Incremental Classifier and Representation Learning

Christoph Lampert

Workshop at Genova
March 9–10, 2017
Continuously improving open-ended learning

Life long learner/agent

Task 1

Task 2

Task 3

Lifelong Learning
A few years after the deep learning revolution...
A few years after the deep learning revolution...
Input: a stream of data, examples of different classes occur at different times,
Output: at any time, a competitive multi-class classifier for the classes observed so far,
Conditions: computational requirements and memory footprint remain bounded (or at least grow very slowly) with respect to the number of classes seen so far.
Input: a stream of data, examples of different classes occur at different times,

Output: at any time, a competitive multi-class classifier for the classes observed so far,

Conditions: computational requirements and memory footprint remain bounded (or at least grow very slowly) with respect to the number of classes seen so far.
Class-Incremental Learning

- feature function \(\varphi : \mathcal{X} \rightarrow \mathbb{R}^d \)
- classifiers: \(g_y(x) = \frac{1}{1 + e^{-\langle w_y, \varphi(x) \rangle}} \) for each \(y \in \mathcal{Y} \) seen so far
- data comes in class batches: \(X^s, \ldots, X^t \) where all examples in \(X^y \) are of class \(y \)
Class-Incremental Learning

- feature function $\varphi : \mathcal{X} \rightarrow \mathbb{R}^d$
- classifiers: $g_y(x) = \frac{1}{1 + e^{-\langle w_y, \varphi(x) \rangle}}$ for each $y \in \mathcal{Y}$ seen so far
- data comes in class batches: X^s, \ldots, X^t where all examples in X^y are of class y

Idea 1: incremental multi-class training, e.g., using stochastic gradient descent:

| x | \begin{tabular}{c} \includegraphics[width=0.025\textwidth]{cat1.png} \end{tabular} & \begin{tabular}{c} \includegraphics[width=0.025\textwidth]{cat2.png} \end{tabular} & \begin{tabular}{c} \includegraphics[width=0.025\textwidth]{cat3.png} \end{tabular} & \begin{tabular}{c} \includegraphics[width=0.025\textwidth]{cat4.png} \end{tabular} & \begin{tabular}{c} \includegraphics[width=0.025\textwidth]{dog1.png} \end{tabular} & \begin{tabular}{c} \includegraphics[width=0.025\textwidth]{dog2.png} \end{tabular} & \begin{tabular}{c} \includegraphics[width=0.025\textwidth]{dog3.png} \end{tabular} |
| \hline
| w_{cat} | 1 & 1 & -1 & 1 & -1 & -1 & 1 |
| w_{dog} | -1 & -1 & 1 & -1 & 1 & 1 & -1 |

- after being trained on a set of classes, classifier parameters make sense
Class-Incremental Learning

- feature function \(\varphi : \mathcal{X} \to \mathbb{R}^d \)
- classifiers: \(g_y(x) = \frac{1}{1 + e^{-\langle w_y, \varphi(x) \rangle}} \) for each \(y \in \mathcal{Y} \) seen so far
- data comes in class batches: \(X^s, \ldots, X^t \) where all examples in \(X^y \) are of class \(y \)

Idea 1: incremental multi-class training, e.g., using stochastic gradient descent:

<table>
<thead>
<tr>
<th>(x)</th>
<th>cat</th>
<th>dog</th>
<th>boat</th>
<th>truck</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_{\text{cat}})</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>(w_{\text{dog}})</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(w_{\text{boat}})</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(w_{\text{truck}})</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- after being trained on a set of classes, classifier parameters make sense
- every later sample is a negative example for earlier classes \(\rightarrow \) parameters \(w_y \) deteriorate
Class-Incremental Learning

- Feature function $\varphi : \mathcal{X} \rightarrow \mathbb{R}^d$
- Classifiers: $g_y(x) = \frac{1}{1 + e^{-\langle w_y, \varphi(x) \rangle}}$ for each $y \in \mathcal{Y}$ seen so far
- Data comes in class batches: X^s, \ldots, X^t where all examples in X^y are of class y

Idea 2: fix classifier parameters after each class batch, train only new ones:

<table>
<thead>
<tr>
<th>X</th>
<th>\times</th>
<th>w_{cat}</th>
<th>1</th>
<th>1</th>
<th>-1</th>
<th>1</th>
<th>-1</th>
<th>-1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{dog}</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_{boat}</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_{truck}</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When φ changes but w_y does not, outputs deteriorate → "catastrophic forgetting"

Class-Incremental Learning

- feature function $\varphi: \mathcal{X} \rightarrow \mathbb{R}^d$
- classifiers: $g_y(x) = \frac{1}{1 + e^{-\langle w_y, \varphi(x) \rangle}}$ for each $y \in \mathcal{Y}$ seen so far
- data comes in class batches: X^s, \ldots, X^t where all examples in X^y are of class y

Idea 2: fix classifier parameters after each class batch, train only new ones:

