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Abstract

We introduce relaxed scheduling as a paradigm for mesh
maintenance and demonstrate its applicability to triangulat-
ing a skin surface in R3.

Keywords. Computational geometry, adaptive meshing, deforma-
tion, scheduling.

1 Introduction

In this paper, we describe a relaxed scheduling paradigm for
operations that maintain the mesh of a deforming surface.
We prove the correctness of this paradigm for skin surfaces.

Background. 1In 1999, Edelsbrunner [5] showed how a fi-
nite collection of spheres or weighted points can be used to
construct a C't-continuous surface in R3. It is referred to as
the skin or the skin surface of the collection. If the spheres
represent the atoms of a molecule then the appearance of that
surface is similar to the molecular surface used in structural
biology [2, 8]. The two differ in a number of details, one
being that the former uses hyperboloids to blend between
sphere patches while the latter uses tori. The skin surface is
not C'2-continuous, but its maximum normal curvature, , is
continuous. This property is exploited by Cheng et al. [1],
who describe an algorithm that constructs a triangular mesh
representing the skin surface. In this mesh, the sizes of edges
and triangles are inversely proportional to the maximum nor-
mal curvature. The main idea of the algorithm is to maintain
the mesh while gradually growing the skin surface to the de-
sired shape, as illustrated in Figure 1. The algorithm thus
reduces the construction to a sequence of restructuring oper-
ations. There are edge flips, which maintain the mesh as the
restricted Delaunay triangulation of its vertices, edge con-
tractions and vertex insertions, which maintain a sampling
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Figure 1: The mesh is maintained as the surface on the left grows
into that on the right.

whose local density is proportional to the maximum normal
curvature, and metamorphoses, which adjust the mesh con-
nectivity to reflect changes in the surface topology. Some
of these operations are easier to schedule than others, and
the most difficult ones are the edge contractions and vertex
insertions. They depend on how the sampled points move
with the surface as it deforms. The quality of the mesh is
guaranteed by maintaining size constraints for all edges and
triangles. When an edge gets too short we contract it, and
when a triangle gets too large we insert a point near its cir-
cumcenter. Both events can be recognized by finding roots of
fairly involved functions. Scheduling edge contractions and
vertex insertions thus becomes a bottleneck, both in terms of
the robustness and the running time of the algorithm.

Result. Inthis paper, we study how fast edges and triangles
vary their size, and we use that knowledge to schedule these
elements in a relaxed fashion. In other words, we do not de-
termine when exactly an element violates its size constraint,
but we catch it before the violation happens. Of course, the
danger is now that we either update perfectly well-shaped
elements or we waste time by checking elements unneces-
sarily often. To avoid the former, we introduce intervals or
gray zones in which the shapes of the elements are neither
good nor unacceptably bad. To avoid unnecessarily frequent
checking, we prove lower bounds on how long an element



stays in the gray zone before its shape becomes unaccept-
ably bad. These bounds are different for edges and for tri-
angles. Consider first an edge uv. Let R = ||u — v||/2 be
its half-length and ¢ = 1/ max{x(u), k(v)} the smaller ra-
dius of curvature at its endpoints. We use judiciously chosen
constants C, Qo and ()1 and call the edge

acceptable C/Qo < R/p,
borderline if C/Q1 < R/o < C/Qo,
unacceptable R/o < C/Qr.

The middle interval is what we called the gray zone above.
Assuming uw is acceptable, we prove it will not become un-
acceptable within a time interval of duration At = (20 —
6%) 0%, where

RQ.1—Co
RQ1+Co’

In the worst case, R is barely larger than C'¢/Qg, so we have
6 > (Q1 — Qo)/(Q1 + Qo) as a worst case bound. We
will see that C' = 0.06, Qo = 1.6 and Q; = 2.3 are fea-
sible choices for the constants, and that for these we get
6 > 0.179... and At/e* > 0.326.... Consider next a
triangle uvw. Let R be the radius of its circumcircle, and
0 = 1/ max{x(u), k(v), k(w)} the smallest radius of curva-
ture at its vertices. We call vow

0 =

acceptable R/o < CQo,
borderline if CQo < R/o< CQq,
unacceptable CQ1 < R/o.

