
Holes and Dependences in an Ordered Complex∗

Herbert Edelsbrunner1 and Katharina Ölsböck1

1 IST Austria (Institute of Science and Technology Austria), Klosterneuburg,
Austria, edels@ist.ac.at, katharina.oelsboeck@ist.ac.at

Abstract
We use the canonical bases produced by the tri-partition algorithm in [7] to open and close holes
in a regular complex, K. In a concrete application, we consider the Delaunay mosaic of a finite
set, we let K be an Alpha complex, and we use the persistence diagram of the distance function
to guide the hole opening and closing operations. The dependences between the holes define
a partial order on the cells in K that characterizes what can and what cannot be constructed
using the operations. The relations in this partial order reveal structural information about the
underlying filtration of complexes beyond what is expressed by the persistence diagram.

Keywords and phrases: Computational topology, shape reconstruction; regular complexes, per-
sistence diagrams, bases in homology and cohomology, algorithms, Alpha shapes, computational
experiments.

1 Introduction

This paper studies mechanisms for opening and closing holes in regular complexes. Our
primary motivation is the modeling of biomolecules with Alpha shapes, but the methods are
more generally applicable. As an illustrative example, we imagine a cell membrane protein
with a functional channel for ion transport. We may need a geometric model that represents
the channel as a tunnel, but in the Alpha shape of the appropriate scale, the channel may be
closed, or there may be tunnels that have nothing to do with the channel or even interfere
with the channel, which is worse. We study ways to open and close tunnels, or more generally
holes of any dimension. These operations may be triggered interactively or may be controlled
automatically by the persistence diagram of the distance function defined by the protein. In
other words, we explore the shape reconstruction question in which the holes take front seat
in the decision process.

In a broader context, the work in this paper is related to the geometric modeling of
biomolecules, the study of cavities in materials, the reconstruction of shapes from point cloud
data, and the characterization of shape with persistent homology:

We refer to [12] for a general introduction to the modeling of molecules, and to [6] for
the original paper on 3-dimensional Alpha shapes, which provide a versatile geometric
representation that facilitates the detailed analysis of biomolecules.
Work on the detection and visualization of cavities in molecules is surveyed in [16]. Here
we mention [4] for the introduction of the concept of pockets, and [13] for organizing
synthetic materials in terms of their tunnel systems.
The reconstruction of shapes and images from point cloud data has broad industrial
applications. We mention the Wrap algorithm [3] for surface reconstruction, to which

∗ This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 78818 Alpha). It is also
partially supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry
and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF).

2 Holes and Dependences in an Ordered Complex

our work applies. The corresponding filtrations are however beyond the scope of this
paper, which focuses on Alpha complexes. In this context, we also mention [11], which
uses persistent homology to reconstruct cycles for image segmentation purposes.
Persistent homology describes the multi-scale connectivity of a complex as defined by
a monotonic ordering of its cells [5]. This paper makes use of both the theory and
the algorithms of persistent homology to construct tri-partitions of the complex and
corresponding bases in homology and cohomology.

The work reported in this paper is directly based on the combinatorial approach to Hodge
theory reported in [7]. Given a monotonic ordering of the cells of a regular complex, it is
proven that there is a unique tri-partition of the set of p-cells, for every dimension p, namely
into a maximal p-tree, a maximal p-cotree, and a remainder whose cardinality is the rank of
the p-th reduced homology group. Importantly, the tri-partition implies canonical bases in
homology and cohomology, and all this information is readily computed by matrix reduction.
Making extensive use of these bases, our main contributions to the state-of-the-art are:

a formulation of hole closing and opening operations that manipulate a complex based
on the persistence diagram of its monotonic ordering;
an expression of the dependences between the holes in terms of a partial order on the
cells the characterizes what is and what is not computable with these operations;
the decoration of the persistence diagram with structural information about the filtration
that goes beyond the pairing of cells.

