, 5, 3, 2 and 1 (single stage
classifier; dashed). Numeric values are the recall percentage at 50% overlap, which is the threshold used in the VOC evaluation procedure.

1 10 100 1000 10000
1 24.9 35.9 46.1 56.9 70.2
2 19.9 33.7 47.0 60.6 74.9
3 20.0 33.7 46.9 61.0 75.0
5 20.5 34.7 48.2 61.5 74.9

10 25.0 38.5 50.7 62.4 75.0

bicycle

1 10 100 1000 10000
19.4 28.0 39.8 51.8 67.9
15.1 27.3 41.6 58.4 72.5
14.8 27.3 41.9 58.5 72.6
14.8 27.3 41.9 58.4 72.6
14.8 27.3 41.8 58.8 73.1

bus

1 10 100 1000 10000
13.6 21.3 30.4 42.1 58.7
14.4 24.1 34.6 46.5 63.9
17.5 26.6 36.0 47.1 63.1
23.1 29.4 37.6 47.8 62.7
25.2 31.6 39.4 49.6 62.8

car

1 10 100 1000 10000
34.8 47.1 58.9 69.8 78.9
40.1 54.5 66.8 76.4 82.4
42.6 55.3 66.3 76.2 82.0
44.7 56.1 67.6 76.7 82.3
44.7 56.7 67.9 76.4 82.3

cat

1 10 100 1000 10000
15.8 24.6 35.0 48.2 64.5
12.3 23.1 36.7 52.5 70.6
12.3 23.3 36.8 52.5 70.8
12.3 23.3 36.9 52.5 70.8
12.3 23.3 36.9 52.5 70.8

cow
1 29.4 40.7 52.7 65.4 76.6
2 27.9 42.6 56.6 70.9 80.3
3 30.7 44.3 58.1 71.1 80.0
5 33.8 47.1 60.1 71.5 80.0
10 37.7 49.0 61.2 71.8 79.7

dog

21.5 31.7 43.3 55.0 69.7
15.1 28.7 45.7 61.8 75.3
15.2 28.6 45.7 61.8 75.2
15.2 28.7 46.1 62.2 75.2
16.4 30.3 47.5 63.7 75.4

horse

24.7 36.1 47.6 59.3 71.2
18.2 33.8 48.4 61.4 75.8
18.2 33.8 48.4 61.3 75.6
18.4 33.8 48.5 62.1 76.1
19.4 34.8 49.8 63.4 76.0

motorbike

7.9 14.4 22.9 36.3 55.6
5.8 13.0 24.7 41.7 58.7
5.8 12.9 24.6 41.5 56.2
5.8 12.9 24.6 41.5 56.1
5.8 12.9 24.6 41.5 56.1

person

12.0 18.4 26.7 37.9 54.7
8.9 17.3 28.2 43.9 62.8
8.7 17.4 28.3 44.0 62.6
8.7 17.4 28.3 43.9 63.0
8.7 17.4 28.4 44.2 63.6

sheep
Table 2. Area under recall–overlap curve [in %] for the top 1, 10, 100, 1000 and 10000 detections of cascades of length 1, 2, 3, 5 and 10.

than linear ones, it is their number that dominates the over-
all runtime. The tables also show that ESC – in particular in
combination with ESS – is more effective in avoiding non-
linear evaluations, thereby providing a significant speedup
over exhaustive evaluation. When applied to identical clas-
sifier cascades, ESC is always at least twice as fast.

6. Summary and Outlook
In this paper we have introduced ESC, a divide-and-

conquer strategy for accelerating the evaluation of classifier
cascades for object detection in natural images. By using an
internal representation by set of regions instead of individ-
ual regions, ESC can discard large fractions of the potential
candidate locations with few classifier evaluations. Thereby
it reduces the computational effort compared to the standard
way of cascade evaluation for object detection, in which one
applies the classifier cascade exhaustively to every candi-
date region in the images. In our experiments, this resulted
in a speedup of approximately 15% in the case where all

stages are linear and over 50% in the nonlinear case.

One reason for this effect is that ESC allows the integra-
tion of the branch-and-bound based ESS algorithm [10] in
its final stage, because both rely on the same internal repre-
sentation. ESC in this way combines the advantages of two
current trends for fast object detection: global optimization
techniques that exploit spatial correlation of the detection
scores and cascades that provide a speedup by approximat-
ing the actual detection function with increasing precision.

An important problem that we were able to address only
superficially in this paper is the question of how to best
learn a classifier cascade that allows efficient evaluation
with ESC. Because ESC benefits from smoothly varying de-
cision functions, we conjecture that it would be beneficial
to enforce strong regularization in the first stages, whereas
later stages that have less influence on the overall runtime
can be more specifically tuned to the data. This resem-
bles the concept of hierarchical multiclass classification,
and we plan to explore this relation by extending ESC to

