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INTRODUCTION

Structural molecular biology is a relatively recent application area for computa-
tional geometry and topology, but one with enormous potential. We currently
observe a bi-partition of computational research in this field: the bio-informatics
branch focuses on strings, which are abstractions of the hereditary information
stored in the DNA of living organisms, while the molecular simulation branch stud-
ies organic molecules in their natural three-dimensional habitat. Perhaps it is not
surprising that the application of numerical algorithms is significantly more devel-
oped than that of geometric algorithms. One of the goals of this article is to raise
the general consciousness for the importance of geometric methods to elucidate the
mysterious foundations of our very existence. Another goal is the broadening of
what we consider a geometric algorithm. There is plenty of valuable no-mans-land
between combinatorial and numerical algorithms, and it seems opportune to explore
this land with a computational geometry frame of mind.

63.1 BIO-MOLECULES

GLOSSARY

Central dogma: The proven claim that proteins are created in two steps by
transcribing genes to RNA and translating RNA to protein.

FIGURE 63.1.1

The DNA gets replicated as a whole. DNA
Pieces of DNA referred to as genes

are transcribed into pieces of RNA,

which are then translated into proteins. replication

RNA —> Protein

transcription tranglation

DNA: Deoxyribonucleic Acid. The material that carries all hereditary informa-
tion. A double-stranded helix that encodes information into two anti-parallel
sequences of nucleotides.

Replication: Process in which the two strands of DNA are separated and both
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strands are complemented to form new double-strands.

Genome: Complete set of genetic material of a living organism. For humans, it
is divided into twenty-three chromosomes, each a long double-strand of DNA.
Gene: Subsequence of DNA capable of being transcribed to produce a functional

RNA molecule.

Transcription: Process in which the two strands of DNA are locally separated
and one strand is copied to a piece of RNA.

RNA: Ribonucleic Acid. A single-stranded structure that is chemically almost
identical to DNA.

Translation: Process in which a strand of RNA is read by the ribosome and
translated into a protein.

Protein: A linear sequence of amino acids connected to each other by peptide
bonds.

Amino Acid: Consists of a central carbon atom (C,) linked to an amino group,
a carboxyl group, one hydrogen atom, and a side chain. A residue is an amino
acid whose NC,C sequence is linked into the polypeptide chain of a protein.

Protein backbone: Polypeptide chain consisting of repeated CC,N units. The
bond between N and C is rigid, but the bonds connecting C, to C and C, to N
can be rotated around the connecting edges.

Protein folding: Process in which a polypeptide chain folds up to a usually
globular shape that is characteristic for each type of protein.

FROM DNA TO PROTEIN

Organic life is based on a surprising small number of molecule types. Most promi-
nently, we have DNA, RNA and protein. All of them have the simple structure
of a linear sequence consisting of a chain or backbone with attached side-chains.
DNA and RNA each use an alphabet of only four nucleotides, while proteins use an
alphabet of twenty amino acids. As discovered by Watson and Crick [WC53], the
natural form of DNA consists of two sequences or strands that are held together
by complementary nucleotide pairs. DNA has the ability to replicate itself, which
is done by separating the two strands and complementing both with the matching
strand made from free nucleotides in the surrounding solution. DNA is the memory
of evolution that gives coherence to all living species; it forms the material basis
of heredity as studied by Mendel in the nineteenth century [Men66]. Apparently,
only a small fraction of the DNA in any organism represents used information. The
used pieces are the genes, which are transcribed into RNA in a process similar to
replication. RNA remains single-stranded and most of it gets translated into pro-
tein. This happens in the ribosome, which is a large molecular machine made out
of proteins and RNA molecules. A single strand of RNA is fed into the ribosome,
and each triplet of nucleotides is translated into an amino acid, which is appended
to the growing peptide chain. Upon completion, this chain leaves the ribosome as
the final protein. This scenario is reminiscent of the Touring machine model of
computing, in which information is read from an input tape and the results of the
computations are printed on an output tape.
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FROM SEQUENCE TO FUNCTION

When the protein leaves the ribosome, it folds up to form a shape that is char-
acteristic for its sequence of amino acids. The proteins constitute the work-force
that maintains organic life. Specific proteins fulfill specific functions within the
organism, and the particular shape it assumes is crucial:

Sequence —> Form =— Function.