We have implemented the operations and provide results of preliminary computational
experiments. These include statistics for computing the tri-partition and the canonical bases,
illustrations of the various operations, and a visualization of the dependences between the
holes. With reference to the study of protein structures, we mention one experiment in
which the complex represents the structure of Gramicidin, which is a cell membrane protein
whose channel is surrounded by the alpha helix structure of its backbone. Applying the unfill
operation and disregarding side effects, we get a complex with rank 1 first homology group.
Its tunnel represents the channel. Applying the unlock operation to this complex, the tunnel
is opened by cutting the relatively weaker bonds holding together adjacent rounds of the
helix. Again disregarding side effects, this leaves behind a complex with rank 0 first homology
group that displays the helix structure of the protein. We mention that this outcome is
obtained with just one hole manipulating operation.

Outline. Section 2 provides the background, including the tri-partition of a regular complex
and the corresponding canonical bases in homology and cohomology. Section 3 studies
the dependences between the holes, which Section 4 uses to implement the recursive hole
manipulating operations. Section 5 illustrates the concepts with two case studies. Section 6
quantifies the algorithms with statistics for random points in three dimensions. Section 7
concludes this paper.

2 Background

We will make frequent use of homology and cohomology groups; see [9, 14] for general
background on these topics. For pragmatic reasons, we use Z/2Z coefficients so that cycles
and cocycles can be treated as sets. We represent shapes using regular complexes, which are
easy to define and more general than simplicial complexes. The methods developed in this
paper work for complexes that are more general than regular complexes, but we make no
attempt to determine the limit of applicability.

H. Edelsbrunner and K. Ölsböck 3

Regular complexes. A p-cell is a p-dimensional convex polytope, σ, and we write dim σ = p

for its dimension. Such a polytope is the convex hull of a finite set of points and therefore
closed and bounded. A supporting hyperplane has non-empty intersection with the polytope
and bounds a closed half-space that contains the polytope. A face of σ is the intersection
with a supporting hyperplane; it is a convex polytope of dimension less than p. We call σ a
coface of its faces. A regular complex, K, is a collection of cells that is closed under taking
faces such that the intersection of any two cells is a face of both. By convention, we require
that the empty cell is part of K; its dimension is −1, and it is a face of every cell. A cell is
maximal if it has no proper coface in K. The dimension of K is the maximum dimension of
any of its cells. We write K(p) for the p-skeleton, which contains all cells of dimension at
most p, and Kp = K(p) \K(p−1) for the set of p-cells.

To store a regular complex in the computer, it is common to order the cells — arbitrarily
or otherwise — and to encode the face relation in matrix form. Letting σ0, σ1, . . . , σm be
the ordering, the boundary matrix, ∂[0..m, 0..m], is defined by

∂[i, j] =
{

1 if σi ⊆ σj and dim σi = dim σj − 1,
0 otherwise. (1)

In words, column j of ∂ stores the faces of σj whose dimension is dim σj − 1, and row i

stores the cofaces of σi whose dimension is dim σi + 1. Throughout this paper, we use
monotonic orderings in which every cell is preceded by its faces. The boundary matrix of
a monotonically ordered regular complex is upper-triangular. A filtration of K is a nested
sequence of subcomplexes that ends with K. For example, K0 ⊆ K1 ⊆ . . . ⊆ Km with
K` = {σ0, σ1, . . . , σ`} for every 0 ≤ ` ≤ m is a filtration iff the ordering of the cells is
monotonic.

Homology and cohomology. As mentioned above, we use modulo-2 arithmetic to define
the homology and cohomology groups. A p-chain is a subset of Kp, and the sum of two
p-chains is the symmetric difference between the two subsets. With this operation, the
p-chains form a group, denoted Cp. The boundary operator, ∂p : Cp → Cp−1, maps every p-cell
to the collection of its (p−1)-faces, and it maps every p-chain to the sum of the boundaries of
its p-cells. A p-cycle is a p-chain with empty boundary, and the collection of p-cycles forms a
group, denoted Zp ⊆ Cp. A p-boundary is the boundary of a (p+ 1)-chain, and the collection
of p-boundaries forms again a group, Bp ⊆ Cp. Since the boundary of every boundary is
empty, we have Bp ⊆ Zp ⊆ Cp. Finally, the p-th reduced homology group is H̃p = Zp/Bp, that
is, the partition of Zp in which two p-cycles are equivalent if they differ by a p-boundary. We
recall that reduced homology arises because we have ∅ ∈ K, by assumption, and its main
difference to conventional homology is that the rank of H̃0 is the number of gaps between the
components, while the rank of H0 is the number of components, which exceeds the number of
gaps by one. We write β̃p = rank H̃p, referring to it as the p-th reduced Betti number of K.

