Time-Lock Puzzles

Chethan Kamath, Pietrzak Group
Franke and Co

- **Protagonists**

 - **Franke**
 - **Miele**
 - **Jules**

Antagonists: Us
Franke and Co

- **Protagonists**
 - Franke
 - Miele
 - Jules

- **Antagonists: Us**
Motivation*

* I shamelessly ripped this example off Tal Moran’s Crypto’11 talk.
Motivation

Cogito, ergo sum

2017

*I shamelessly ripped this example off Tal Moran’s Crypto’11 talk.
Motivation

Requirements:
1. Humanity cannot decrypt in < 25 years
2. Jules can decrypt in 25 years

C I shamelessly ripped this example off Tal Moran’s Crypto’11 talk.
Motivation

Cogito, ergo sum

Sic semper tyrannis!

2017 ➔ *HELP!* ➔ *2042*

I shamelessly ripped this example off Tal Moran’s Crypto’11 talk.
Motivation*

Cogito, ergo sum

Sic semper tyrannis!

2017

2042

2067

* I shamelessly ripped this example off Tal Moran’s Crypto’11 talk.
Motivation

Requirements:

1. Humanity cannot decrypt in < 25 years

I shamelessly ripped this example off Tal Moran’s Crypto’11 talk.
Motivation

Cogito, ergo sum

Sic semper tyrannis!

Requirements:

1. Humanity cannot decrypt in < 25 years
2. Jules can decrypt in 25 years

I shamelessly ripped this example off Tal Moran’s Crypto’11 talk.
Attempt 1: Use a Trusted Third Party

Problem: Franke has to completely trust Miele Dishwashers break down

2017

HELP!

2042

HELP!
Attempt 1: Use a Trusted Third Party

- Problem: Franke has to completely trust Miele
 - Dishwashers break down
Encryption

Franke and Jules share a key

Encrypt(message, key) = code

Decrypt(code, key) = message

Key size: If key is \(n \) bits then it takes \(\approx 2^n \) operations on one computer to break the encryption

E.g., assuming \(2^{30} \) operations/sec

\(n = 60: \approx 2^{32} \) years;
\(n = 128: \approx 2^{64} \) years
Franke and Jules share a key
Franke and Jules share a key
Franke and Jules share a key

Encrypt(message, key) = code
Franke and Jules share a key

Encrypt(message, key) = code
Encryption

- Franke and Jules share a key
- $\text{Encrypt}(\text{message}, \text{key}) = \text{code}$
Franke and Jules share a key
Encrypt(message, key) = code
Decrypt(code, key) = message
Encryption

- Franke and Jules share a key
- $\text{Encrypt}(\text{message}, \text{key}) = \text{code}$
- $\text{Decrypt}(\text{code}, \text{key}) = \text{message}$

- Key size: If key is n bits then it takes $\approx 2^n$ operations on one computer to break the encryption
Franke and Jules share a key
Encrypt(message,key)=code
Decrypt(code,key)=message

Key size: If key is \(n \) bits then it takes \(\approx 2^n \) operations on one computer to break the encryption
E.g., assuming \(2^{30} \) operations/sec
- \(n = 60: \approx 25 \) years; \(n = 128: \approx 2^{32} \) years
Encryption...

Cogito, ergo sum

Sic semper tyrannis!

2017 2042 2067
Encryption...

Cogito, ergo sum

Sic semper tyrannis!

Start breaking 60 and 128 bit keys

2017 - 2042 - 2067
Encryption...

- 2017
- 2042
- 2067

Start breaking 60 and 128 bit keys

60-bit key broken
Encryption...

Start breaking 60 and 128 bit keys

60-bit key broken

128-bit key broken

2017

2042

2067

Apocalypse

2^{32}
Attempt 2: Use 60-bit Encryption

Humanity cannot decrypt in < 25 years

✓ Jules can decrypt in 25 years
Attempt 2: Use 60-bit Encryption

Humanity cannot decrypt in < 25 years

Jules can decrypt in 25 years
Attempt 2: Use 60-bit Encryption

Humanity cannot decrypt in < 25 years

Jules can decrypt in 25 years
Attempt 2: Use 60-bit Encryption

Humanity cannot decrypt in < 25 years

✓ Jules can decrypt in 25 years

2017

2042
Attempt 2: Use 60-bit Encryption

Humanity cannot decrypt in < 25 years

Jules can decrypt in 25 years
Attempt 2: Use 60-bit Encryption

Humanity cannot decrypt in < 25 years

✓ Jules can decrypt in 25 years
Attempt 2: Use 60-bit Encryption

Humanity cannot decrypt in < 25 years. Jules can decrypt in 25 years.