<table>
<thead>
<tr>
<th>X</th>
<th>🐾</th>
<th>🐱</th>
<th>🐲</th>
<th>🐶</th>
<th>🐐</th>
<th>🐴</th>
<th>🐳</th>
<th>🚗</th>
<th>🚗</th>
<th>🚗</th>
<th>🚗</th>
<th>🚗</th>
<th>🚗</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{cat}</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_{dog}</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_{boat}</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_{truck}</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- classifiers of different batches are trained independently \rightarrow batches not separated

Class-Incremental Learning

- feature function $\varphi: X \rightarrow \mathbb{R}^d$

- classifiers: $g_y(x) = \frac{1}{1 + e^{-\langle w_y, \varphi(x) \rangle}}$ for each $y \in \mathcal{Y}$ seen so far

- data comes in class batches: X^s, \ldots, X^t where all examples in X^y are of class y

Idea 2: fix classifier parameters after each class batch, train only new ones:

<table>
<thead>
<tr>
<th>x</th>
<th>cat</th>
<th>dog</th>
<th>boat</th>
<th>truck</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{cat}</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>w_{dog}</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>w_{boat}</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>w_{truck}</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

> classifiers of different batches are trained independently \rightarrow batches not separated

If data representation is also trained, even fixing old w_y is not enough!

When φ changes but w_y does not, outputs deteriorate \rightarrow "catastrophic forgetting"

Idea 3: Nearest-Class-Mean (NCM) classifier [Mensink et al. 2013]

\[y^* = \arg\min_{y \in \mathcal{Y}} \| \varphi(x) - \mu_y \|^2 \]

for \(\mu_y = \frac{1}{|\{i : y_i = y\}|} \sum_{\{i : y_i = y\}} \varphi(x_i) \)

Advantage:
- class mean \(\mu_y \) does not deteriorate when new samples come in
- even classes within different batches 'compete'

Problem:
- when \(\varphi \) changes, we have to recompute \(\mu_y \)
 - we need to store all training examples
 - does not fulfill condition for 'class-incremental'

[Mensink, Verbeek, Perronnin, Csurka. "Distance-based image classification: generalizing to new classes at near-zero cost.", TPAMI 2013]
Proposal:

iCaRL (Incremental Class and Representation Learning) [Rebuffi et al., CVPR 2017]

Internal representation:
- feature function $\varphi : \mathcal{X} \rightarrow \mathbb{R}^d$, weight vectors w_y for $y \in \mathcal{Y}$
- for each seen class, y, a set of exemplar samples, P_y, (in total up to K samples)

For representation learning:
- probabilistic outputs: $g_y(x) = \frac{1}{1 + e^{-\langle w_y, \varphi(x) \rangle}}$ for each $y \in \mathcal{Y}$ seen so far

For classification:
- classify samples by their distance to a class prototype (like NCM does), but using the mean of exemplars, not the mean of all training examples

iCaRL: Classification

\[y^* \leftarrow \text{NearestMeanOfExemplars}(x) \]

<table>
<thead>
<tr>
<th>input (x)</th>
<th>// sample to be classified</th>
</tr>
</thead>
<tbody>
<tr>
<td>require (\mathcal{P} = (P_1, \ldots, P_t))</td>
<td>// class exemplar sets of classes 1, \ldots, (t) seen so far</td>
</tr>
<tr>
<td>require (\varphi : \mathcal{X} \rightarrow \mathbb{R}^d)</td>
<td>// feature map</td>
</tr>
</tbody>
</table>

for \(y = 1, \ldots, t \) do
 \[\mu_y \leftarrow \frac{1}{|P_y|} \sum_{p \in P_y} \varphi(p) \] // mean-of-exemplars
end for

\(y^* \leftarrow \text{argmin}_{y=1,\ldots,t} \| \varphi(x) - \mu_y \| \) // nearest prototype

output class label \(y^* \)
IncrementalTrain(X^s, \ldots, X^t, K)

input X^s, \ldots, X^t // new training examples in per-class sets (all $x \in X^y$ are of class y)

input K // maximum number of exemplars

require Θ // current model parameters

require $\mathcal{P} = (P_1, \ldots, P_{s-1})$ // current exemplar sets

$\Theta \leftarrow \text{UpdateRepresentation}(X^s, \ldots, X^t; \mathcal{P}, \Theta)$

$m \leftarrow \lfloor K/t \rfloor$ // number of exemplars per class

for $y = 1, \ldots, s - 1$ do

$P_y \leftarrow \text{ReduceExemplarSet}(P_y, m)$

end for

for $y = s, \ldots, t$ do

$P_y \leftarrow \text{ConstructExemplarSet}(X^y, m, \Theta)$

end for

$\mathcal{P} \leftarrow (P_1, \ldots, P_t)$ // new exemplar sets
UpdateRepresentation(X^s, \ldots, X^t)

input X^s, \ldots, X^t // training samples of classes s, \ldots, t

require $\mathcal{P} = (P_1, \ldots, P_{s-1})$ // exemplar sets

require Θ // current model parameters

$$D \leftarrow \bigcup_{y=s,\ldots,t} \{(x,y) : x \in X^y\} \cup \bigcup_{y=1,\ldots,s-1} \{(x,y) : x \in P^y\}$$ // combined training set

for $y = 1, \ldots, s - 1$ **do**

$$q^y_i \leftarrow g_y(x_i) \quad \text{for all } (x_i, \cdot) \in D$$ // store outputs of pre-update network

end for

run network training (e.g. BackProp) with loss function

$$\mathcal{L}(\Theta) = -\sum_{(x_i,y_i) \in D} \left[\sum_{y=s}^t \ell(\delta_{y=y_i}, g_y(x_i)) + \sum_{y=1}^{s-1} \ell(q^y_i, g_y(x_i)) \right]$$