This is why geometry is important in molecular biology. It is essential to learn
the shapes of all proteins and to understand what is important about them. Most
functions are tied up in the interaction of proteins with each other and with other
molecules. The replication of DNA, the transcriptions to RNA, and the translation
to protein are but three examples, and each is served by a complicated machine
made up of different proteins and RNA molecules. In other words, proteins are the
pieces of a huge three-dimensional dynamic puzzle whose solution requires, upon
others things, a good understanding of the involved shapes. A major difficulty in
the field of molecular biology is the miniscule scale of space and time at which the
processes happen. The actors and their scripts are complicated and observations
are indirect. The experimental work is generally complemented by computational
simulations, which are referred to as theoretical work in this area.

63.2

GEOMETRIC MODELS

Proteins are complicated objects, which have been abstracted into a number of
different models emphasizing different aspects of their behavior. We may think of
them as curves in space modeling the backbone, or as a collection of balls or spheres
representing it at the level of individual atoms.

GLOSSARY

Space-filling diagram: Model that represents a protein by the space it occupies.
Most commonly, each atom is represented by a ball (a solid sphere) and the
protein is the union of these balls.

Van der Waals surface: Boundary of space-filling diagram defined as the union
of balls with van der Waals radii. The sizes of these balls are chosen to reflect
the transition from an attractive to a repulsive van der Waals force.

Solvent accessible surface: Boundary of space-filling diagram in which each
van der Waals ball is enlarged by the radius of the solvent sphere. Alternatively,
it is the set of centers of solvent spheres that touch but do not otherwise intersect
the van der Waals surface.

Molecular surface: Boundary of the portion of space inaccessible to the solvent.
It is obtained by rolling the solvent sphere about the van der Waals surface.

Power distance: Square length of tangent line segment from a point z to a

sphere with center z and radius r. It is also referred to as the weighted square

distance and formally defined as ||z — z|° — r2.
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FIGURE 63.2.1
A short segment of a DNA double-heliz in
space-filling representation. DNA uses an

alphabet

guanine (G), cytosine (C) and thymine (T).
In the picture they are barely visible since
the nucleotides are packed in the middle,
using hydrogen bonds to hold the strands

together.

of four nucleotides: adenine (A),

Voronoi diagram: Decomposition of space into convex polyhedra. Each polyhe-
dron belongs to a sphere in a given collection and consists of all points for which
this sphere minimizes the power distance. This decomposition is also known as
the power diagram and the weighted Voronoi diagram.

Delaunay triangulation: Dual to the Voronoi diagram. For generic collections
of spheres, it is a simplicial complex consisting of tetrahedra, triangles, edges and
vertices. This complex is also known as the regular triangulation, the coherent
triangulation and the weighted Delaunay triangulation.

Dual complex: Dual to the Voronoi decomposition of a union of balls. It is a
subcomplex of the Delaunay triangulation.

FIGURE 63.2.2

Each Voronoi polygon intersects the union of
disks in a convex set, which is the intersection
with its defining disk. The drawing shows the
Voronoi decomposition of the union and the
dual complex superimposed.

Growth model: Rule for growing all spheres in a collection continuously and
simultaneously. The rule that increases the square radius r2 to r2 + ¢ at time ¢
keeps the Voronoi diagram invariant at all times.

Alpha complex: The dual complex at time t = « for a collection of spheres
that grow while keeping the Voronoi diagram invariant. The alpha shape is the
underlying space of the alpha complex.

Filtration: Nested sequence of complexes. The prime example in this paper is
the sequence of alpha complexes.
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SPACE-FILLING DIAGRAMS

Our starting point is the van der Waals force, which is based on quantum me-
chanical effects. At short range up to a few Angstrom, the force is attractive but
significantly weaker than covalent or ionic bonds. At very short range, the force is
strongly repulsive. We may assign van der Waals radii to the atoms such that the
force changes from attractive to repulsive when the corresponding spheres touch
[GRO1]. The van der Waals surface is the boundary of the space-filling diagram
made up of the balls with van der Waals radii. In the 1970s, Richards and collabora-
tors extended this idea to capture the interaction of a protein with the surrounding
solvent [LR71, Ric77]. The solvent accessible surface is the boundary of the space-
filling diagram in which the balls are grown by the radius of the sphere that models
a single solvent molecule. Usually the solvent is water represented by a sphere
of radius 1.4 Angstrom. The molecular surface is obtained by rolling the solvent
sphere over the van der Waals surface and filling in the inaccessible crevices and
cusps. This surface is sometimes referred to as the Connolly surface, named after
the creator of the first software representing this surface by a collection of dots
[Con83].

