D.P. Dobkin" (Princeton), H. Edelsbrunner? (Graz)
Ham-Sandwich Theorems Applied to Intersection Problems ”

Abstract

New data structures for two-and three-dimensfonal intersection
problems are described. These structures store n points,
segments, lines, polygons, planes, or tetrahedra fn 0(n) space
and answer {intersection queries for similar objects in sub-
linear time. Ham-sandwich theorems and balanced dissections of
point-sets form the mathematical backdrop of this approach.

1. Introduction

Ham-sandwich theorems are classical in topology where they
concern cutting objects in two parts of equal measure [M].

We develop discrete versions of these results, that is, finite
sets of points are dissected. On this basis, the existence of
balanced dissections of finfte point-sets can be shown. New
data structures for answering various types of range queries
follow from these geometric tools. We also show how to extend
the structures to handle some examples of intersection problems
of the following generic type:

Given a set of obJects; count or report those objects that
intersect a query object. n objects are stored in 0(n) space
land a query can be answered in sublinear time, if the objects
‘or query object are specified as points, segments, rays, lines,
!triangles or polygons 1in Ez, or points, segments, planes,
'tetrahedra in E°. The novelty of our solution is the space
efficlency which contrasts previously suggested solutions
[EKM,C,CY].

*) Research of the first author was partially supported by the National
Science Foundation under Grant MCS83-03926.

1) Dep.Comp.Sci. and E1.Eng., Princeton Univ., Princeton, NJ 08544, USA.

2) Inst. flr Informationsverarbeitung, Techn. Univ. Graz, SchieBstattg. da,
A-8010 Graz, Austria.

88

The organisation of the paper 1s as follows: Section 2
describes the geometric results which are used to develop data
structures for range search fin E2 and E3 in Section 3, Appli-
catlons to intersection problems are discussed in Section 4,
before Section 5 addresses general issues. Proofs and details
are omitted throughout. They can be found in [EW,DE1,DE2].

2. Ham-Sandwich Theorems with Extensions

Let us start with the introduction of some geometric formalism:
Ed designates the d-dimensional Euclidean space and a hyper-
plane h in Ed is an affine subspace of dimension d-1; so
h is a line in E2 and a plane in 53. It is convenient to

write h as
<Y, x> = a,

for x = (xl,....xd), v = (vlg...,vd} some vector, a some

d
real, and <v,x> = izlvixi the scalar product of v and x.

We consider h as being oriented by v and call the half-

spaces

+
: <V,X> > a and

I <V, X> < a
the positive and négative sides of h, respectively.

gd.

Let now P be a set of n points in The following
definition is crucial for the rest of this paper: A hyper-
plane h bisects P if

tPoh’1 < 5 and
IPORT < 3.

In this case h s a bisector of P. It seems worthwhile to
remark that points in h are counted on neither side; so if
h happens to contain at least g points then it is guaranteed
to bisect P. In fact, if n 1{s odd, every bisector contains

at least one point of P.
89

90

Theorem 3: Let

The discrete ham-sandwich theorem is now:

Theorem 1: Let Pl""'Pd be finite sets of points in gl

There is a plane that bisects each of the d sets.

A full prodf is given in [E}. In Ez. Theorem 1 can be used

to show

Theorem 2: Let points in Ez

P be a set of n

(1) There are lines hl and h2 such that each open

reglion defined contains no more than 2 points of P

(11} A dissection as in (1) even exists 1if hy is a
bisector of P that is fixed in advance.

(111) There are not necessarily three lines such that each
region of the dissection contains at most
of P.

; points

(11) is a strengthening of (i) and }olluws from Theorem 1
since hl bisects P 1into two sets that can be bisected
simultaneously. (111) shows that (1) is best-possible in the
sense that three or more non-concurrent and non-narallel lipes
cannot always produce a balanced dissection. The case of many
points on a circle shows (111).

3

There 1is a generalizatfon of Theorem 2 to EY, although not

a strafghtforward one:
g,

P be a set of n points In

(1) There are three planes hl,hz.h3 such that each (open)
cell contains at most 3 points of P,

(11) A dissection as in (1) exists even If hy 1s a fixed
bisector of p. '

(111) There might not be a dissection as in (1) when h1
and h2 are fixed but such that each of the four
cells defined contains at most g points of P.

Again (1i) is a strengthening of (1) and (1i1) shows that
it cannot be strengthened any further. A proof of (i11) is

given in [DEl]. The following configuration implies (111):

hl:yao. hzleﬂ, and
P is the union of

(Ll d--nin,
(1,-1,-0y, o-11,-0,

for m = 3 and i = 1,...,m.

3. Data Structures

Theorems 2 and 3 lead to efficient data structures that
store finite sets of points and answer certain types of range
queries. We consider the two-dimensional case first:

Let P be a set of n points in E2 and let hl bisect P.