Assuming wvw is acceptable, we prove it will not become
unacceptable within a time interval of duration At = (26 —
6%) 0%, where

0 = 1-YR/(CQi).

In the worst case, R is barely smaller than CQoo, S0 we
have § > 1 — {/Qo/Q1. For the above values of C, Qo
and Q1, this gives § > 0.086...and At/g? > 0.165.... It
seems that triangles can get out of shape about twice as fast
as edges, but we do not know whether this is really the case
because our bounds are not tight.

Outline. Section 2 reviews skin surfaces and the dy-
namic triangulation algorithm. Section 3 introduces relaxed
scheduling as a paradigm to keep track of moving or de-
forming data. Section 4 analyzes the local distortion within
the mesh and derives the formulas needed for the relaxed
scheduling paradigm. Section 5 concludes the paper.

2 Preliminaries

In this section, we introduce the necessary background from
[5], where skin surfaces were originally defined, and from
[1], where the meshing algorithm for deforming skin sur-
faces was described.

Skin surfaces. We write S; = (z;,r;) for the sphere with
center z; € R3 and radius r; and think of it as the zero-
set of the weighted square distance function f; : R® — R
defined by f;(z) = ||z — z]* — r2. The square radius is
a real number and the radius is either a non-negative real
or a non-negative multiple of the imaginary unit. We know
how to add functions and how to multiply them by scalars.
For example, if we have a finite collection of spheres S; and
scalars >~ v; = 1 then >~ f; is again a weighted square
distance function, and we denote by S = > 4;S; the sphere
that defines it. The convex hull of the .S; is the set of such
spheres obtained using only non-negative scalars:

F o= {Z%Si IS yi=1landy; > o,w}.

We also shrink spheres and write v/S = (z,r/v/2), which
is the zero-set of 2f — f(z). The skin surface defined by
the S; is then the envelope of the spheres in the convex
hull, all scaled down by a factor 1/\/5, and we write this
as F' = env v/ F. Equivalently, it is the zero-set of the point-
wise minimum over all functions 2f — f(z), overall S € F,
where f is the weighted square distance function defined by
S. Atfirst glance, this might seem like an unwieldy surface,
but we can completely describe it as a collection of quadratic
patches obtained by decomposing the surface with what we
call the mixed complex. Its cells are Minkowski sums of
\oronoi vertices, edges, polygons and polyhedra with their
dually corresponding Delaunay tetrahedra, triangles, edges
and vertices, all scaled down by a factor 1/2. Instead of
formally describing this construction, we illustrate it with a
two-dimensional example in Figure 2. Depending on the di-

Figure 2: The mixed complex decomposes the skin curve and the
area it bounds.

mension of the contributing Delaunay simplex, we have four
types of mixed cells. Because of symmetry, we have only
two types of surface patches, namely pieces of spheres and
of hyperboloids of revolution, which we frequently put in
Standard Form:

E+6+86 = R, )
§+&6-& = *R, )



where the plus sign gives the one-sheeted hyperboloid and
the minus sign gives the two-sheeted hyperboloid.

Meshing. The meshing algorithm triangulates the skin sur-
face using edges and triangles whose sizes adapt to the local
curvature. Let us be more specific. At any point z € F,
let k(z) be the maximum normal curvature at z. In contrast
to other notions of curvature, « is continuous over the skin
surface and thus amenable to controlling the local size of the
mesh. Call o(z) = 1/x(z) the local length scale at z. The
vertices of the mesh are points on the surface. For an edge
uv, let Ry, = ||u — v||/2 be half its length, and for a triangle
uvw, let Ry, be the radius of its circumcircle. The algo-
rithm obeys the Lower and Upper Size Bounds that require
edges not be too short and triangles not be too large:

[L] Ruv/0uww > C/Q forevery edge uv, and
[U] Ruvw/0uww < CQ forevery triangle uvw,

where g, is the larger of g(u) and o(v), uvw IS the mini-
mum of o(u), o(v) and g(w), and C and @ are judiciously
chosen positive constants.