DUAL STRUCTURES

We complement the space-filling representations of proteins with geometrically dual
structures. A major advantage of these dual structures is their computational
convenience. We begin by introducing the Voronoi diagram of a collection of balls
or spheres, which decomposes the space into convex polyhedra [Vor07]. Next we
intersect the union of balls with the Voronoi diagram and obtain a decomposition of
the space-filling diagram into convex cells. Indeed, these cells are the intersections
of the balls with their corresponding Voronoi polyhedra. The dual complez is the
collection of simplices that express the intersection pattern between the cells: we
have a vertex for every cell, an edge for every pair of cells that share a common facet,
a triangle for every triplet of cells that share a common edge, and a tetrahedron
for every quadruplet of cells that share a common point [EKS83, EM94]. This
exhausts all possible intersection patterns in the assumed generic case. We get a
natural embedding if we use the sphere centers as the vertices of the dual complex.

GROWTH MODEL

One and the same Voronoi diagram corresponds to more than just one collection of
spheres. For example, if we grow the square radius r? of the i-th sphere to r? + ¢,
for every i, we get the same Voronoi diagram. Think of ¢ as time parametrizing
this particular growth model of the spheres. While the Voronoi diagram remains
fixed, the dual complex changes. The cells in which the balls intersect the Voronoi
polyhedra grow monotonically with time, which implies that the dual complex can
acquire but not lose simplices. We thus get a nested sequence of dual complexes,

) = Ko C Ky C ... CK, =D,

which begins with the empty complex at time ¢ = —oo and ends with the Delaunay
triangulation [Del34], at time ¢ = co. We refer to this sequence as a filtration of
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the Delaunay triangulation and think of it as the dual representation of the protein
at all scale levels.

63.3 MESHING

We introduce yet another surface bounding a space-filling diagram of sorts. The
molecular skin is the boundary of the union of infinitely many balls. Besides the
balls with van der Waals radii representing the atoms, we have balls interpolating
between them that give rise to blending patches and altogether to a tangent contin-
uous surface. The molecular skin is rather similar in appearance to the molecular
surface but uses hyperboloids instead of tori to blend between the spheres [Ede99].
The smoothness of the surface permits a mesh whose triangles are all approximately
equiangular [CDES01]. Applications of this mesh include the representation of pro-
teins for visualization purposes and the solution of differential equations defined
over the surface by finite element and other numerical methods.

GLOSSARY

Molecular skin: Surface of a molecule that is geometrically similar to the molec-
ular surface but uses hyperboloid instead of torus patches for blending.

FIGURE 63.3.1

Cut-away view of the skin of a small
molecule. We see a blend of sphere and
hyperboloid patches. The surface is
inside-outside symmetric: it can be
defined by a collection of spheres on
either of its two sides.

Mized complex: Decomposition of space into shrunken Voronoi polyhedra, shrunken
Delaunay tetrahedra and shrunken products of corresponding Voronoi polygons
and Delaunay edges as well as Voronoi edges and Delaunay triangles. It decom-
poses the skin surface into sphere and hyperboloid patches.

Mazimum normal curvature: The larger absolute value k(z) of the two prin-
cipal curvatures at a point = of the surface.

e-sampling: Collection of points S on the molecular skin M such that every point
x € M has a point u € S at distance ||z — u|| < e/k(x).

Restricted Delaunay triangulation: Dual to the restriction of the (three-
dimensional) Voronoi diagram of S to the molecular skin M.



Biological Applications of Computational Topology 1007

FIGURE 63.3.2 \
The skin curve defined by four )
circles in the plane. The mized

complex decomposes the curve into

pieces of circles and hyperbolas.

Closed ball property: The condition that every cell in a complex is a topologi-
cally simple closed ball of the appropriate dimension.