2017

2042
Attempt 2: Use 60-bit Encryption

Humanity cannot decrypt in < 25 years

✓ Jules can decrypt in 25 years
Attempt 2: Use 60-bit Encryption

Humanity cannot decrypt in < 25 years

Jules can decrypt in 25 years

2017

2042
Attempt 2: Use 60-bit Encryption

✓ Jules can decrypt in 25 years
Attempt 2: Use 60-bit Encryption

- × Humanity cannot decrypt in < 25 years
- ✓ Jules can decrypt in 25 years
Brute force is *embarrassingly parallel*: with n computers it takes $1/n$-th of the time taken by one computer.
Attempt 2: Use 60-bit Encryption...

- Brute force is embarrassingly parallel: with n computers it takes $1/n$-th of the time taken by one computer
- By using all 5bn cell phones to decrypt, it takes < 1 second!
Attempt 2: Use 60-bit Encryption...

- Brute force is embarrassingly parallel: with n computers it takes $1/n$-th of the time taken by one computer.
- By using all 5bn cell phones to decrypt, it takes < 1 second!
- Cannot be solved by increasing key-length: gap is inherent.
Time-Lock Puzzles

▶ “Encryption” that is inherently sequential:
 “Solving the puzzle should be like having a baby: two women can’t have a baby in 4.5 months.” [Rivest, Shamir and Wagner]
Time-Lock Puzzles

“Encryption” that is inherently sequential:

“Solving the puzzle should be like having a baby: two women can’t have a baby in 4.5 months.” [Rivest, Shamir and Wagner]
Time-Lock Puzzles

▶ “Encryption” that is inherently sequential:
 “Solving the puzzle should be like having a baby: two women can’t have a baby in 4.5 months.” [Rivest, Shamir and Wagner]

▶ \(\text{Time-Lock}(\text{message}, t) = \text{puzzle} \)
“Encryption” that is inherently sequential:

“Solving the puzzle should be like having a baby: two women can’t have a baby in 4.5 months.” [Rivest, Shamir and Wagner]

Time-Lock(message, t) = puzzle
Time-Lock Puzzles

- “Encryption” that is inherently sequential:
 “Solving the puzzle should be like having a baby: two women can’t have a baby in 4.5 months.” [Rivest, Shamir and Wagner]

- Time-Lock(message, t) = puzzle
Time-Lock Puzzles

- “Encryption” that is inherently sequential:
 “Solving the puzzle should be like having a baby: two women can’t have a baby in 4.5 months.” [Rivest, Shamir and Wagner]

- Time-Lock(message, t) = puzzle
- Unlock(puzzle) = message
Requirements:

1. Humanity cannot solve in < 25 years
2. Jules can solve in 25 years
Time-Lock Puzzles...

- **Requirements:**
 1. Humanity cannot solve in < 25 years
 2. Jules can solve in 25 years
 3. Franke can generate puzzle in $\ll 25$ years ("Shortcut")
Time-Lock Puzzles...

- Requirements:
 1. Humanity cannot solve in < 25 years
 2. Jules can solve in 25 years
 3. Franke can generate puzzle in $\ll 25$ years ("Shortcut")

- Slightly more formally, a time-lock puzzle with parameter t
 1. Even with unbounded parallelism, takes t time to solve
 2. Anyone an solve the puzzle in t time
 3. Puzzle can be generated in time $\approx \log t$ ("Shortcut")
Attempt 3: Use Time-Lock Puzzles

Unlock

2017

2042

2067
Attempt 3: Use Time-Lock Puzzles
Constructing Time-Lock Puzzles

- **Assumption 1:** Exponentiation is inherently sequential *in certain settings*

- Best known algorithm for computing 2^{2^t} requires t squarings

 \[2 \rightarrow 2^2 \rightarrow 2^{2^2} \rightarrow \cdots \rightarrow 2^{2^{t-1}} \rightarrow 2^{2^t} \]
Modulo Counting

- Counting modulo (%) a number: take the remainder you get when divided by the number

- For example let's consider 13
 - Reducing modulo 13:
 \[21 = 13 \times 1 + 8 \]
 \[= 8 \% 13 \]
 - Addition modulo 13:
 \[7 + 8 = 15 \]
 \[= 13 \times 1 + 2 \]
 \[= 2 \% 13 \]
 - Multiplication modulo 13:
 \[6 \times 8 = 48 \]
 \[= 13 \times 3 + 9 \]
 \[= 9 \% 13 \]
Modulo Counting