The C-tree B8 of P (and hl} is a binary tree.

Unless P 1{s empty, the root of B stores hl’ possibly
+

IP1, and the sorted array for Poh;. Let pt - Pah)
P” = PAhy, and let h, bisect both P and P . The C-tree
of P~ {and “2) is the left subtree of the root, and the

C-tree of P {and hz} is the right subtree. Consider Fig. 1
which depicts a point-set, the dissection by lines, and the

and

assoclated C-tree.

The following simple observation implies that certain types
of range queries can be answered efficiently with the C-tree.

Observation 4: Let h1 and h2 be two lines in Ez. Another

line h intersects at most three of the four regions defined

by hl and hZ'

91

92

EIEI

Figure 1: Point-set and C-tree.

For v a node in a C-tree, define the domain dom(v) of v
as follows:

If v 1s the root then dom(v) = Ezh

Otherwise let v be the left {righf} son of node w, and let
w store line h.

Then dom(v) = dom(w)nh” (dom(v)nh').

Intuitively, dom(v) is the area in which the points below v
can lie. Observation 4 implies that ff a line h intersects
dom(v) then 1t does not intersect the domain of at least one
grandson of v. Let 1(n) be the maximal number of nodes v
in a C-tree for n points such that

dom(v)nh + @,
for some line h. Then
Hn) < 1(3) + 1(7) + 2.
Since 0.695 ~ Tog,x with x? - x - 1 = 0, we have

Lemma 5: 1(n) = O(no'sgsj.

Let q be some convex range (1.e. area) in Ez. The query
with q asks to'compute IPNql. Using the C~tree, it can be
shown that there is a procedure that visits a node only if
its father's domain intersects gq. Furthermore, each visited
node v takes O(logn) time:

Case 1: dom(v) intersects the boundary of q. Then visit
v's sons after inspecting the points in the array
of wv.

Case 2: dom{v) does not intersect the boundary of q. If

dom(v) = q then add the number of points below v
to some global variable.
This implies

Theorem 6: The C-tree stores a set P of n points in E2

in 0(n) space such that IPNgl| can be determined in 0{n0'695)

time if q 1s the intersection of a fixed number of half-
planes,

We now turn to three dimensions:
Using Theorem 3 (ii), we define the D-tree for a set P of

n points in E3 and a bisector h1 of P: The root of the

D-tree stores hl' possibly IPl, and the C-tree for Pnhl. Let

h2 and h3 complete hy to a dissection with each (open)

cell containing at most ‘g points of P. The left son L
(right son R) of the root stores hz. possibly IPnhi
(IPARY1), and the C-tree for Pnhinh, (Pahjnh,). The left
(right) subtrees of L and R are the D-trees for Pnhinhé

(Pnhinh;} and Pnh{nhé {PnhInh;}. respectively (see Fig. 2).

94

Lemma 8: j(n) = O(n

Flgure 2: D-tree

Note that only every other level of a D-tree contains roots
of D-trees. Now Observation 4 generalizes to

Observation 7: Let hl'hZ'h3 be three planes in E3. Another

plane h fintersects at most seven of the open cells defined.

If the notion of a domain is naturally extended to D-trees,

and j(n) 1s the maximal number of nodes v 1in a D-tree for

n points such that dom(v)nh &« @, for some plane h, then we
have

J(n) = 33(3) + 24(3) + 5,
and therefore

0.917,.

It follows that D-trees accommodate certain range queries
in E3. We have

Theorem 9: The D-tree stores a set P of n points in 0(n)

space such that IPngl can be computed in 0(n0'917) time if
q f§s the intersection of a fixed number of halfspaces.

[t seems worthwhile to note that our restriction to computing
cardinalities is not essential. Rather it can be replaced by
any other mapping into a semigroup which allows constant time
operations. Also the points in Pnh can be reported which costs
0(n®-6%5 & 1pant)(0(n® 917 + 1Poni)) time.

4. Intersection Search

C- and D-trees and combinations can be used to store sets of
geometric objects for intersection queries. As an example for
such query problems, we demonstrate a solution for the case
that ;he objects as well as the query object are segments

in E™:

Let 5 = {sl.....sn} be a set of segments in £2. Store S

such that I{s€Slisng # @11, for - q any query segment, can
be determined efficiently.

We develop the solution in three steps: First, S s
replaced by a set of lines. Second, the case when gq is

a line is discussed. Third, the two solutions obtained are
combined.

4.1 Segment Intersecting Lines

Let h : y = ax + b be a non-vertical line in Ez. and let gq
be a segment with endpoints A = (a,b) and B = (c,d). The
following is trivial but crucial.

Observation 10: hng * @ if and only if A and B 1lie on
different sides of h.

A dual transform is used to obtain a restatement of the
problem which lends itself towards an application of C-trees.

96

Lemma 11: Point p

D: h:ye=ax+ph D(h) = (a,-b).