Cohomology is in many ways similar or, more accurately, symmetric or complementary.
A p-cochain is just a p-chain, and the groups are also the same, Cp = Cp. The coboundary
operator, δp : Cp → Cp+1, maps every p-cell to its collection of (p+ 1)-cofaces, and it maps
every p-cochain to the sum of the coboundaries of its p-cells. A p-cocycle is a p-chain
with empty coboundary, a p-coboundary is the coboundary of a (p − 1)-cochain, and the
corresponding groups are Bp ⊆ Zp ⊆ Cp. The p-th reduced cohomology group is H̃p = Zp/Bp,
for every dimension p. We write β̃p = rank Hp for its rank.

Tri-partitions. Following [10], we call a p-chain that contains no non-empty p-cycle a p-tree.
To avoid complicated terminology, we do not insist that a p-tree be connected. A p-tree is

4 Holes and Dependences in an Ordered Complex

maximal if no p-tree of the same complex properly contains it. For example, every spanning
tree of a connected graph is a maximal 1-tree, and every spanning forest of a not necessarily
connected graph is a 1-tree. Similarly, we call a p-cochain that contains no non-empty
p-cocycle a p-cotree. A p-cotree is maximal if no p-cotree of the same complex properly
contains it. Hodge theory implies the following generalization of the tri-partition of a graph
embedded on a closed surface proved in [15]. We state the result in the terminology of [7].

I Proposition 1 (Tri-partition). Let K be a regular complex. Then there are tri-partitions
AptAptEp = Kp, for every dimension p, such that Ap is a maximal p-tree, Ap is a maximal
p-cotree, and |Ep| = β̃p.

The p-cells in Ep form a compact representation of the p-th reduced homology of K:
there are β̃p p-cycles that span H̃p such that each of these cycles contains exactly one of the
cells in Ep and each cell in Ep belongs to exactly one of these cycles. The tri-partition whose
existence is asserted by Proposition 1 is generally not unique. However, given a monotonic
ordering of the cells, we can use matrix reduction to construct a unique tri-partition.

Canonical bases. Rather than in the tri-partition itself, we are interested in the bases
it defines. For example, for each σj ∈ Ap t Ep, there is a unique non-empty p-cycle
zp(j) ⊆ Ap ∪ {σj}, which we refer to as the canonical p-cycle of σj . In contrast, for each
σj ∈ Ap, there is a unique sum of canonical (p−1)-cycles that bound in Kj = {σ0, σ1, . . . , σj}
but not in Kj−1, and we refer to the unique p-chain cp(j) ⊆ Ap whose boundary is this
sum as the canonical p-chain of σj . Symmetrically, for each σi ∈ Ap t Ep, there is a unique
non-empty p-cocycle zp(i) ⊆ Ap t {σi}, which we refer to as the canonical p-cocycle of σi.
Furthermore, for each σi ∈ Ap, there is a unique sum of canonical (p + 1)-cocycles that
cobound in K \Ki but not in K \Ki−1, and we refer to the unique p-cochain cp(i) ⊆ Ap

whose coboundary is this sum as the canonical p-cochain of σi. As proved in [7], these vectors
form bases in homology and cohomology.

I Proposition 2 (Canonical Bases). Assume a monotonic ordering of a regular complex, K,
and let Kp = Ap tAp t Ep be the corresponding tri-partition in dimension p. Then
{zp(j) | σj ∈ Ap t Ep} is a basis of Zp.
{zp(j) | σj ∈ Ep} generates a basis of H̃p.
{∂cp(j) | σj ∈ Ap} is a basis of Bp−1.
{zp(i) | σi ∈ Ap t Ep} is a basis of Zp.
{zp(i) | σi ∈ Ep} generates a basis of H̃p.
{∂cp(i) | σi ∈ Ap} is a basis of Bp+1.

As explained in [7], the canonical cycles and chains can be computed by column reduction,
and the canonical cocycles and cochains can be computed by row reduction of the boundary
matrix.

