Track Introduction Data Science and **Scientific Computing** presented by Christoph Lampert (TrackRep)

Institute of Science and Technology

Today's Schedule

10:00-10:30	Christoph Lampert	Overview of the DSSC Track
10:30-10:45	Gasper Tkacik	Theoretical Biophysics and Neuroscience
10:45-11:00	Bingqing Cheng	Computational Materials Science
11:00-11:15	Marco Mondelli	Machine Learning at IST Austria
11:15-11:30	Matthew Robinson	Medical Genomics
11:30-11:45	Caroline Muller	Atmosphere and Ocean Dynamics
11:45-12:00	all of the above	overflow buffer and Q&A

Data Science and Scientific Computing (DSSC)

Interdisciplinary Track in the Graduate School, combining aspects of:

- data analysis
- information processing
- modelling
- numerical simulation

Beatriz Vicoso

BIOLOGY AND

EVOLUTION

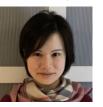
ISIN AUSTRIA

Nick

Barton

SEX-CHROMOSOME

EVOLUTIONARY GENETICS DIGITAL FABRICATION


Bernd

Bickel

COMPUTER

GRAPHICS AND

Bingging Cheng

COMPUTATIONAL MATERIALS SCIENCE

Chris

Wojtan

Hannezo

Edouard

PHYSICAL PRINCIPLES IN BIOLOGY

Marco Mondelli

INFORMATION-THEORETIC VIEW OF DATA SCIENCE

Carl Goodrich

COMPUTATIONAL SOFT-MATTER PHYSICS

Caroline **Muller**

ATMOSPHERE AND OCEAN DYNAMICS

MACHINE LEARNING AND COMPUTER VISION

Matt Robinson

MEDICAL GENOMICS COMPUTER **GRAPHICS AND** PHYSICS SIMULATION

Gasper **Tkacik**

THEORETICAL **BIOPHYSICS AND** NEUROSCIENCE

Sandra Siegert

IMMUNOLOGY

future professors

Beatriz Nick Bernd Bingging Edouard Marco Carl **Bickel** Mondelli Goodrich Vicoso **Barton** Cheng Hannezo **SIN** AUSTRIA Deputy TrackRep COMPUTATIONAL INFORMATION-SEX-CHROMOSOME **EVOLUTIONARY** COMPUTER COMPUTATIONAL GENETICS **GRAPHICS AND** MATERIALS SCIENCE CIPLES IN THEORETIC VIEW OF **BIOLOGY AND** SOFT-MATTER DIGITAL FABRICATION BIOLOGY DATA SCIENCE **EVOLUTION** PHYSICS Caroline Matt Chris Sandra Christoph future

Muller

ATMOSPHERE AND OCEAN DYNAMICS

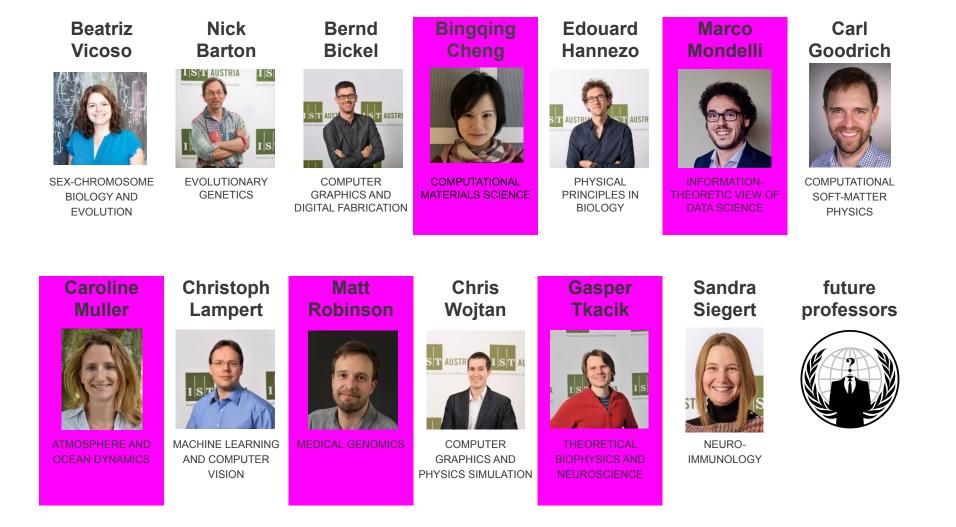
Robinson

MEDICAL GENOMICS

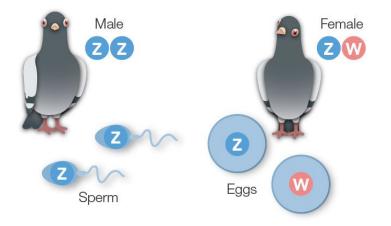
COMPUTER **GRAPHICS AND** PHYSICS SIMULATION

Gasper **Tkacik**

THEORETICAL **BIOPHYSICS AND** NEUROSCIENCE



professors



Beatriz Vicoso Sex-Chromosome Biology and Evolution

How do sex chromosomes evolve?