- **classification loss**
- **distillation loss**
Two difference to ordinary network learning/finetuning:

- **training set**

\[
\mathcal{D} \leftarrow \bigcup_{y=s,\ldots,t} \{(x,y) : x \in X^y\} \cup \bigcup_{y=1,\ldots,s-1} \{(x,y) : x \in P^y\}
\]

consists of samples of new classes, but also exemplars of old classes
→ representation is 'reminded' of old classes regularly

- **loss function**

\[
\mathcal{L}(\Theta) = - \sum_{(x_i,y_i) \in \mathcal{D}} \left[\sum_{y=s}^{t} \ell(\delta_{y=y_i}, g_y(x_i)) + \sum_{y=1}^{s-1} \ell(q^y_i, g_y(x_i)) \right]
\]

contains not just ordinary classification term, but also *distillation* term [Hinton et al., 2014] → encourage network to preserve its output values across training steps [Li, Hoiem. 2016]
\[P \leftarrow \text{REDUCEEXEMPLARSET}(P, m) \]

Input
- \(P = (p_1, \ldots, p_{|P|}) \) // current exemplar set
- \(m \) // target number of exemplars

Output
- exemplar set \(P = (p_1, \ldots, p_m) \) // keep only first \(m \) exemplars

\[P \leftarrow \text{CONSTRUCTEXEMPLARSET}(X, m) \]

Input
- sample set \(X = \{x_1, \ldots, x_n\} \) of class \(y \)
- \(m \) target number of exemplars

Require
- current feature function \(\varphi : \mathcal{X} \rightarrow \mathbb{R}^d \)

\[
\mu \leftarrow \frac{1}{n} \sum_{x \in X} \varphi(x) \quad \text{// current class mean}
\]

For \(k = 1, \ldots, m \)

\[
p_k \leftarrow \underset{x \in X}{\text{argmin}} \left\| \mu - \frac{1}{k} [\varphi(x) + \sum_{j=1}^{k-1} \varphi(p_j)] \right\| \quad \text{// next exemplar}
\]

Output
- exemplar set \(P = (p_1, \ldots, p_m) \)
CIFAR-100 dataset:

- 60K low-resolution images (50K train, 10K test)
- 100 classes

iCaRL setup:

- 32-layer ResNet [He et al. 2015]
- $K = 2000$ exemplars
- 2, 5, 10, 20 or 50 classes per batch

iCaRL: Experiments

ImageNet ILSVRC-2012 dataset:
- >1.2M high-resolution images (1.2M train, 50K val)
- 1000 classes

iCaRL setup:
- 18-layer ResNet [He et al. 2015]
- $K = 20000$ exemplars
- 10 or 100 classes per batch

Alternative methods:

- **finetuning:**
 - train network using stochastic gradient descent
 - no measures to prevent catastrophic forgetting

- **fixed representation:**
 - on the first batch of classes, train the complete network,
 - then, freeze the data representation (all network layers except the last one),
 - for subsequence batches of classes, train only new classifiers

- **LwF.MC:**
 - train network including distillation loss, but do not use exemplars anywhere
 - resembles multi-class version of "Learning with Forgetting" (LwF) [Li and Hoiem, 2016]
Multi-class accuracies over 10 repeats (average and standard deviation) for class-incremental training on CIFAR-100 with 2 (top left), 5 (top middle), 10 (top right), 20 (bottom left) or 50 (bottom right) classes per batch.
Top-5 accuracies for class-incremental training on ILSVRC 2012 with 10 (left) or 100 (right) classes per batch.
Class-Incremental Learning: Results

Confusion matrices of different methods on CIFAR-100 after training for 100 classes with 10 classes per batch (entries are transformed by $\log(1 + x)$ for better visibility).

- **iCaRL**: predictions spread homogeneously over all classes
- **LwF.MC**: prefer recently seen classes \rightarrow some long-term memory loss
- **fixed representation**: prefer batch of classes seen first \rightarrow lack of neural plasticity
- **finetuning**: predict only most recently seen classes \rightarrow catastrophic forgetting
Summary and Conclusion

Class-incremental learning is very reasonable, but it is far from solved:

- how to learn a multi-classifier and a representation jointly?
- how to avoid catastrophic forgetting?

iCaRL is our proposal:

- keep a small set of exemplars for each class
- use a mean-of-exemplars classifier rule instead of network outputs
- using distillation during representation learning to avoid catastrophic forgetting

Open questions:

- can other learning strategies be made class-incremental?
- will exemplars be as beneficial for other problem settings?
- what if we cannot store exemplars, e.g. due to privacy/copyright?