- Counting modulo (%) a number: take the remainder you get when divided by the number
- For example let’s consider 13
 - Reducing modulo 13:

\[
21 = 13 \times 1 + 8 = 8 \bmod 13
\]
Modulo Counting

- Counting modulo (%) a number: take the remainder you get when divided by the number
- For example let’s consider 13
 - Reducing modulo 13:
 \[21 = 13 \times 1 + 8 \]
 \[= 8 \mod 13 \]
 - Addition modulo 13:
 \[7 + 8 = 15 \]
 \[= 13 \times 1 + 2 \]
 \[= 2 \mod 13 \]
Modulo Counting

- Counting modulo (%) a number: take the remainder you get when divided by the number
- For example let’s consider 13
 - Reducing modulo 13:
 \[21 = 13 \times 1 + 8 \]
 \[= 8 \% 13 \]
 - Addition modulo 13:
 \[7 + 8 = 15 \]
 \[= 13 \times 1 + 2 \]
 \[= 2 \% 13 \]
 - Multiplication modulo 13:
 \[6 \times 8 = 48 \]
 \[= 13 \times 3 + 9 \]
 \[= 9 \% 13 \]
Attempt 1: Exponentiation modulo prime p

Setting: Counting modulo large prime p (i.e., group \mathbb{Z}_p^*)
Attempt 1: Exponentiation modulo prime p

- Setting: Counting modulo large prime p (i.e., group \mathbb{Z}_p^*)
- Time-Lock($message$, t) := ($message + 2^t \mod p$, t, p)
Attempt 1: Exponentiation modulo prime p

- Setting: Counting modulo large prime p (i.e., group \mathbb{Z}_p^*)
- Time-Lock($message$, t) := ($message + 2^{2^t} \mod p$, t, p)
 - Naïve: $2 \mod p \rightarrow 2^2 \mod p \rightarrow 2^4 \mod p \rightarrow \ldots 2^{2^t} \mod p$

- Shortcut (using log(t) squarings):
 1. $exp = 2^{t \mod (p-1)}$ (where $p-1$ is the group order)
 2. $2^{exp} \mod p$

- Unlock($puzzle$, t, p):
 1. $2^{2^t} \mod p$ using t squarings
 2. $puzzle - 2^{2^t} \mod p$

- Problem: Anyone can use shortcut as ($p-1$) is publicly known
- Solution: Hide the shortcut!
Attempt 1: Exponentiation modulo prime \(p \)

- Setting: Counting modulo large prime \(p \) (i.e., group \(\mathbb{Z}_p^* \))

- Time-Lock(\(message, t \)) := (\(message + 2^{2^t} \mod p, t, p \))
 - Naïve: \(2 \mod p \rightarrow 2^{2^2} \mod p \rightarrow 2^{2^{2^2}} \mod p \rightarrow \ldots 2^{2^t} \mod p \)
 - Shortcut (using \(\log(t) \) squarings):
 1. \(\exp = 2^{t \mod (p - 1)} \) (where \(p - 1 \) is the group order)
Attempt 1: Exponentiation modulo prime p

- Setting: Counting modulo large prime p (i.e., group \mathbb{Z}_p^*)
- Time-Lock$(message, t) := (message + 2^{2^t} \mod p, t, p)$
 - Naive: $2 \mod p \rightarrow 2^2 \mod p \rightarrow 2^{2^2} \mod p \rightarrow \ldots 2^{2^t} \mod p$
 - Shortcut (using log(t) squarings):
 1. $exp = 2^t \mod (p - 1)$ (where $p - 1$ is the group order)
 2. $2^{exp} \mod p$
Attempt 1: Exponentiation modulo prime p

- **Setting:** Counting modulo large prime p (i.e., group \mathbb{Z}_p^*)

- **Time-Lock**($message, t$) := ($message + 2^t \% p, t, p$)
 - Naïve: $2 \% p \rightarrow 2^2 \% p \rightarrow 2^2 \% p \rightarrow \ldots 2^t \% p$
 - Shortcut (using $\log(t)$ squarings):
 1. $exp = 2^t \%(p - 1)$ (where $p - 1$ is the group order)
 2. $2^{exp} \% p$

- **Unlock**($puzzle, t, p$):
Attempt 1: Exponentiation modulo prime p

- **Setting:** Counting modulo large prime p (i.e., group \mathbb{Z}_p^*)

- **Time-Lock**($message, t$) := ($message + 2^{2^t} \% p, t, p$)

 - Naïve: $2\% p \rightarrow 2^2\% p \rightarrow 2^2\% p \rightarrow \ldots 2^{2^t} \% p$

 - Shortcut (using log(t) squarings):
 1. $exp = 2^t \%(p - 1)$ (where $p - 1$ is the group order)
 2. $2^{exp} \% p$

- **Unlock**($puzzle, t, p$):
 1. $2^{2^t} \% p$ using t squarings
Attempt 1: Exponentiation modulo prime p