method # stages 1 2 3 4 5 6 7 8 9 10 total
ESC [w/o ESS] 1 0.7 [32.0] – – – – – – – – – 0.7 [32.0]
baseline cascade 1 33.7 – – – – – – – – – 33.7
ESC [w/o ESS] 2 32.0 3.6 [5.3] – – – – – – – – 35.6 [37.3]
baseline cascade 2 33.7 10.5 – – – – – – – – 44.2
ESC [w/o ESS] 3 32.0 5.3 1.02 [1.64] – – – – – – – 38.3 [38.9]
baseline cascade 3 33.7 10.5 2.49 – – – – – – – 46.7
ESC [w/o ESS] 5 32.0 5.3 1.64 1.19 0.62 [1.10] – – – – – 40.7 [41.2]
baseline cascade 5 33.7 10.5 2.49 1.67 1.55 – – – – – 50.0
ESC [w/o ESS] 10 32.0 5.3 1.64 1.19 1.10 1.07 1.05 1.04 1.02 0.58 [1.02] 46.0 [46.4]
baseline cascade 10 33.7 10.5 2.49 1.67 1.55 1.49 1.47 1.45 1.43 1.42 57.2

Table 5. Classifier or bound evaluations [in 105] for linear classifiers cascades. Results in brackets are without integration of ESS into ESC.

method # stages 1 2 3 4 5 6 7 8 9 10 nonlinear
ESC [w/o ESS] 0+1 – – – – – – – – – – 28.65 [137.4]
baseline cascade 0+1 – – – – – – – – – – 208.0
ESC [w/o ESS] 1+1 244.6 – – – – – – – – – 27.00 [53.54]
baseline cascade 1+1 208.0 – – – – – – – – – 64.8
ESC [w/o ESS] 2+1 244.6 40.25 – – – – – – – – 8.03 [15.95]
baseline cascade 2+1 208.0 64.84 – – – – – – – – 16.37
ESC [w/o ESS] 3+1 244.6 40.25 12.84 – – – – – – – 5.47 [11.18]
baseline cascade 3+1 208.0 64.84 16.37 – – – – – – – 11.20
ESC [w/o ESS] 5+1 244.6 40.25 12.84 9.28 8.61 – – – – – 4.90 [9.96]
baseline cascade 5+1 208.0 64.84 16.37 11.20 10.36 – – – – – 10.02
ESC [w/o ESS] 10+1 244.6 40.25 12.84 9.28 8.61 8.30 8.18 8.06 7.92 7.87 4.73 [9.35]
baseline cascade 10+1 208.0 64.84 16.37 11.20 10.36 10.02 9.84 9.71 9.62 9.55 9.50

Table 6. Classifier or bound evaluations [in 103] for classifiers cascades with a nonlinear last stage.

other topologies than linear chains, in particular to decision
trees and multi-class decision DAGs.

References
[1] O. Chum and A. Zisserman. An exemplar model for learning

object classes. In CVPR, 2007.
[2] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005.
[3] M. Everingham, A. Zisserman, C. K. I. Williams, and

L. Van Gool. The PASCAL Visual Object Classes
Challenge 2006 (VOC2006) Results. http://www.pascal-
network.org/challenges/VOC/voc2006/results.pdf.

[4] P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade
object detection with deformable part models. In CVPR,
2010.

[5] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. PAMI, 2009.

[6] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of
adjacent contour segments for object detection. PAMI, 30(1),
2008.

[7] K. Fukunaga and L. D. Hostetler. The estimation of the gra-
dient of a density function with applications in pattern recog-
nition. IEEE Trans. Information Theory, 21(1), 1975.

[8] H. Harzallah, F. Jurie, and C. Schmid. Combining efficient
object localization and image classification. In ICCV, 2009

[9] C. H. Lampert. Detecting objects in large image collections
and videos by efficient subimage retrieval. In ICCV, 2009.

[10] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Beyond
sliding windows: Object localization by efficient subwindow
search. In CVPR, 2008.

[11] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Efficient
subwindow search: A branch and bound framework for ob-
ject localization. PAMI, 2009.

[12] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, 2006.

[13] S. Maji, A. C. Berg, and J. Malik. Classification using inter-
section kernel support vector machines is efficient. In CVPR,
2008.

[14] E. Nowak, F. Jurie, and B. Triggs. Sampling strategies for
bag-of-features image classification. In ECCV, 2006.

[15] S. Romdhani, P. Torr, B. Schölkopf, and A. Blake. Compu-
tationally efficient face detection. In ICCV, 2001.

[16] H. Schneiderman. Feature-centric evaluation for efficient
cascaded object detection. In CVPR, 2004.

[17] A. Torralba. Contextual priming for object detection. IJCV,
53(2), 2003.

[18] K. E. A. Van De Sande, T. Gevers, and C. G. M. Snoek. Eval-
uation of color descriptors for object and scene recognition.
In CVPR, 2008.

[19] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Mul-
tiple kernels for object detection. In ICCV, 2009.

[20] P. Viola and M. J. Jones. Robust real-time face detection.
IJCV, 57(2), 2004.

[21] T. Yeh and T. Darrell. Fast concurrent object localization and
recognition. In CVPR, 2009.

[22] J. Yuan, Z. Liu, and Y. Wu. Discriminative subvolume search
for efficient action detection. In CVPR, 2009.

[23] Q. Zhu, S. Avidan, M. C. Yeh, and K. T. Cheng. Fast human
detection using a cascade of histograms of oriented gradi-
ents. In CVPR, 2006.