3 Dependence Structure

Prior to introducing the operations that manipulate the hole system in a complex, we study
the dependences between holes. Expressing them as ordered pairs over the cells, we obtain a
partial order whose linear extensions describe the flexibility in manipulating the hole system
without side effects.

Persistence in a filtration. Our method is best described by first introducing the per-
sistence diagram of a monotonic ordering of the cells, σ0, σ1, . . . , σm. We write ι0 : 0 < 1 <

H. Edelsbrunner and K. Ölsböck 5

. . . < m for the corresponding ordering of the indices, and K` = {σ0, σ1, . . . , σ`} for the `-th
complex in the corresponding filtration. Two indices i < j are the coordinates of a point
in the persistence diagram, denoted (i, j) ∈ Dgm(ι0), if adding σi to Ki−1 gives birth to a
homology class in Ki, and adding σj to Kj−1 gives death to this very class in Kj ; see [5]
for the algebraic details of this definition. The persistence of this class is j − i, which is the
vertical distance between the point and the diagonal. If dim σi = p, then dim σj = p + 1,
and the mentioned homology class is generated by a p-cycle. It is also possible that σi gives
birth to a class that stays alive throughout the remainder of the filtration. In this case,
(i,∞) ∈ Dgm(ι0), and the persistence of the corresponding essential homology class is ∞.
Besides Dgm(ι0), which is a multiset of points, we introduce the p-dimensional persistence
diagram, denoted Dgmp(ι0), which is the sub-multiset of points that mark the birth and
death of classes generated by p-cycles. Importantly, the Betti numbers of all complexes in
the filtration can be recovered from these diagrams [5, page 152].

I Proposition 3 (Quadrants and Ranks). For every 0 ≤ ` ≤ m and every dimension p, the
p-th Betti number of K` is the number of points (i, j) ∈ Dgmp(K) that satisfy i ≤ ` < j.

In words, we get the p-th Betti number of K` by counting the points of Dgmp(K) in the
upper left quadrant anchored at the point (`, `) on the diagonal. This quadrant is closed
along its right and open along its lower border. We will interpret the opening and closing of
holes in K` as distortions of the quadrant; see Figure 1.

Birth

F
i
l
l

U
n
f
i
l
l

Lock

Unlock

D
e
a
th

(`, `)

Figure 1 A distorted upper left quadrant in the persistence diagram. The lock and unlock
operations have the effect of advancing or delaying the birth, and the fill and unfill operations have
the effect of advancing or delaying the death.

Reduction and dependence. To capture the dependences between the homology classes
in a filtration, we will refer to details in the reduced matrix computed to derive the persistence
diagram and the bases mentioned in the previous section. Let ∂ be the boundary matrix
with rows and columns ordered according to ι0, and let R be obtained from ∂ by applying
a sequence of left-to-right column additions. For each 0 ≤ j ≤ m, we write low(j) for the
row of the lowest non-zero entry in column j, and we set low(j) = −∞ if the entire column
is 0. We call R left-to-right reduced if low(j) 6= low(k) for all non-zero columns j 6= k in R.
The standard column reduction algorithm in persistent homology [5, Chapter VII] produces
such a matrix. After initializing the matrices R,U,C to the boundary matrix, the identity
matrix, and the zero matrix, the algorithm maintains R = ∂U while reducing R and using C
for book-keeping purposes:

6 Holes and Dependences in an Ordered Complex

1 R = ∂; U = Id; C = 0;
2 for j = 0 to m do
3 while ∃0 ≤ ` < j with low(`) = low(j) > −∞ do
4 R[., j] = R[., j] +R[., `];
5 U [., j] = U [., j] + U [., `];
6 C[`, j] = C[`, j] + 1 (mod 2).

Line 4 performs a column addition, line 5 maintains R = ∂U , and line 6 records the operation
for later reference. Instead of the standard method, we could also use the exhaustive column
reduction algorithm [8], whose only difference is in the condition that controls the while loop,
substituting “R[low(`), j] 6= 0” for “low(`) = low(j) > −∞”. As suggested by the name,
the exhaustive reduction algorithm keeps reducing column j even after low(j) has been
established, which is when the standard reduction algorithm moves on to the next column.
While the two algorithms may compute different matrices R, they are both reduced, the
same columns are zero and non-zero, and the non-zero columns have their lowest non-zero
entries in the same rows [1]. However, the canonical bases might differ.