Morphing: Process of deforming one given shape into another.

Shape space: Locally parametrized space of shapes. The prime example in this
paper is the (k — 1)-dimensional space generated by k shapes each specified by
a collection of spheres in R.

TRIANGULATION

The molecular skin has geometric properties that can be exploited to construct
a numerically high-quality mesh and to maintain that mesh during deformation.
The most important of these is the continuity of the maximum normal curvature
function k : M — R. To define it, consider the 1-parameter family of geodesics
passing through z and let x(z) be the maximum of their curvatures at . We use
this function to guide the local density of the points distributed over M that are
used as vertices of the mesh. Given such a collection of points S, we construct a
mesh using their Voronoi diagram restricted to M. The polyhedra decompose the
surface into patches, and the mesh is constructed as the dual of that decomposition
[Che93]. As proved in [ES97], the mesh is homeomorphic to the surface if the pieces
of the restricted Voronoi diagram are topologically simple sets of the appropriate
dimensions. In other words, the intersection of each Voronoi polyhedron, polygon,
or edge with M is either empty or a topological disk, and interval, or a single point.
Because of the smoothness of M, this topological property is implied if the points
form an e-sampling, with ¢ = 0.279 or smaller [CDES01].

DEFORMATION AND SHAPE SPACE

The variation of the maximum normal curvature function can be bounded by the
one-sided Lipschitz condition |1/k(z) — 1/k(y)| < ||z — y||, where the distance is
measured in R®. The continuity over R® and not just over M is crucial when it comes
to maintaining the mesh while changing the surface. This leads us to the topic of
deformations and shape space. The latter is constructed as a parametrization of
the deformation process. The deformation from a shape Ag to another shape A;
can be written as AgAg + A1 Ay, with Ay = 1 — Ag. Accordingly, we may think of
the unit interval as a one-dimensional shape space. We can generalize this to a k-
dimensional shape space as long as the different ways of arriving at (Ao, A1, ..., Ak),
with Y A; = 1 and \; > 0 for all 4, all give the same shape A = " \;4;. How to
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define deformations such that this is indeed the case is explained in [CEF01].

63.4

CONNECTIVITY AND SHAPE FEATURES

Protein connectivity is often understood in terms of its covalent bonds, in partic-
ular along the backbone. In this section, we discuss a different notion, namely
the topological connectivity of the space assigned to a protein by its space-filling
diagram. We mention homeomorphisms, homotopies, homology groups and FEuler
characteristics, which are common topological concepts used to define and talk
about connectivity. Of particular importance are the homology groups and their
ranks, the Betti numbers, as they lend themselves to efficient algorithms. In addi-
tion to computing the connectivity of a single space-filling diagram, we study how
the connectivity changes when the balls grow. The sequence of space-filling dia-
grams obtained this way corresponds to the filtration of dual complexes introduced
earlier. We use this filtration to define basic shape features, such as pockets in
proteins and interfaces between complexed proteins and molecules.

GLOSSARY

FIGURE 63.4.1

Snap-shot during the deformation
retraction of the space-filling
representation of gramicidin to its
dual complex. The spheres shrink
to vertices while the intersection
circles become cylinders that
eventually turn into edges.

Topological equivalence: Equivalence relation between topological spaces de-
fined by homeomorphisms, which are continuous bijections with continuous in-
verses.

Homotopy equivalence: Weaker equivalence relation between topological spaces
X and Y defined by maps f : X — Y and g : Y — X whose compositions g o f
and f o g are homotopic to the identities on X and on Y.

Deformation retraction: A homotopy between the identity on X and a retrac-
tion of X to Y C X that leaves Y fixed. The existence of the deformation implies
that X and Y are homotopy equivalent.

Homology groups: Quotients of cycle groups and their boundary subgroups.
There is one group per dimension. The k-th Betti number, P, is the rank of the
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k-th homology group.
Euler characteristic: The alternating sum of Betti numbers: x = >, (—1)*B.

Voids: Bounded connected components of the complement. In this paper, we are
primarily interested in voids of space-filling diagrams embedded in R®.

Pockets: Maximal regions in the complement of a space-filling diagram that be-
come voids before they disappear. Here we assume the growth model that pre-
serves the Voronoi diagram of the spheres.

