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1. Introduction

A rectangle in a d-dimensional space is the Carte-
sian product of one interval on each of the d coordi-
nate-axes. Hence, a rectangle is assumed to have its
sides parallel to the coordinate-axes. A rectangle R
encloses a rectangle R’ if every point of R’ is also a
point of R, R is contained in R' if R’ encloses R and
R intersects R’ if R and R’ have at least one point in
common (see Fig. | for an example). The rectangle
R is enclosed by R,, contains R, and R, and inter-
sects Rl-} Rz, Ra, R4 and Rs.

Given a set V of rectangles in a d-dimensional
space and another such rectangle R, the rectangle
enclosure searching problem asks for all rectangles in
V that enclose R, the rectangle containment search-
ing problem asks for all rectangles in V that are con-
tained in R, and the rectangle intersection searching
problem asks for all rectangles in V that intersect R.
Often, we are merely interested in the number of
rectangles that enclose, are contained in or intersect
the given query rectangle R. In this case, we call the
problems, respectively, the rectangle enclosure, con-
tainment and intersection counting problems.

* The work of the second author was supported by the
Netherlands Organization for the Advancement of Pure
Research (ZWO).
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Fig. 1.

In particular the rectangle intersection searching
(counting) problem has received considerable atten-
tion during the past few years (see e.g. [2,3,6,7,10]).
The rectangle enclosure and containment searching
(counting) problems were treated only recently by
Lee and Wong [6] and McCreight [8]. Overmars and
van Leeuwen [9] presented a general result by which
some of the known solutions could be improved.

In this paper we will show that all three problems
are in some sense equivalent to dominance searching:
Given a set V of points in a d-dimensional space and
another point x = (x,, ..., Xq), the dominance search-
ing problem asks for all points p = (py, ..., pg) in V
suchthat p<x,ie.,p; SX; ApPs SX3 A Apg S
X4. The counting variant of the problem that asks
for the number of points in V that are dominated by
x is the well-known ECDF-searching problem (where
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ECDF stands for Empirical Cumulative Distribution
Function, see e.g. [1]).

In Section 2 we will show that the d-dimensional
rectangle enclosure and containment searching
(counting) problems are equivalent to the 2d-dimen-
sional dominance searching (counting) problem. In
Section 3 we show that the d-dimensional rectangle
intersection counting problem is equivalent to the
d-dimensional dominance counting problem. It fol-
lows that an improvement in the bounds for one of
the problems immediately results in an improvement
for the other problems. In Section 4 we briefly men-
tion how the results can be generalized to other
rectangle searching problems. This establishes an
additional step towards a unified view of problems
involving rectangles that were dealt with separately
in the past.

2. Rectangle enclosure/containment searching

A rectangle R = ([x; : v4], ..., [Xq : ya]) encloses
arectangle R' = ([x] : ¥11, ..., [Xg : y4]) if and only
ifx; <X A~ Axg<xgandy; >y; A= Ayg=
y4. Hence, when we transform a rectangle R into the

2d-dimensional point p(R) = (X1, ..., Xd; —¥15 s —Yd)s

then R encloses R’ if and only if p(R) < p(R").
Hence, the 2d-dimensional dominance searching
problem can be used to solve the d-dimensional rect-
angle enclosure problem. Similarly, transforming the
rectangle R into the point p(R) = (—x4, ..., —X4,

Y1, - Yd), R is contained in R’ if and only if p(R) <
p(R"). Hence, also the d-dimensional rectangle con-
tainment searching problem can be solved using the
2d-dimensional dominance searching problem.

It remains to be shown that the 2d-dimensional
dominance searching problem can be solved by the
d-dimensional rectangle enclosure problem and by
the containment problem as well. Let us first use the
enclosure problem to solve the dominance problem.
We want to map a given point p = (X, ..., Xg,

Y1, Yg) into a rectangle R(p) = ([fy(x1) : f2(y)],
[f1(x2) : f2(y2)]; .- [f1(Xq) : f2(ya)]) such that

(D fi(x)<fy(y) forall x, y,

([ x<x'=fi()<f;(x),andy<y = f,(y)=>
£(").

(i) guarantees that points are mapped into rectangles
and (ii) guarantees that p’ dominates p if and only if
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R(p) encloses R(p"). A possible solution to (i) and
(ii) is

£ x—2 ifx<l1,
x:
1) _1/x ifx>1,
—y+2 ify<l,
fz(Y)=[ .
1)y ify=1

To transform the 2d-dimensional dominance
searching problem into the d-dimensional contain-
ment searching problem, we like to map a point
P=(X1,.s Xds Y15 -, ¥q) into the rectangle R(p) =
([F2(x1) : £2(y1)], -y [f1(%q) : f2(ya)]) under the
following conditions:

() f;)<f3(y)foralx,y;

() x<x' =)= (x),andy <y =f,(y)<
£).