We fix the reduced matrix R and use it as a starting point to construct five maps
that capture different types of dependences between the homology classes. The goal is
to distinguish the ordered pairs that are necessary to keep R reduced from the others,
which can be swapped without affecting R. Writing [m] = {0, 1, . . . ,m}, we introduce maps
X : [m]→ 2[m] with X ∈ {δ,BD,DB,BB,DD}, and to define these maps, we write (bi, di) for
the unique point in Dgm(ι0) for which either bi = i or di = i:

δ(i) = {j | σi ⊆ σj and dim σj = dim σi + 1}; (2)
BD(i) = {j | (i, j) ∈ Dgm(ι0)}; (3)
DB(i) = {j | i = di < j = bj and (C[i, j] = 1 or R[i, dj] = 1)}; (4)
BB(i) = {j | i = bi < j = bj and R[i, dj] = 1}; (5)
DD(i) = {j | i = di < j = dj and C[i, j] = 1}. (6)

In the reverse direction, we define XT (j) = {i | j ∈ X(i)} for each X. For example, δ maps a
cell to its cofaces of one dimension higher, so its inverse, ∂ = δT , maps a cell to its faces of
one dimension lower. Note that each of the last three maps can be unambiguously drawn as
a collection of arrows connecting points of the persistence diagram because the map specifies
which coordinates of the endpoints the arrow connects.

Partial order. We summarize all five maps in a partial order, P, which we refer to as
the dependence structure of ι0, or more precisely of a left-to-right reduced boundary matrix
computed as explained above. Specifically, P is the transitive closure of the collection of
pairs i < j such that j ∈ X(i) for at least one X ∈ {δ,BD,DB,BB,DD}. For a permutation ι
of ι0, let R(ι) be the matrix R after reordering the columns and rows according to ι. Among
other things, we prove that R(ι) is left-to-right reduced for all linear extensions ι of P.

I Theorem 4 (Necessity and Sufficiency). Let R be a left-to-right reduced version of the
boundary matrix, The corresponding dependence structure, P ⊆ [m]2, is the smallest partial
order on [m] with linear extension ι0 such that every linear extension ι of P satisfies

ι corresponds to a monotonic ordering of the cells;
R(ι) is left-to-right reduced;
the pairing defined by R(ι) is the same as that of R(ι0).

Proof. We first prove that P is sufficient to satisfy the three claimed properties. Given two
orderings, ι0 and ι, an inversion is a pair of indices i, j that are ordered differently in ι0

H. Edelsbrunner and K. Ölsböck 7

and in ι. Let N be the number of inversions, which we interpret as the distance from ι0
to ι. An elementary transposition swaps two adjacent items, and if these items define an
inversion, then the transposition decreases N by 1. It is easy to see that there is a sequence
of N elementary transpositions that transforms ι0 to ι, and none of these transpositions
violates the monotonicity of the ordering since σi ⊆ σj implies that i, j is not an inversion.
An elementary transposition in the sequence translates to swapping the two corresponding
columns and the two corresponding rows in the boundary matrix. We swap these columns
and rows in the reduced version of the boundary matrix and argue that this preserves the
three claimed properties. We distinguish between four cases depending on whether σi and
σj give birth or death; see Figure 2.

)
)

[
[)

)[
[

)[
)[)

)[
[

i j dibj

i
j

i j djbi

j
i

dii j dj

j
i

bj bi ji

i
j

bi

bj

dj

didj

bibj

di

Figure 2 Swapping the adjacent columns i and j and the corresponding adjacent rows. First
panel: the birth-death case with low(di) = i and low(j) = bj marked and the corresponding intervals
shown. Next three panels: the death-birth case, the birth-birth case, and death-death case.

Case BD: σi gives birth and σj gives death. Since i, j is an inversion, we have j 6∈ BD(i),
which implies that (i, j) is not a point in Dgm(ι0). The matrix remains left-to-right reduced
and the pairing stays the same after swapping the columns because column i is 0, and after
swapping the rows because row j does not contain the lowest non-zero entry of any column.