Persistent homology groups: Quotients of the cycle groups at some time ¢ and
their boundary subgroups a later time ¢ + p. The ranks of these groups are the
persistent Betti numbers.

Protein complex: Two or more docked proteins. A complex can be represented
by a single space-filling diagram of colored balls.
Molecular interface: Surface consisting of bi-chromatic Voronoi polygons that

separate the proteins in the complex. The surface is usually retracted to the
region in which the proteins are in close contact.

FIGURE 63.4.2

Molecular interface of the neurotozic vipozin
complex. The surface has non-zero genus, which
s unusual. In this case, we have genus equal
to three, which implies the existence of three
loops from each protein that are linked with
each other. The linking might explain the
unusually high stability of the complex, which
remains for years in solution. The piecewise
linear surface has been smoothed to improve
vistbility.

CLASSIFICATION

The connectivity of topological spaces is commonly discussed by forming equiva-
lence classes of spaces that are connected the same way. Sameness may be defined
as being homeomorphic, being homotopy equivalent, having isomorphic homology
groups, or having the same Euler characteristic. In this sequence, the classification
gets progressively coarser but also easier to compute. Homology groups seem to
be a good compromise as they capture a great deal of connectivity information
and have fast algorithms. The classic approach to computing homology groups is
algebraic and considers the incidence matrices of adjacent dimensions. Each ma-
trix is reduced to Smith normal form using a Gaussian elimination like reduction
algorithm. The ranks and torsion coefficients of the homology groups can be read
off directly from the reduced matrices [Mun84]. Depending on which coefficients we
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use and how exactly we reduce, the running time can be anywhere between cubic
in the number of simplices and exponential or worse.

INCREMENTAL ALGORITHM

Space-filling diagrams are embedded in R® and enjoy properties that permit much
faster algorithms. To get started, we use the existence of a deformation retraction
from the space-filling diagram to the dual complex, which implies that the two
have isomorphic homology groups [Ede95]. The embedding in R® prohibits non-
zero torsion coefficients [AH35]. We therefore limit ourselves to Betti numbers,
which we compute incrementally, by adding one simplex at a time in an order that
agrees with the filtration of the dual complexes. Upon adding a k-dimensional
simplex o, the k-th Betti number goes up by one if o belongs to a k-cycle, and the
(k—1)-st Betti number goes down by one if o does not belong to a k-cycle. The two
cases can be distinguished in a time that, for all practical purposes, is constant per
operation, leading to an essentially linear time algorithm for computing the Betti
numbers of all complexes in the filtration [DE95].

PERSISTENCE

To get a handle on the stability of a homology class, we observe that the simplices
that create cycles can be paired with the simplices that destroy cycles. The persis-
tence is the time lag between the creation and the destruction [ELZ02]. The idea of
pairing lies also at the heart of two types of shape features relevant in the study of
protein interactions. A pocket in a space-filling diagram is a portion of the outside
space that becomes a void before it disappears [EFL98, Kun92]. It is represented
by a triangle-tetrahedron pair: the triangle creates a void and the tetrahedron is
the last piece that eventually fills that same void. The molecular interface con-
sists of all bi-chromatic Voronoi polygons of a protein complex. To identify the
essential portions of this surface, we again observe how voids are formed and re-
tain the bi-chromatic polygons inside pockets while removing all others [BER03].
A different geometric formalization of the same biochemical concept can be found
in [VBR4+95]. Preliminary experiments suggest that the combination of molecular
interfaces and the idea of persistence can be used to predict the hot-spot residues
in protein-protein interactions [Wel96].

63.5

DENSITY MAPS

Continuous maps over manifolds arise in a variety of settings within structural
molecular biology. One is z-ray crystallography, which is the most common method
for determining the three-dimensional structure of proteins [BJ76, Rho00]. While
casting x-rays on a crystal of purified protein, we observe defraction patterns from
which the electron density of the protein can be obtained via an inverse Fourier
transform. Another setting is molecular mechanics, whose central object is the
force field that drives atomic motions. We may, for example, be interested in the
electrostatic potential induced by a protein and visualize it as a density map over
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three-dimensional space or over a surface embedded in that space. As a third
setting, we mention the protein docking problem. Given two proteins, or a protein
and a ligand, we try to fit protrusions of one into the cavities of the other [Con86].
We make up continuous functions related to the shapes of the surfaces and identify
protrusions and cavities as local extremes of these functions. Morse theory is the
natural mathematical framework for studying these maps [Mil63, Mat02].