One can choose, for instance,

1/x ifxa—],
fi(x) = _

—Xx—2 iftx2~1,

=ty Y ityis =)
fz(Y)={ \

y+t2 ify=-1.

The transformations clearly hold for the counting
variants also.

Theorem 2.1. The d-dimensional rectangle enclosure
and containment searching/counting problems are
both equivalent to the 2d-dimensional dominance
searching/counting problem.

3. Rectangle intersection counting

The d-dimensional dominance searching problem
is a special case of the d-dimensional rectangle inter-
section searching problem in which the rectangles in
the set are degenerated to points and the query rec-
tangle is ([—, X;], ..., [—=°, X4])- Hence it only needs
to be shown that d-dimensional rectangle intersection
can be solved using the d-dimensional dominance
problem. We are only able to show this for the count-
ing variants.

Lemma 3.1. The d-dimensional rectangle intersection
counting problem can be solved using the d-dimen-
sional dominance counting problem.
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Proof. Let us first consider the 1-dimensional case.

So we are given a set V of intervals. To determine the
number of intervals that intersect a query interval

[a : b], we count the number, n,, of intervals that

do not intersect [a : b]. Clearly, the number of inter-
secting intervals is n — ng, where n is the total num-
ber of intervals in the set. Note that an interval [x : y]
‘in the set does not intersect [a : b] if either x > b or
y < a. To determine the number n, of intervals

[x : y] in the set with x > b we perform a dominance
counting query with —b on the set V; that contains
—x for each begin point x of a segment in V, and to
determine the number n, of intervals with y <a we
perform a dominance counting query with a on the
set V, that contains all endpoints y of segments in the
set. Clearly ny =n; +n,. Hence, a 1-dimensional rec-
tangle intersection counting query can be solved using
two 1-dimensional dominance counting queries.

Also in the 2-dimensional case we will solve the
problem by determining the number ng of rectangles
that do not intersect the query rectangle. To this end
we first compute the number n, of rectangles in the
set that lie completely above the query rectangle.
This can be done using a 1-dimensional dominance
counting query, by considering the projections of the
rectangles on the y-axis. Similarly, we can determine
the numbers ny, n; and n; of rectangles that lie
below, to the left and to the right of the query rec-
tangle, respectively. In this way the rectangles that
lie completely in one of the areas A, B, C or D of
Fig. 2 have been counted twice. Let us only con-
sider area D. The number np of rectangles that lie
completely in area D can be determined by perform-
ing a 2-dimensional dominance counting query with
the lower left point of the query rectangle on the
set V,,; that contains the upper right point of each
rectangle in the set. In a similar way one can com-
pute the numbers ny , ng and n¢ of rectangles that

query

rectangle

=]
5

Fig. 2.
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lie in A, B and C, respectively, using 2-dimensional
dominance counting. Clearly, no =n, + ny +n; +n, —
na —npg —n¢ — np. Hence the 2-dimensional rec-
tangle intersection counting problem can be solved
using 8 instances of the 2-dimensional dominance
counting problem.

The generalizations to the d-dimensional case are
straightforward and left as an easy exercise to the
reader. It follows that the d-dimensional rectangle
intersection counting problem can be solved using a
number of instances of the d-dimensional dominance
counting problem. O

We have shown the following,

Theorem 3.2. The d-dimensional rectangle intersec-
tion counting problem and the d-dimensional
dominance counting problem are equivalent.

4. Extensions

Beside the three rectangle searching problems
considered in the previous sections, numerous other
rectangle searching problems can be defined. For
example, one may ask for all rectangles that lie
completely to the right of a given rectangle x or for
those rectangles whose boundaries do not intersect
the boundary of x (i.e., those rectangles that enclose
X, are contained in X or do not intersect x). In the
1-dimensional case, i.e., when rectangles are intervals
on a line, one can define 64 different types of rec-
tangle searching problems. By an exhaustive case
study it can be shown that the counting variant of
each of these 64 problems is equivalent to the 0-, 1-
or 2-dimensional dominance counting problem (see
[4]). Defining a d-dimensional rectangle searching
problem as being the Cartesian product of 1-dimen-
sional rectangle problems, there are 649 different
d-dimensional rectangle searching problems. Edels-
brunner and Overmars [4] show the following
theorem.

Theorem 4.1 ([4]). The counting variant of each
d-dimensional rectangle searching problem is equiv-
alent to the d'-dimensional dominance counting
problem for some d’ with 0 < d' < 2d.
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For some of the problems equivalence can even
be shown for the searching versions of the problems
but in most cases it remains an open question whether
or not the searching versions are equivalent.

Finally, some remarks on lowerbounds. Fredman
[5] proved lowerbounds for the range searching prob-
lem (a generalization of the dominance problem in
which we ask for those elements in a d-dimensional
pointset that lie within a given rectangle) but these
do not apply to the dominance searching problem. A
lowerbound for the dominance searching/counting
problem would immediately lead to lowerbounds for
all reactangle searching/counting problems, due to the
equivalences described above.
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