Case DB: σi gives death and σj gives birth. To swap the corresponding columns, we
need that column i had no role in reducing column j to 0, and this is guaranteed because
j 6∈ DB(i) implies C[i, j] = 0. To also swap the corresponding rows, we need the entry in row
i and column dj be 0, and this is guaranteed because j 6∈ DB(i) implies R[i, dj] = 0.

Case BB: both σi and σj give birth. Their columns are 0 and can therefore be swapped
without trouble. Swapping the rows is more delicate, and we first consider the case dj < di
illustrated in the third panel of Figure 2. We need the entry in row i and column dj be
0, but this is guaranteed by j 6∈ BB(i). We second consider the case di < dj , which is not
shown in the figure. Because of j 6∈ BB(i), the entry right above low(dj) is 0, so swapping
the rows preserves the pairing and the matrix to be left-to-right reduced.

Case DD: both σi and σj give death. Since j 6∈ DD(i), we can swap their columns while
preserving the pairing and keeping the matrix left-to-right reduced. This holds both in the
case bj < bi, which is illustrated in the fourth panel of Figure 2, and in the case bi < bj ,
which is not shown. Swapping the rows causes no complications because they do not contain
the lowest non-zero entry of any column.

We second prove that P is necessary to satisfy the three claimed properties, by which
we mean that every properly contained partial order has linear extensions that violates at
least one of these properties. Letting P1 ⊆ P be properly contained, then there exists a
pair (i, j) ∈ P \ P1 that is not derived by transitivity from other pairs in P . Hence, j ∈ X(i)
for at least one X ∈ {δ,BD,DB,BB,DD}. Letting ι1 be a linear extension of P1 with j < i,
every sequence of elementary transpositions that changes ι0 to ι1 contains one that swaps
i with j. Let R′ and R′′ be the matrix R right before and right after swapping columns

8 Holes and Dependences in an Ordered Complex

i, j and rows i, j. We can assume that before the transposition of i with j, all claimed
properties are satisfied. Since (i, j) ∈ P , this implies that after the transposition at least one
of the properties is violated. Indeed, if j ∈ δ(i), then the ordering is no longer monotonic, if
j ∈ BD(i), then the pairing changes, if C[i, j] = 1, then R′′ requires a right-to-left column
addition, and if R[i, dj] = 1, then the pairing represented by R′′ is different from that of
R = R(ι0). Either way, P1 violates at least one of the three properties we require from its
linear extensions. J

4 Operations

Intuitively, we open holes by removing basis vectors in cohomology and close holes by adding
basis vectors in homology. The dependences between the holes determine the range of
complexes that can be computed by these operations, namely exactly all complexes in the
filtrations defined by linear extensions of the partial order introduced in Section 3.

Opening and closing holes. We consider four types of operations, which are motivated
by the fate of a p-dimensional hole in a filtration — or more precisely, of the corresponding
homology class, which is generated by a p-cycle: it is born when the last p-cell completes
the cycle, and it dies when the last (p+ 1)-cell completes the chain that makes the p-cycle
homologous to an older p-cycle. This includes the case when the p-cycle becomes trivial.
Similar to birth and death, we lock by completing a p-cycle and we fill by completing a
(p+ 1)-chain. Going backward, we unfill by puncturing the (p+ 1)-chain, and we unlock by
disconnecting the p-cycle; see Figure 3 for the case p = 1. We have such an operation for each
dimension, which we indicate by writing Lockp, Fillp, Unfillp, Unlockp. Locally, there is
no difference between Lockp and Fillp−1, but while the latter closes a (p− 1)-dimensional
hole, the former operation closes the last remaining entrance into a p-dimensional hole, which
it thus creates. Since Unlockp and Unfillp are the inverses of Lockp and Fillp, we see that
we are really dealing with four views of one and the same operation, which of course has an
instantiation in every dimension.

Fill1Lock1

Unlock1 Unfill1

Figure 3 A p-cycle can be created by adding a p-dimensional piece (lock) or by removing a (p+1)-
dimensional piece (unfill). Symmetrically, a p-cycle can be destroyed by removing a p-dimensional
piece (unlock) or by adding a (p+ 1)-dimensional piece (fill).