GLOSSARY

Morse function: Generic smooth map over a manifold, f : M — R. In particu-
lar, the genericity assumption includes that all critical points are non-degenerate
and have different function values.

Gradient, Hessian: The vector of first derivatives and the matrix of second
derivatives.

Critical point: Point at which the gradient of f vanishes. It is non-degenerate
if the Hessian is invertible. The index of a non-degenerate critical point is the
number of negative eigenvalues of the Hessian.

Integral line: Maximal curve whose velocity vectors agree with the gradient of
the Morse function. Two integral lines are either disjoint or the same.

Stable manifold: Union of integral lines that converge to the same critical point.
We get unstable manifolds if we negate f and thus effectively reverse the gradient.

Morse-Smale complex: Collection of cells obtained by intersecting stable with
unstable manifolds. We require that f is a Morse-Smale function that satisfies
the additional genericity assumption that these intersections are transversal.

FIGURE 63.5.1

Portion of the Morse-Smale complez
of a Morse-Smale function over a
2-manifold. The solid stable
1-manifolds and the dashed unstable
1-manifolds are shows together with
two dotted level sets. Observe that
all two-dimensional regions of the
complex are quadrangular. ©_minimum ©_saddle © madimum |

Cancellation: Local change of the Morse function that removes a pair of critical
points. Their indices are necessarily contiguous.

CRITICAL POINTS
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Classic Morse theory applies only to generic smooth maps over manifolds, f : M —
R. Maps that arise in practice are rarely smooth and generic, or more precisely,
the information we are able to collect about maps is rarely enough to go beyond a
piecewise linear representation. To illustrate this point, we discuss critical points,
which for smooth functions are characterized by a vanishing gradient: Vf = 0. If
we draw a small circle around a non-critical point u on a 2-manifold, we get one
arc along which the function takes on values less than f(u) and a complementary
arc along which the function is greater than or equal to f(u). Call the former arc
the lower link of u. We get different lower links for critical points: the entire circle
for a minimum, two arcs for a saddle, and the empty set for a mazimum. A typical
representation of a piecewise linear map is a triangulation with function values
specified at the vertices and linearly interpolated over the edges and triangles. The
lower link of a vertex can still be defined and the criticality of the vertex can be
determined from the topology of the lower link [Ban67].

MORSE-SMALE COMPLEXES

In the smooth case, each critical point defines a stable manifold of points that
converge to it by following the gradient flow. Symmetrically, if defines an unstable
manifold of points that converge to it by following the reversed gradient flow.
These manifolds define decompositions of the manifold into simple cells [Tho49].
Extensions of these ideas to construct similar cell decompositions of manifolds with
piecewise linear continuous functions can be found in [EHZO01]. In practice, it
is essential to be able to simplify these decompositions, which can be done by
cancelling critical points in pairs in the order of increasing persistence [ELZ02].

63.6

MATCH AND FIT

Proteins can be similar in a variety of ways: they can have similar residue sequences,
they can have backbones that are layed out similarly in space, and they can have
similar shapes after folding. The first two notions are important to gain insight
into the evolutionary development of proteins. The corresponding computational
problems are sequence alignment and structure alignment. The question of shape
similarity, and in particular of partial shape similarity, is relevant to understand the
interaction between proteins and their substrates, which can be proteins or other
molecules. Indeed, many interactions seem to require a high degree of partial shape
complementarity, which we interpret as a high degree of partial shape similarity
between the protein and the complement of its substrate.

GLOSSARY

Rigid motion: Orientation and distance preserving motion. The primary exam-
ple in this paper are rigid motions of three-dimensional space, pu : R® — R>.
Each rigid motion can be decomposed into a rotation followed by a translation.

RMSD: Root mean square distance. Root of the average square distance between
two sets of points with a given bijection.
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Dynamic programming: Algorithmic paradigm which computes the optimum
from pre-computed optimal solutions to sub-problems.

Sequence alignment: Collection of monotonically increasing maps to the inte-
gers, one per sequence. Each letter gets either matched or skipped.