Nick Barton Evolutionary Genetics

Hybrid zones:

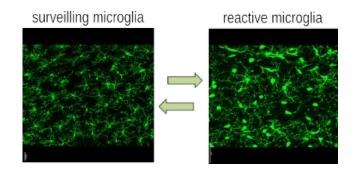
• study selection, gene flow, random fluctuations

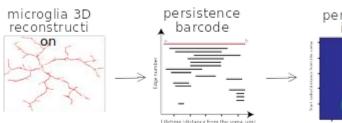
Genetics of complex traits:

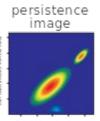
 theory, experimental evolution, data analysis

Making sense of DNA sequence:

how can we infer population
history, and detect selection?

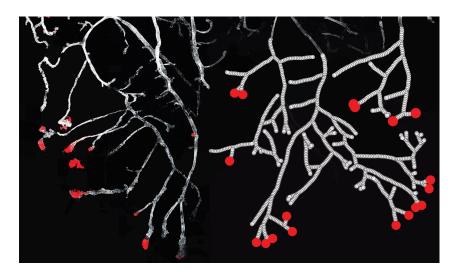



Image: Wikipedia



Sandra Siegert Neuroimmunology in Health and Disease

(Topological) data analysis to classify immune cells' morphology and function.



drackal distance from the some

Edouard Hannezo Physical Principles in Biology

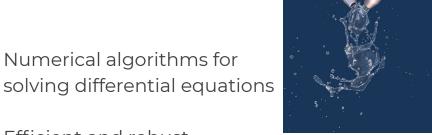
Example: how do cells "know" how to make the right decisions?

Bernd Bickel Computer Graphics and Digital Fabrication

Chris Wojtan

Numerical algorithms for

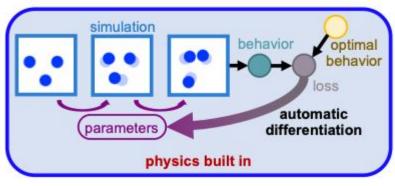
Physics Simulation and Geometry Processing


Methods for modeling, simulating and optimizing (printable) 3D objects

Example: CurveUps

Efficient and robust methods for animating physics

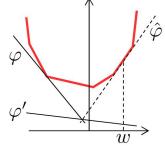
Create tools for manipulating shapes



Carl Goodrich Theoretical and Computational Soft Matter

Discovering basic soft matter principles using computational and theoretical tools, such as artificial neural networks

B Differentiable Statistical Physics Calculations



Christoph Lampert Machine Learning and Computer Vision

Statistical machine learning:

 transfer learning, continual learning, trustworthy learning, theory of deep learning

Applications in Computer Vision:

- scene understanding
- generative models of dynamic scenes

future professor(s)

... keep checking the IST Austria homepage ...

Five new professors join IST Austria

IST Austria President Thomas Henzinger presents successful young researchers | Appointments in neuroscience, physics, mathematics, and computer science

DSSC Courses 2021/22

Applications of Stochastic Processes (Nick Barton) - Fall II

The course will cover basic stochastic processes, emphasizing examples from a range of fields. This will include Markov chains, branching processes, and the diffusion approximation. Mathematical rigour will be avoided.

Applied Algorithms and Datastructures (Tobias Meggendorfer) -- Fall I+II

This course aims to teach the concepts of efficient algorithms through a practical, hands-on format. Each week treats a particular class of problems, beginning with basic data structures and simple algorithms, and continuing with more advanced topics, e.g. shortest path or dynamic programming.

Computational Physics (Chris Wojtan) -- Fall I

This course surveys some moderate/advanced topics for solving problems in computational physics and computer animation. The course will be structured as a seminar, with students primarily presenting material and discussing the details of various approaches.

Information Theory (for Data Science) (Marco Mondelli) -- Fall I

The goal of the course is to present fundamental concepts in Information Theory and describe their relevance to emerging problems in Data Science and Machine Learning.

DSSC Courses 2021/22

Introduction to Python Programming for Data Science (Eder Miguel Villalba) -- Fall I

The goal of the course is to provide a deeper understanding of programming fundamentals in Python, develop programming skills through small programming projects and learn how to use some of the most common Python libraries for scientific computing and data analysis.

Methods of Data Analysis (Gasper Tkacik) -- Fall II

This course introduces five topics in data analysis and simulation methods. The focus is on sampling and inferring probabilistic models.