P = ("1"’2’ -~ 0(p) : y = P1X = P,

We say that p s above, on, below h, if P, fs greater,
equal, less than ap, + b, respectively. The transform D

satisfies the following nice property:

is above, on, below line h if and only

if point D(h) s above, on, below line D(p).

Let now S = (h1
non-vertical lfnes, and q
and C = (c,d). Let D(q) be the region of points
P s above or on D(A) and below or on D(C), or p
or on D(C)} and above or on D(A).

Py oTagx o+ blli =1,...,n} be a set of
a segment with endpoints A = (a,b)
p such that

is below

Figure 3: Double-wedge of segment q.

Then hing » @ 1f and only if D{hi) fs contained in D(q).
10(5)nD(q) |, however can be determined by two angular range
queries in the C-tree of D(S). This implies a solution with
0(n) space and 0(n°‘695) query time.

. R

4.2 Line Intersecting Segments

Let § = {sl,....sn} be a set of segments in Ez, and let

9 :y =ax +b be a query line. We specify 84 by its end-
points Ai = (ai‘bi) and Ci = (ci’dl}' for 1 < 4 < n. Using
Observation 10, the segments that intersect 9 can be found
by two conjunctive halfplanar range queries:

Invoke a query to determine points ﬂi
From the points found,
on q.

above (below) or on q.
identify those with C; below (abave) or

Two so-called levels of C-trees permit this kind of query:

The primary C-tree stores {Aili = 1,...,n). Each node v of
this tree has a secondary C-tree attached which stores

{CilAi Tles in dom(v)}. WheneVer dom(v) is found to be con-
tained in the query range, a “secondary" query in the attached
C-tree computes the number of segments stored in v'sg Subtree
that intersect q. It is not hard to see that the described
structure needs O(nlogn) space and O(no'sgslogn] query time.
Improvements to 0(n) space and O(no‘ﬁgsj query time can be
found in [DE2),

4.3 Segment Intersecting Segments

The solutions given in Sections 4.1 and 4.2 can be applied
since we have

Observation 12: Let sy and S, be two segments in E2
with endpoints Al'cl' and Az,cz. respectively. Let h1 and
h2 be the lines that support $; and Sp» respectively.
Then $10s, # @ if and only if slnh2 + @ and S,Nhy + @,

97

98

Let § = SpreeeeSy be a set of segments and q be a query
segment. The segments intersecting gq are determined in two
steps:

Using the C-tree for the dual points, the lines of support
that intersect q are identified.

Each node v of this tree has two levels of C-trees attached
that store (s, in S[O(h;) in dom(v), for hy the line that
supports sll (see Section 4.2). These levels are used to

compute I{silh1nq + Pii. 2

The resulting three-level structure requires O(nlog“n) space
and O(no'sgslogzn) query time. Improvements described in
[DE2] yleld:

Theorem 13: A set of n segments in E2 can be stored in
0(n) space such that those which intersect a query segment
can be counted in 0(n® %95%€) time, for any ¢ > 0.

5. Discussion

This paper outlines a new approach to intersecting problems
fn two and three dimensions which builds on discrete versions

of classical Ham-Sandwich Theorems. In contrast to previously

suggested solutions [EKM,C,CY], our approach yields data
structures that require only linear space.

Because of space limitations, only one two-dimensional inter-
section problem {is described here. Others can be found in
[DE2] where also three-dimensional problems are discussed.
The general idea towards a solutions is the “concatenation"
of D-trees as shown for C-trees in Section 4. Interestingly,
this method 1s not applicable to the following problem:

Store a set of lines in E3 such that those that intersect

a query line can be counted,

It is open whether or not there is a linear space structure
that allows the counting in sublinear time.

References

[C] Chazelle,B.M. Fast computation of segment intersections.

Rep. CS-83-11, Dep. Comp. Sci., Brown Univ., Providence,
RI, 1983.

[CY]) Cole,R. and Yap,C.K. Geometric retrieval problems.
Proc. 24th FOCS (1983), 112-121,

[DE1) Dobkin,D.P. and Edelsbrunner,H. Organizing points in
two and three dimensions. Rep. F130, IIG, TU Graz, 1984.

[DE2] Dobkin,D.P. and Edelsbrunner,H. Space searching for
intersecting objects. Manuscript, 1984,

[E] Edelsbrunner,H. Arrangements and geometric computation.
Book in preparation.

(EKM] Edelsbrunner,H., Kirkpatrick,D.G., and Maurer,H.A.

Polygonal intersection searching. Inform. Proc. Lett. 14
(1982), 74-79,

[EW] Edelsbrunner,H. and Welzl1,E. Halfplanar range search in
Tinear space and O{no'ﬁgs} query time. Rep. F111, IIG,
TU Graz, 1983,

[M] Mendelson,B. Introduction to topology. Allyn & Bacon,
Boston, 1962.

99