Structure alignment: Collection of monotonically increasing maps to the inte-
gers, one per chain of points modeling a protein backbone.

Protein docking: Process in which a protein forms a complex with another
molecule. The complex usually exists only temporarily and facilitates an in-
teraction between the molecules.

STRUCTURE ALIGNMENT

There are two approaches to structure alignment. The first compares the matrices of
internal sequences between the points [HS93]. We only discuss the second approach,
which is a direct extension of the work on sequence alignments in bioinformatics
[Gus97]. Instead of letters representing residues, we align points in space, which are
the centers of the alpha carbon atoms along the two backbones. For decomposable
score functions, we can find the optimal alignment with dynamic programming in
time that is quadratic in the the number of points. One such function suggested in
[SLLI3] penalizes unmatched points and for every matched pair (u;,v;) adds

100

ou;,vj)) = —————
(us,0;) 5+ ||lui —vj]|”

to the score. The dynamic programming approach works only for two fixed se-
quences, and the six degrees of freedom we gain by allowing rigid motions compli-
cate matters considerably. Nevertheless, it is possible to compute an approximation
to the optimal alignment in time that is polynomial in the number of points and
the tolerated error [KLO03].

RIGID MOTIONS

Let uy,us, ..., un and vy,vs, ..., v, be two sequences of points in R*. For a given
rigid motion u, the root mean square distance between the sequences is

W) = | Sl = )

It is perhaps surprising that the dependence of f on p can be expressed by a
quadratic function which, in the generic case, has a unique local minimum. To
describe the minimizing rigid motion, we decompose it into a translation followed
by a rotation. Assuming the centroid of the u; lies at the origin, the optimum
translation moves the centroid of the v; to the origin, and the optimum rotation
can be computed by solving a straightforward eigenvalue problem. One of the
earliest references to this result is Kabsch [Kab78]. A lucid description of the proof
using quaternions to represent rotations can be found in Horn [Hor87].




1014

H. Edelsbrunner

PROTEIN DOCKING

A good local geometric fit is a necessary condition for a complex between two or
more proteins to be formed. There are however additional factors, such as elec-
trostatic and hydrophobic forces. To further complicate the issue, proteins are
somewhat flexible and can sometimes avoid otherwise prohibitive steric clashes
[ESMO01]. Taking all these factors into account seems prohibitive and most com-
putational approaches to protein docking explore the space of rigid motions using
relatively simple geometric score functions [HMWNO2]. An example is the number
of atoms in close but not too close distance from each other. The space of rigid mo-
tions is six-dimensional and exploring it is time-consuming, even with simple score
functions. The idea of Connolly to use critical points of Morse functions to identify
motions [Con86] seems promising but not yet fully explored. It is usually combined
with geometric hashing to enumerate the motions suggested by the critical point
patterns [NLWNO4].

63.7

MEASURES AND DERIVATIVES

Computing the volume and the surface area of a space-filling diagram are two of
the most fundamental means to characterize the geometry of a protein. To mention
a specific application, we consider the computation of the solvation energy, which
is central in the simulation of folding and docking processes. Many simulations use
implicit solvent models and describe the hydrophobic part of the solvation energy
as a weighted sum of the accessible surface area or, alternatively, as a weighted sum
of volumes. The weights are experimentally determined solvation parameters that
assess the contributions of different atom types to the hydrophobic term [EMS86].
A molecular dynamics simulation requires the weighted area or volume and their
derivatives in order to estimate the contribution of the hydrophobic term to the
energy that drives the process.

GLOSSARY

Indicator function: Maps a point z to 1if x € P and to 0 if ¢ P, where P is
some fixed set. In this paper, we are interested in convex polyhedra P and use
the alternating sum of faces visible from z as indicator.

Inclusion-exclusion: Principle used to compute the volume of a union of bodies
as the alternating sum of volumes of k-fold intersections, for k& > 1.

Stereographic projection: Mapping of the 3-sphere minus a point to the three-
dimensional Euclidean space. The map preserves spheres and angles.

Angle of revolution: The normalized k-dimensional volume of a subset of the
k-dimensional sphere.

Atomic solvation parameters: FExperimentally determined numbers that as-
sess the hydrophobicity of different atoms.