The particular algorithm we consider in this paper is dy-
namic, in the sense that it maintains the mesh while the sur-
face deforms. We can use this algorithm to construct a mesh
by starting with the empty surface and growing it into the
desired shape. This is precisely the scenario in which our
results apply. To model the growth process, we use a time
parameter and let S;(t) = (z;,/r? + t) be the i-th sphere
attimet € R. We startatt = —oo, at which time all radii are
imaginary and the surface is empty, and we end at ¢t = 0, at
which time the surface has the desired shape. This particular
growth model is amenable to efficient computation because
it does not affect the mixed complex, which stays the same
at all times. Each patch of the surface sweeps out its mixed
cell. At any moment, we have a collection of points sam-
pled on the surface, and the mesh is the restricted Delaunay
triangulation of these points, as defined in [4, 7]. Given the
surface and the points, this triangulation is unique. As the
surface deforms, we move the points with it and update the
mesh as required. From global and less frequent to local and
more frequent these operations are:

1. topology changes that affect the local and global con-
nectivity of the surface and the mesh,

2. edge contractions and vertex insertions that locally re-
move or add points to coarsen or refine the mesh, and

3. edge flips that locally adjust the mesh without affecting
the point distribution or the surface topology.

For the particular growth model introduced above, the topol-
ogy changes are easily predicted using the filtration of alpha
complexes as described in [6]. To predict where and when
we need to coarsen or refine the mesh is more difficult and
depends on how the points move to follow the deforming sur-
face. This is the topic of this paper and will be discussed in

detail in the subsequent sections. Finally, edge flips are rel-
atively robust operations, which can be performed in a lazy
manner, without any sophisticated scheduling mechanism.

Point motion. To describe the motion of the points sam-
pled on the skin surface, it is convenient to consider the tra-
jectory of the surface over time. Note that the i-th sphere at
time ¢ is S;(t) = £, *(t). Similarly, the convex combina-
tion defined by coefficients ; at time ¢ is S(t) = f~1(t),
where f = > ~;f;. We can represent the skin surface in
the same manner by introducing the function g : R® — R
defined as the point-wise minimum of the functions rep-
resenting the shrunken spheres. More formally, g(z) =
min{2f(z) — f(z)}, where the minimum is taken over all
spheres S € F and z is the center of S. The skin surface
at time ¢ is then F'(t) = g~1(t), so it is appropriate to call
the graph of g the trajectory of the skin surface. We see that
growing the surface in time is equivalent to sweeping out its
trajectory with a three-dimensional space that moves through
time. Itis natural to let the points sampled on F'(t) move nor-
mal to the surface. For a point z = [¢], &2, &3]T on a sphere
or hyperboloid in Standard Form ¢2 + &2 + ¢2 = +R?, the
gradient is Vg, = 2[£1, &2, £&3])7. The point = moves in the
direction of the gradient with a speed that is inversely pro-
portional to the length. In other words, the velocity vector at
apoint z is

d_:E _ Vg, _ Vgz
d IVgell” 4jz|®

The speed of z is therefore || || = 1/(2]|z||). The implemen-
tation of the relaxed scheduling paradigm crucially depends
on the properties of this motion. We use the remainder of
this section to describe a symmetry property of the veloc-
ity vectors that is instrumental in the analysis of the motion.
Consider two mixed cells that share a common face. The
Standard Forms of the two corresponding surface patches
differ by a single sign, and so do the gradients. If we re-
flect points in one cell across the plane of the common face
into the other cell then we preserve the velocity vector, as
illustrated in Figure 3. We use this observation about adja-
cent mixed cells to relate the velocity vectors of points in
possibly non-adjacent cells. Consider points « and v and let
Z1,%2,. .. ,Z) De the intersection points with faces of mixed
cells encountered as we travel along the edge from u to v.
Starting at ¢ = k, we work backward and reflect the portion
of the edge beyond z; across the face that contains z;. In the
general case, this portion is a polygonal path that leads from
z; to the possibly multiply reflected image v of v. After k re-
flections we have a polygonal path from w to the final . The
length of the path is equal to the length of the initial edge,
and hence ||u — 7|| < |[|u — v||. We note that T does not nec-
essarily lie in the mixed cell of u, but its velocity vector —
which is the same as that of v — is consistent with the family
of spheres or hyperboloids that sweeps out that mixed cell.
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Figure 3: Velocity vectors of a shrinking circle on the left and of a
hyperbola on the right. The right portion of the edge uw is reflected
across face shared by the two mixed cells.

In other words, the motion of » and v is determined by the
same quadratic function.