Statistical Machine Learning (Christoph Lampert) -- Fall I (inverted classroom format)

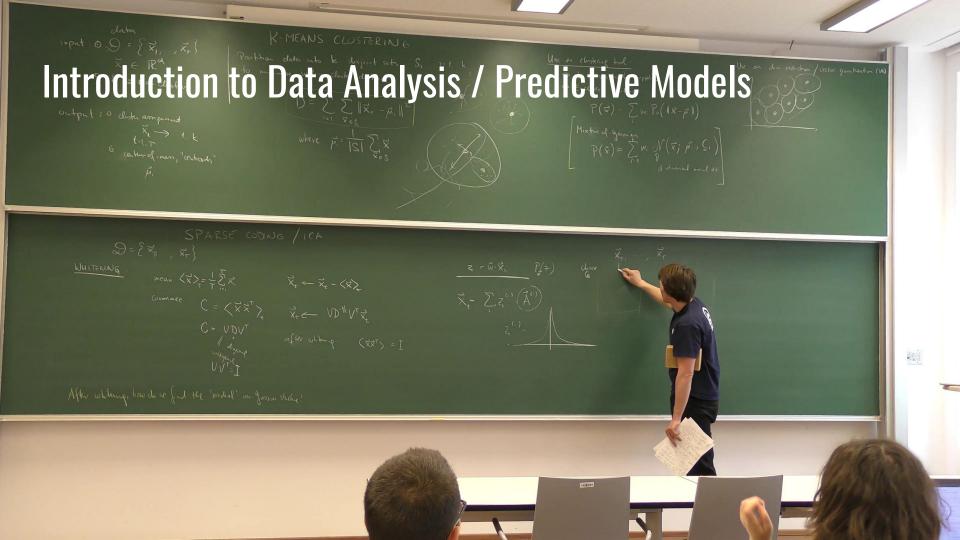
Introduction to modern statistical machine learning, in particular probabilistic models. The focus is on concepts, not applications.

Computational Bayesian Statistics (Matthew Robinson) -- Spring II

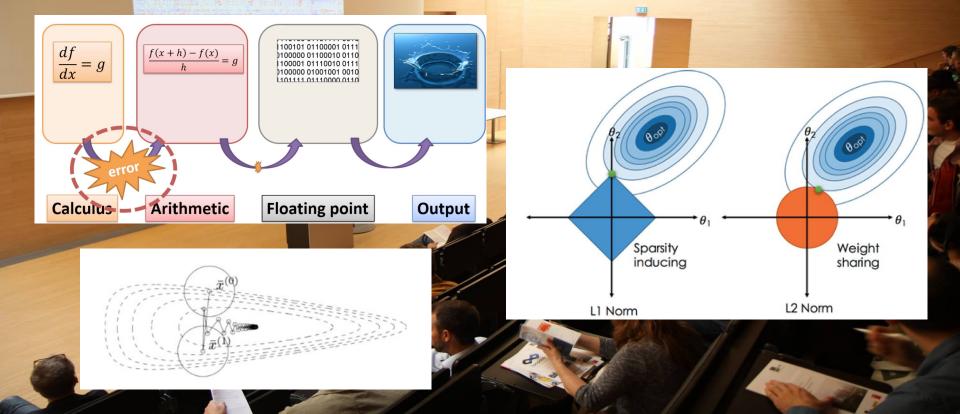
This course aims to start from the basic fundamentals of Bayesian inference and slowly evolves to cover more recent advances. The focus is on methods and algorithms closer to the application level, but with the hope of providing a solid theoretical foundation.

Data Science and Scientific Computing Track Core Course

Track Core Course -- Spring I+II


- introduction to data analysis / predictive models
- introduction to numerical simulation / optimization
- individual projects that combine both aspects

Prerequisites


- programming skills (preferably Python)
- strong mathematical skills (linear algebra, calculus)
- good understanding of statistics / probabilities

Introduction to Numerics and Optimization

Deconstructing fear

Individual Projects

- simulating neuron firing together and developing patterns
- simulating molecular dynamics of chiral proteins to learn group behaviors
- simulating/animating ant colonies
- N-body simulator to study evaporation of star clusters
- study of pattern formation in reaction-diffusion equations

- simulating a "turbidostat"
 a lab tool for growing bacteria
 and studying mutations
- study of data set compression for machine learning models
- game theory simulation to find stable population behaviors
- study of stable/unstable balances between predator/prey interactions on a graph

Following: Individual Presentations

Gasper Tkacik

Theoretical Biophysics and Neuroscience Bingqing Cheng

Computational Materials Science

Marco Mondelli

Machine Learning at IST Austria Matthew Robinson

Medical Genomics Caroline Muller

Atmosphere and Ocean Dynamics