Weighted volume: Volume of a space-filling diagram in which the contribution
of each individual ball is weighted by its atomic solvation parameter. Also a
function V : R®" — R obtained by parametrizing a space-filling diagram by the
coordinates of its n ball centers.
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FIGURE 63.7.1

Stereographic projection from the north-pole.
The preimage of a circle in the plane is a
circle on the sphere, which is the intersection
of the sphere with a plane. By extension, the
preimage of a union of disks is the
intersection of the sphere with the
complement of a convez polyhedron.

Weighted volume derivative: The linear map DV, : R®™ — R defined by
DV,(t) = (v,t), where z € R®" specifies the space-filling diagram, t € R3"
lists the coordinates of the motion vectors and v = VV(z) is the gradient of V'
at z. It is also the map DV : R®™ — R®" that maps z to v.

GEOMETRIC INCLUSION-EXCLUSION

Work on computing the volume and the area of a space-filling diagram F' = |J, B;
can be divided into approximate [Row63] and exact methods [Ric74]. According
to the principle of inclusion-exclusion, the volume of F' can be expressed by an
alternating sum of volumes of intersections:

volF = ) (—1)dMlyol () By,
A iEA

where A ranges over all non-empty subsets of the index set. The size of this for-
mula is exponential in the number of balls, and the individual terms can be quite
complicated. Most of the terms are however redundant and a much smaller formula,
based on the dual complex K of the space-filling diagram F' has be given [Ede95]:

volF = Z(—l)dim”volﬂa,

ceEK

where (o denotes the intersection of the dimo + 1 balls whose centers are the
vertices of o. The proof is based on the Euler formula for convex polyhedra and
uses stereographic projection to relate the space-filling diagram in R® with a con-
vex polyhedron in R*. Precursors of this result include the existence proof of a
polynomial size inclusion-exclusion formula [Kra78] and the presentation of such a
formula using the simplices in the Delaunay triangulation [NW92]. We note that
it is straightforward to modify the formula to get the weighted volume: decompose
the terms vol() o into the portions within the Voronoi cells of the participating
balls and weigh each portion accordingly.

DERIVATIVES

The relationship between the weighted and the unweighted volume derivatives is
less direct than that between the weighted and the unweighted volumes. Just to
state the formula for the weighted volume derivative requires more notation that we
are willing to introduce here. Instead, we describe the two geometric ingredients,
both of which can be computed by geometric inclusion-exclusion [EK02]. The first
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ingredient is the area of the portion of the disk spanned by the circle of two inter-
secting spheres that belongs to the Voronoi diagram. This facet is the intersection
of the disk with the corresponding Voronoi polygon. The second ingredient is the
weighted average vector from the center of the disk to the boundary of said facet.
The weight is the infinitesimal contribution to the area as we rotated the vector to
sweep out the facet.

63.8

SOURCES AND RELATED MATERIAL

FURTHER READING

For background reading in algorithms we recommend: [CLR90], which is a com-
prehensive introduction to combinatorial algorithms; [Gus97], which is an algo-
rithms text specializing in bioinformatics; [Str93], which is an introduction to linear
algebra; and [Sch02], which is a numerical algorithms text in molecular modeling.

For background reading in geometry we recommend: [Ped88], which is a ge-
ometry text focusing on spheres; [Nee97], which is a lucid introduction to geometric
transformations; [FT72], which studies packing and covering in two and three di-
mensions; and [Ede01], which is an introduction to computational geometry and
topology, focusing on Delaunay triangulations and mesh generation.

For background reading in topology we recommend: [Ale98], which is a com-
pilation of three classical texts in combinatorial topology; [Gib77], which is a very
readable introduction to homology groups; [Mun84], which is a comprehensive text
in algebraic topology; and [Mat02], which is a recent introduction to Morse theory.

For background reading in biology we recommend: [ABL+94], which is a basic
introduction to molecular biology on the cell level; [Str88], which is a fundamental
text in biochemistry; and [Cre93], which is an introduction to protein sequences,
structures and shapes.

RELATED CHAPTERS

Chapter 2: Packing and covering

Chapter 20: Voronoi diagrams and Delaunay triangulations
Chapter 22: Triangulations

Chapter 28: Computational topology
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