3 Relaxed Scheduling

In this section, we introduce relaxed scheduling as a
paradigm for maintaining moving or deforming data. It is
designed to cope with situations in which the precise mo-
ment for an update is either not known or too expensive to
compute.

Correctnessconstraints. Inthe context of maintaining the
triangle mesh of a skin surface, we use relaxed scheduling to
determine when to contract an edge and when to insert a new
vertex. Since determining when the size of an edge or trian-
gle stops to be acceptable is expensive, we introduce a gray
zone between acceptability and unacceptability and update
an element when we catch it inside that gray zone. That this
course of action is even conceivable is based on the correct-
ness proof of the dynamic skin triangulation algorithm for a
range of its controlling parameters. The first three conditions
defining that range refer to e, C and ). We have seen the lat-
ter two before in the formulation of the two Size Bounds [L]
and [U]: C controls how well the mesh approximates the sur-
face, and ) controls the quality of the mesh. Both are related
to e, which quantifies the sampling density.

(1) We require 0 < & < g, Where ¢g = 0.279. .. is a root
of 2 cos(arcsin 2 + arcsing) — 25 = 0.

1—e
(1) Q2 —4CQ > 2.
() 5% — & > C2Q% where § = ¢ — 254,

It is computationally efficient to select the loosest possible
bound for the sampling density: € = ¢o. Then we get
6 = 0.166. .. and, as noted in [1], we may choose C' = 0.08
and @ = 1.65 to satisfy Conditions (1) to (I11). Alternatively,
we may lower C' to 0.06 and are then free to pick @ any-
where inside the interval from 1.6 to 2.3. The two choices

of parameters are marked by a hollow dot and a white bar in
Figure 5. The last two conditions refer to h, £ and m. All
three parameters control how metamorphoses that add or re-
move a handle are implemented. Since the curvature blows
up at the point and time of a topology change, we use a spe-
cial and relatively coarse sampling inside spherical neigh-
borhoods of such points. Assuming a unit radius of such
neighborhoods, we turn the special sampling strategy on and
off when the skin surface enters and leaves the smaller spher-
ical neighborhood of radius h < 1.0. If the skin enters as a
two-sheeted hyperboloid we triangulate it using two £-sided
pyramids inside the unit sphere neighborhood. If it enters
as a one-sheeted hyperboloid we triangulate it as an m-sided
drum with a waist. The conditions are stated in terms of the
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N

Figure 4: The triangulation of a two-sheeted and a one-sheeted hy-
perboloid inside a unit neighborhood sphere around their apices.

edges ab, bec and wz and the triangles abc and vwz, as de-
fined in Figure 4. Their sizes can all be expressed in terms of
h, £ and m, and we refer to [1, Section 10] for the formulas.

(IV) Raba Rbc; wa > C/Q
(V) Rape, Rywz < min{Q, Q/Q}Ch

Quality buffer. The key technical insight about the dy-
namic skin triangulation algorithm is that we can find con-
stants ¢, C, h, £, m and Qg < @, such that Conditions
(1) to (V) are satisfied for all @ € [Qo,Q1]. This is illus-
trated in Figure 5, which shows the feasible region of points
(C, Q) assuming fixed values for €, h, £ and m. Instead of
fixing @ and contracting an edge when its size-scale ratio
reaches C'/(), we suggest to contract the edge any time its
ratio is in the interval (C/Q1, C/Qq]. After the ratio enters
this interval at C/Qo it can either leave again at C/Qo or
it can get contracted, but it is not allowed to reach C/Q;.
Vertex insertions are treated symmetrically. Specifically, a
triangle is removed by adding a vertex near its circumcen-
ter, and this can happen at any moment its size-scale ratio
is in [CQo,CQ1). The ratio can enter and leave the inter-
val at CQo, but it is not allowed to reach CQ,. We call
(C/Q1,C/Qo] and [CQo,CQ1) the lower and upper size
buffers. The quality of the mesh is guaranteed because all
edges and triangles satisfy the two Size Bounds [L] and [U]
for @ = Q.. Symmetrically, the correctness of the trian-
gulation is guaranteed because edge contractions and vertex
insertions are executed only if the same bounds are violated

for Q@ = Qo.
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Figure 5: The shaded feasible region of parameter pairs (C, Q) for
€ = €9, h = 0993, £ = 6 and m = 80. For C = 0.06 this
region contains the interval Q € [1.6,2.3]. The bounding curves
are labeled by the corresponding constraints. Redundant constraints
are not shown.