The difference between birth and death and the four operations is that the latter are less
local. This is best illustrated for Unfillp, whose goal is to resurrect a p-cycle from the dead.
It could be that after the death of this p-cycle, several more (p+ 1)-chains were added that
would have closed the p-cycle if it were still alive. Instead, these (p+ 1)-cells gave rise to
(p+ 1)-cycles. If we now puncture only the original (p+ 1)-chain, we kill such a (p+ 1)-cycle
instead of resurrecting the p-cycle. In order to reach its goal, Unfillp must first unlock all
(p+ 1)-cycles that prevent the resurrection and finally puncture the original (p+ 1)-chain.
There are additional dependences, which will be part of the formal description of the four
operations.

H. Edelsbrunner and K. Ölsböck 9

Recursive implementation. Given a point, A, in the persistence diagram, we write bA for
the first and dA for the second coordinate, which we recall are indices of cells. We write xA if
it is not clear which of the two coordinates it is. We now explain how we implement the four
operations. To this end, we introduce the status, which maps each point A ∈ Dgm(ι0) to one
of three attributes, which for M = K` is the future if ` < bA, the presence if bA ≤ ` < dA,
and the past if dA ≤ `. After manipulating the complex, the status of a point or hole depends
on the operations. The first two advance the status of a point, they use the dependence
relations from right to left, and we apply them to a point we call B = (bB , dB). The second
two operations delay the status of a point, they use the relations from left to right, and we
apply them to a point we call A = (bA, dA). The lock operation creates a hole by adding the
cell that gives birth to the corresponding homology class. More accurately, it fills and locks
holes defined by faces of the cell (lines 2 and 3), it adds the entire cycle defined by the cell
(line 4), and it fills and locks holes defined by other dependent cells (lines 4 and 5). With
similar actions, the second operation removes a hole by filling it with the chain defined by
the cell that gives death to the corresponding homology class.

1 Lockp(bB): if B in future then
2 for xA ∈ ∂(bB) do if xA = bA then M = Lockp−1(bA)
3 elseif xA = dA then M = Fillp−2(dA);
4 for dA ∈ DBT (bB) do M = Fillp−1(dA);
5 for bA ∈ BBT (bB) do M = Lockp(bA);
6 return M ∪ {σbB

} with B in presence.

1 Fillp(dB): if B not in past then
2 for xA ∈ ∂(dB) do if xA = bA then M = Lockp(bA)
3 elseif xA = dA then M = Fillp−1(dA);
4 for dA ∈ DDT (dB) do M = Fillp(dA);
5 if B in future then M = Lockp(bB);
6 return M ∪ {σdB

} with B in past.

To prove that the two operations avoid infinite loops, we note that each recursive call
decreases the parameter, which for Lockp is the index of the cell that gives birth, and for
Fillp is the index of the cell that gives death. The second two operations operations delay
the birth or death by removing cells:

1 Unlockp(bA): if A not in future then
2 for xB ∈ δ(bA) do if xB = bB then M = Unlockp+1(bB)
3 elseif xB = dB then M = Unfillp(dB);
4 for bB ∈ BB(bA) do M = Unlockp(bB);
5 if A in past then M = Unfillp(dA);
6 return M \ {σbA

} with A in future.

1 Unfillp(dA): if A in past then
2 for xB ∈ δ(dA) do if xB = bB then M = Unlockp+2(bB)
3 elseif xB = dB then M = Unfillp+1(dB);
4 for bB ∈ DB(dA) do M = Unlockp+1(bB);
5 for dB ∈ DD(dA) do M = Unfillp(dB);
6 return M \ {σdA

} with A in presence.

To prove that the two operations avoid infinite loops, we note that each recursive call increases

10 Holes and Dependences in an Ordered Complex

the parameter, which for Unlockp is the index of the cell that gives birth, and for Unfillp is
the index of the cell that gives death.

Observe that a complex K` in the filtration of ι0 contains exactly those cells of K that
give birth and death to holes represented by points in the past plus those that give birth
to holes represented by points in the presence. This relation is maintained by the four
operations; that is: M consists of all cells of K whose index is a coordinate of a point in the
past or the first coordinate of a point in the presence.