- **Setting**: Counting modulo large prime p (i.e., group \mathbb{Z}_p^*)

- **Time-Lock** $(message, t) := (message + 2^t \mod p, t, p)$
 - Naïve: $2 \mod p \rightarrow 2^2 \mod p \rightarrow 2^2 \mod p \rightarrow \ldots 2^t \mod p$
 - Shortcut (using $\log(t)$ squarings):
 1. $exp = 2^t \mod (p - 1)$ (where $p - 1$ is the group order)
 2. $2^{exp} \mod p$

- **Unlock** $(puzzle, t, p)$:
 1. $2^t \mod p$ using t squarings
 2. $puzzle - 2^t \mod p$
Attempt 1: Exponentiation modulo prime p

- Setting: Counting modulo large prime p (i.e., group \mathbb{Z}_p^*)

- Time-Lock($message$, t) := ($message + 2^{2t} \pmod{p}$, t, p)
 - Naïve: $2 \pmod{p} \rightarrow 2^2 \pmod{p} \rightarrow 2^2 \pmod{p} \rightarrow \ldots 2^{2t} \pmod{p}$
 - Shortcut (using log(t) squarings):
 1. $exp = 2^t \pmod{(p - 1)}$ (where $p - 1$ is the group order)
 2. $2^{exp} \pmod{p}$

- Unlock($puzzle$, t, p):
 1. $2^{2^t} \pmod{p}$ using t squarings
 2. $puzzle - 2^{2^t} \pmod{p}$

- Problem: Anyone can use shortcut as $(p - 1)$ is publicly known
Attempt 1: Exponentiation modulo prime p

- Setting: Counting modulo large prime p (i.e., group \mathbb{Z}_p^*)
- Time-Lock($message$, t) := ($message + 2^{2t} \pmod{p}$, t, p)
 - Naïve: $2 \pmod{p} \rightarrow 2^2 \pmod{p} \rightarrow 2^2 \pmod{p} \rightarrow \ldots 2^{2t} \pmod{p}$
 - Shortcut (using $\log(t)$ squarings):
 1. $exp = 2^{t}(p - 1)$ (where $p - 1$ is the group order)
 2. $2^{exp} \pmod{p}$
- Unlock($puzzle$, t, p):
 1. $2^{2^t} \pmod{p}$ using t squarings
 2. $puzzle - 2^{2^t} \pmod{p}$

- Problem: Anyone can use shortcut as $(p - 1)$ is publicly known
- Solution: Hide the shortcut!
Attempt 2: Exponentiation in composite modulus

- Setting: Counting modulo $N = p \times q$, where p and q are large primes (i.e., RSA group \mathbb{Z}_N^\times)
Attempt 2: Exponentiation in composite modulus

- Setting: Counting modulo $N = p \times q$, where p and q are large primes (i.e., RSA group \mathbb{Z}_N^\times)

- Time-Lock($message$, t) := ($message + 2^{2^t} \% N$, t, N)

 - Shortcut (using log(t) squarings):
 1. $exp = 2^{t \% (p - 1)(q - 1)}$ ($(p - 1)(q - 1)$ is the group order)
 2. $2^{exp \% N}$

- Unlock($puzzle$, t):
 1. $2^{2^t} \% N$ using t squarings
 2. $puzzle - 2^{2^t} \% N$
Attempt 2: Exponentiation in composite modulus

- Setting: Counting modulo $N = p \times q$, where p and q are large primes (i.e., RSA group \mathbb{Z}_N^\times)

- Time-Lock($message$, t) := ($message + 2^{2^t} \% N$, t, N)
 - Shortcut (using log(t) squarings):
 1. $exp = 2^{t\% (p - 1)(q - 1)}$ ($(p - 1)(q - 1)$ is the group order)
 2. $2^{exp\% N}$

- Unlock($puzzle$, t):
 1. $2^{2^t}\% N$ using t squarings
 2. $puzzle - 2^{2^t}\% N$

- Assumption 2: Given just N, finding the shortcut is “hard”
Proof of Time

- Time-lock puzzle is a proof that t amount of time has passed
 - **Problem**: Not publicly verifiable
Proof of Time

- Time-lock puzzle is a proof that t amount of time has passed
 - **Problem**: Not publicly verifiable

- Proof of time: TLP with efficient public verification
Proof of Time

- Time-lock puzzle is a proof that \(t \) amount of time has passed
 - **Problem:** Not publicly verifiable

- Proof of time: TLP with efficient public verification
- Application in blockchain design: replace “proof of work” with “proof of space” + proof of time
- More environment-friendly cryptocurrencies (e.g., Chia)
Questions?