Early warning. Recall that an edge is borderline iff its
size-scale ratio is contained in the lower size buffer, and it
becomes unacceptable at the moment it reaches C'/@Q1. Sim-
ilarly, a triangle is borderline iff its size-scale ratio is con-
tained in the upper size buffer, and it becomes unaccept-
able at the moment it reaches C'Q),. The relaxed scheduling
paradigm depends on an early warning algorithm that reports
an element before it becomes unacceptable. That algorithm
might err and produce false positives, but it may not let any
element slip by and become unacceptable. False positives
cost time but do not cause any harm, while unacceptable ele-
ments compromise the correctness of the meshing algorithm.
In Figure 6, false positives are marked by hollow dots and
deletions are marked by filled black dots. All false positive

ratio
cQ,
_.
cQ,
O
O
O - -
o
O
R, L
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Figure 6: The two buffers are shaded and the two curves are pos-
sible developments of size-scale ratios for an edge (dashed) and a
triangle (dotted). The dots indicate moments at which the elements
are tested and finally removed.

tests of edges are represented by dots above the lower size
buffer. To get a correct early warning algorithm we just need
to test each edge often enough so that its size-scale ratio can-
not cross the entire lower size buffer between two contiguous
tests. The symmetric rule applies to triangles. Bounds on the
amount of time it takes to cross the size buffers will be given
in Section 4.

Note that we have selected the parameters to obtain a fairly
long interval [Qo, @1]. It is not clear whether or not this is a
good idea or whether a shorter interval would lead to a more
efficient algorithm. An argument for a long interval is that
the implied large size buffers let us get by with less frequent
and therefore fewer tests. An argument against a long in-
terval is that large size buffers are more likely to cause the
deletion of elements that are on their way to better health
but did not recover fast enough and get caught before they
could leave the buffers. It might be useful to optimize the
length of the intervals through experimentations after imple-
menting the relaxed schedule as part of the skin triangulation
algorithm.

4 Analysis

In this section, we derive lower bounds on the amount of
time it takes for an edge or triangle to change its size by
more than some threshold value. From these we will derive
lower bounds on the time it takes an element to pass through
the entire size buffer. We begin by studying the motion of a
single point.

Traveling point. We recall that the speed of a point u on
the skin surface is ||a|| = 1/(2||ul]), assuming we write the
patch that contains it in Standard Form. The distance trav-
eled by u in a small time interval is therefore maximized if it
heads straight toward the origin, which for example happens
if u lies on a shrinking sphere. Starting the motion at point
ug, Which is the point u at time ¢o, we get

lull =/ lluoll” = (t — to), (3)

for the point v at time ¢. This implies ¢ — to = [Juol|* — ||ull’,
so we see that u reaches the origin at time ¢ = to + ||uo||’.
More generally, we reach the point u; = (1 — 8)ug be-
tween ug and the origin at time ¢ = to + ||uo||” — |Jua||” =
to + (20 — 62)||uol|”. Since the above analysis assumes the
fastest way u can possibly travel, this implies that within an
interval of duration At = t; — tg, the point ug cannot travel
further than a distance o(up). We use 6 as a convenient
intermediate quantity that gives us indirect access to the im-
portant quantity, which is At.

Recall from the Curvature Variation Lemma of [1] that the
difference in length scale between two points is at most the
Euclidean distance. If that distance is ||ug — u1|| < 6o(uo)
then the length scale at u; is between 1—6 and 1+ times the



length scale at ug. It follows that if we travel for a duration
At = (26 — 62)0?(up), we can change the length scale only
by a factor

1-6 < < 1+46. 4)
The lower bound is tight, and the upper bound cannot be
reached because the distance 6% (uo) from ug can only be
achieved if the length scale shrinks. We will also be inter-
ested in the integral of 1/(2||u||*), which is again maximized
if u moves straight toward the origin:

[ at
<
to 2|[ull? to 2|Juol” — (2t — 2t0)

1 luoll” = (¢ — to)
= (—5)111 5
lluoll
[luol
[l |

Denoting the above integral by X and choosing t; — to =
(26 — 62)||uo ||, as before, we have

[ o(u1)

Edge length variation. Consider two points « and v on
the skin surface during a time interval [to,?;]. We assume
that both points follow their trajectories undisturbed by any
mesh maintenance operations. Let ug and u; be the point u
attimes ¢y and ¢; and, similarly, let vg and v; be the point v at
these two moments. We prove that if the time interval is short
relative to the length scale of the points then the distance
between them cannot shrink or grow by much.

LENGTH LEMMA. Let oo = min{e(ug), 0(ve)} and At =
t1 —to = (20 — 62)03, forsome 0 < § < 1. Then

|lur — | 1
1-60 < < .
= luo —wol| 1-46

PROOF. The derivative of the distance between points » and
v with respect to time is

dllu —vl| _ dlu—ov|du  dflu—v|dv
dt - du dt dv  dt
(w—v)t =
= T (g —). (6)
TETR

For example if w and v lie on a common sphere patch then
0= o(u) = o(v), u = u/(20%) and v = +v/(2¢?), which
implies
— T (y - —
dlu=vl _ @@= @=v) _ _ [lu=cl
di lu—oll  2¢? 2¢

We prove below that in the general case, the distance deriva-
tive stays between these two extremes:

=l dlu — | llu — |
202 - dt - 202

U]

where ¢ = min{o(u), o(v)}. To get the final result from (6),
we divide by ||u — v||, multiply by d¢, andused ln z = dz/z
to get

dt dt

-—— < — < .

ppz S dlmlu—vl) < o
Next we integrate over [to,¢1] and exponentiate to eliminate
the natural logarithm:

_x llur — vi| X

e
lluo — vol|

The claimed pair of inequalities follows from (5) and the ob-
servation that the upper bound for X cannot be realized when
the distance derivative is positive. To prove (7) for general
points « and v, it suffices to show that the length of & — ©
is at most ||u — v||/(20?). We have seen that this is true if u
and v belong to a common sphere patch. It is also true if u
and v belong to a common hyperboloid patch because

u! v
20%(u)  20%(v)
where the primed and unprimed vectors are the same, except
that they have a different sign in the third coordinate. We
need a slightly more elaborate argument if » and v do not
belong to the same mixed cell. We then reflect v across the
faces of mixed cells that intersect the edge uv. As described
in Section 2, such a sequence of reflections does not affect
the velocity vector. The distance between « and the image
v of v under the composition of reflections is at most that
between « and v. Hence,

llu = |

la—oll = | 7

I <

u—v

llo — 9| = W

la =l < |

I,
as required.

The lower bound in the Length Lemma is tight and real-
ized by points » and v on a common sphere patch.

Shrinking edge. Consider an edge uv, whose half-length
attime tq is Ry. As before we write ug and vg for the points u
and v attime ¢g. Let oo = min{p(ug), o(vo)}. We follow the
two points during the time interval [¢o, ¢1], whose duration is
At = t; —tg = (26 — 6%)03. The Length Lemma implies
that at time ¢4, the length of the edge satisfies

lut =i _ Ru

— 1—-6. 8
[luo — vol| Ry ®)

Our goal is to choose 8 such that the edge at time ¢, is guar-
anteed to satisfy the Lower Size Bound for ) = @;. Using



Ry > (1 —6)Ry from (8) and o1 < (1 + 8)go from (4), we
note that Ry /o1 > C/Q1 isimplied by (1-0)Ro/(1+46) >
Coo/Q1. In other words,

RyQ1 — Coo
RyQ1 + Coo

is sufficiently small. The corresponding time interval dur-
ing which we can be sure that the edge uv does not become
unacceptably short has duration At = (26 — 62)03. To get
a better feeling for what these results mean, let us write the
half-length of uguvy as a multiple of the lower bound in [L]
for @ = Qo: Ro = ACp/Qo with A > 1.0. We then get
6 = (AQ1 — Qo)/(AQ1 + Qo) and At from § as before.
Table 1 shows the values of 8 and At for a few values of A.

LAl 6 [ At/g |
10 [ 0.179... ] 0.326...
1.5 | 0.366... | 0.598. ..
2.0 | 0.483... | 0.733. ..
2.5 | 0.564... | 0.810...
3.0 || 0.623... | 0.858...
3.5 || 0.668... | 0.890...
4.0 | 0.703... | 0.912...

6 €))

Table 1: For edges, the values of § and At for Qo = 1.6, Q1 = 2.3
and a few typical values of A.

Height variation. Consider a triangle uvw during a time
interval [to,%1]. We assume that all three points follow their
trajectories undisturbed by any mesh maintenance opera-
tions. Each vertex has a distance to the line spanned by the
other two vertices, and the height H of wvw is the small-
est of the three distances. If uwv is the longest edge then
H = ||lw—w'||, where w' is the orthogonal projection of
w onto wv. We prove that if the time interval is short relative
to the length scale at the points then the height cannot shrink
or grow by much. To state the claim we use indices 0 and 1
for points and heights at times ¢, and ¢;.

HEIGHT LEMMA. Let g9 = min{p(uo), o(vo), o(wo)} and
At =t —tg = (20 —6%)03, forsome 0 < § < 1. Then

PROOF. We prove that (7) is also true if we substitute the
height H for the length of the edge uv:

H dH H

S G G

202 — dt — 20¥ (10)

where ¢ = min{p(u), o(v), o(w)}. The claimed pair of in-

equalities follows as explained in the proof of the Length

Lemma. To see (10) note first that the height of the triangle

is always determined by a vertex and a point on the oppo-

site edge, eg. H = |jw —'||. Letw' = (1 — AN)u + Av.

If v and v belong to the same mixed cell then Vg, =
(1 — M)Vg, + AVg, because the gradient varies linearly.
Along a moving line segment uwv the velocity vectors vary
linearly, hence w' = (1 — A\)a + Av. Since the gradients and
the velocity vectors at 4 and v point in the same directions,
they do the same at w’. The length of the velocity vector at
w' is at most that of the longer velocity vector at » and v. If
w belongs to the same mixed cell as w’, this implies

llw— w'] H

lv — @' < Tog T 2

from which (10) follows. If u, v and w do not belong to the
same mixed cell then we perform reflections, as in the proof
of the Length Lemma, and get (10) because reflections do
not affect velocity vectors.

In the following, we only need the lower bound in the
Height Lemma, which is tight and is realized points «, v and
w on a common sphere patch.

Expanding triangle. We use both the Length Lemma and
the Height Lemma to derive a lower bound on the length of
time during which a triangle that initially satisfied the Upper
Size Bound [U] for Q = @ is guaranteed to satisfy the same
for @ = Q1. We begin by establishing a relation between
the circumradius R = R,,,, of a triangle uvw and its height
and edge lengths. Referring to Figure 7, we let z denote the
center of the circumcircle. Assuming uw is the longest of
the three edges, the height is H = |jw — w'|| and v and z
lie on the same side of the line passing through v and w.
Let 2’ be the midpoint of ww and note that the angle at z is
twice that at v: Zuzw = 2/2'zw = 2/uvw. This implies
that the triangles ww'v and wz'z are similar, and therefore
|z' — w||/R = H/||v — w||. It follows that the circumradius
of wow is

[l = wl| [[o — w]]

R = 2H

There are three ways to write twice the area as the product
of an edge length and the distance of the third vertex from
the line of that edge: |[u —v|| H = |Jlu —w|| |Jv ="2'|| =
[|lv — w]| ||u — w'||. Hence, the circumradius is also

llu = vl llv = w]]
2[|v =o'l

[l = ol [lu = w]]
2f|u — ']

R

For the remainder of this section, we use indices 0 and 1
for points, heights and radii at times ¢, and ¢;. The above
equations for the circumradius imply

By _ lus —wil [los = wal [lwo — wyl|
Ry lluo — wol| [[vo — wol [fwr — wil
Assuming Hy = |lwg — wg|| is the height at time ¢, we

have H; < |lw; — wi|| at time ¢;. We can therefore use the



Figure 7: The triangle wvw is similar to wz’z, which implies a
relation between the height H and the circumradius R.

Length Lemma to bound the first two ratios and the Height
Lemma to bound the third to get

Ry 1

Ro < e (11)
We now choose 6 such that a triangle that satisfies [U] for
Q = Qo at time ¢, is guaranteed to satisfy [U] for Q =
Q1 at time ¢;. Using Ry < Ro/(1 — #)® from (11) and
(1 — 0)go < o1 from (4), we note that R1 /01 < CQ1 is
implied by Ry /(1 — 6)* < CQ100. In other words,

§ = 1-+/Ro/(CQ1i00) (12)

is sufficiently small. It is convenient to write the circum-
radius of the triangle uguowe as a fraction of the upper
bound in [U]: Ry = CQooo/A with A > 1.0. Then,
0 =1- {/Qo/(AQ;). Table 2 shows the values of § and

At for a few values of A.

LA 6 [ At/ |
10 || 0.086...] 0.165...
15 | 0174... | 0.319...
2.0 | 0.232... | 0.410...
25 | 0.273... | 0.472...
3.0 || 0.306... | 0.518...
3.5 | 0.332... | 0.554...
40 || 0.354... | 0.583...

Table 2: For triangles, the values of § and At for Qo = 1.6, Q1 =
2.3 and a few typical values of A.

5 Discussion

The main contribution of this paper is the introduction of re-
laxed scheduling as a paradigm for maintaining moving or
deforming data, and the demonstrations of its applicability
to scheduling edge contractions and vertex insertions main-
taining skin surfaces.

Algorithm design. We view the dynamic skin triangula-
tion algorithm, of which relaxed scheduling is now a part, as
an interesting exercise in rational algorithm design. What are
the limits for proving meshing algorithms correct? This de-
sign exercise gives us a glimpse on how complicated mesh-
ing problems can be. Perhaps more importantly, it illustrates
what it might take to prove other meshing algorithms correct.
We especially highlight the role of constant parameters in the
algorithm and how they control the algorithm as well as the
constructed mesh. In our example, the important parameters
are C, which controls how closely the mesh approximates
the surface, and @, which controls the quality of the mesh.
The effort of proving the various pieces of the algorithm cor-
rect has lead to inequalities for these parameters. In other
words, we have identified a feasible region which is neces-
sary for our proofs and sufficient for the correctness of the
algorithm. The detailed knowledge of this feasible region
has inspired the idea of relaxed scheduling, and it was nec-
essary to formulate it in detail and to prove its correctness.
Many meshing algorithms are based on parameters that are
fine-tuned in the experimental phase of software design. We
suggest that in the absence of detailed knowledge of limits,
fine-tuning is a necessary activity that gropes for a place in
the feasible region where correctness is implied. Of course,
it might happen that this region is empty, but this is usually
difficult to determine.

Future work. It is not our intention to criticize work in
mesh generation for the lack of correctness proofs. Indeed,
it would be more appropriate to criticize our own work for
the lack of generality. Although we laid out a complete al-
gorithm for maintaining the mesh of a deforming surface,
we are a far cry from being able to prove its correctness for
any surface other than the skin surface introduced in [5]. We
have also not been able to extend the algorithm beyond the
deformations implied by growing the spheres that define the
surface. For example, it would be desirable to maintain the
mesh for deformations used for morphing as described in [3].
Generalizing the algorithm to include this application and
proving it correct may be within reach.

Another worthwhile task is the implementation of relaxed
scheduling as part of the dynamic skin algorithm. Are our
lower bounds for the necessary At sufficient to eliminate
edge contractions and vertex insertions as a bottleneck of the
algorithm? Can these lower bounds be improved in any sig-
nificant manner? Can we improve the performance by fine-
tuning the parameters, in particular Q¢ and @1, while staying
within the proved feasible region?
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Appendix

f,' : RB - R
Si = (2i,73)

F
F=envVF
k,0=1/k
Qo <Q <
e, C,h,l,m

g:R =R
F(t)=g"'(t)
t,0

[to, 1]

At =1t —tg
u,u', U
Vgu,u

wy, uvw, H, R

weighted (square) distance function
zero-set of f;,

sphere with center z; and radius r;
convex hull of spheres S;

skin surface

maximum curvature, length scale
constant controlling quality
additional constants

point-wise min of the 2f — f(z)
skin surface at time ¢

time parameter, rel. travel distance
time interval

duration

point, projection, reflection
gradient, velocity vector

edge, triangle, height, radius

Table 3: Notation for important geometric concepts, functions, vari-
ables, and constants.