Status and ordering. In contrast to the vineyard algorithm in [1], our four operations
do not maintain an ordering of the cells that is compatible with the constructed complex.
Instead, they maintain the status of the points in the persistence diagram. We call a status
consistent with the dependence structure, if the following conditions are satisfied for any two
points A = (bA, dA) and B = (bB , dB) in Dgm(ι0):

(bA, dB) ∈ P =⇒ [A is in the future ⇒ B is not in the past]; (7)
(dA, bB) ∈ P =⇒ [A is not in the past ⇒ B is in the future]; (8)
(bA, bB) ∈ P =⇒ [A is in the future ⇒ B is in the future]; (9)
(dA, dB) ∈ P =⇒ [A is not in the past ⇒ B is not in the past]. (10)

It is not difficult to see that the status defined for K` is consistent with P. We claim that
the hole manipulating operations preserve consistency.

I Lemma 5 (Consistency of Status). Let M be obtained by executing a finite sequence of hole
manipulating operations starting with K`. Then the status of M is consistent with P.

Proof. We prove the claim by induction. Assuming conditions (7) to (10) of the definition
of consistency are satisfied before an operation, we show that they are also satisfied after
the operation. There are four operations to be considered, but because the arguments are
almost the same in all cases, we focus on locking.

Lockp(bB). When we lock B, its status changes from the future to the presence. A point
A = (bA, dA) is affected by this status change only if dA < bB or bA < bB in P . We see that
(8) and (9) are relevant. Since B is no longer in the future, A must move to the past in the
first case and out of the future in the second case. The operation does exactly that: lines 2
and 3 adjust the faces, line 4 adjusts the points with a relation captured by (8), and line 5
adjusts the points with a relation captured by (9). Line 6 finally changes the status of B.
Together, lines 2 to 6 capture all points with dependences expressed in P. J

We show that the consistency of the status implies the existence of a linear extension of
the partial order such that M belongs to the filtration of this monotonic ordering.

I Lemma 6 (Existence of Linear Extension). Let M be a subcomplex of K whose status is
consistent with the dependence structure. Then there exists a linear extension, ι, of P and
an index, k ∈ [0,m], such that M is the k-th complex in the filtration of ι.

Proof. Recall that M ⊆ K contains every cell whose index is a coordinate of a point in the
past or the first coordinate of a point in the presence. Hence, N = K \M contains every cell
whose index is a coordinate of a point in the future or the second coordinate of a point in the
presence. We claim there is a linear extension ι = ιM ιN of P such that i ∈ ιM iff σi ∈ M
and j ∈ ιN iff σj ∈ N . To prove this, it suffices to show that all pairs in P that go between
M and N go in fact from M to N . Indeed, in this case we let ιM and ιN be arbitrary linear

H. Edelsbrunner and K. Ölsböck 11

extensions of P restricted to M and to N , and we get ι = ιM ιN as a linear extension of P.
To get a contradiction, assume there is a pair (j, i) ∈ P with j = xA ∈ ιN and i = xB ∈ ιM .

Case j = bA, i = dB. Since the index of every cell in N is a coordinate of a point in the
future or the second coordinate of a point in the presence, A must be in the future. Similarly,
since the index of every cell in M is a coordinate of a point in the past or the first coordinate
of a point in the presence, B must be in the past. But this contradicts condition (7) in the
definition of a consistent status.

Case j = dA, i = bB. A cannot be in the past and B cannot be in the future, which
contradicts (8).

Case j = bA, i = bB. A must be in the future and B cannot be in the future, which
contradicts (9).

Case j = dA, i = dB. A cannot be in the past and B must be in the past, which
contradicts (10).

We conclude that ι = ιM ιN is a linear extension of P . Setting k = |M |, this implies that
M is the k-th complex in the corresponding filtration. J

By Lemma 6, every complex that can be constructed by a sequence of hole manipulating
operations from an initial complex in the filtration of ι0 belongs to the filtration of a linear
extension of P. Conversely, given a complex, M , in the filtration of a linear extension of P,
it is possible to design a sequence of operations that constructs M from an initial complex in
the filtration of ι0. To this end, we adjust the status of every point in the persistence diagram
using the appropriate operation, if needed. Hence, the dependence structure describes
precisely what can and what cannot be constructed within this framework. Write K(P) for
the set of complexes in the filtrations defined by linear extensions.

I Corollary 7 (Power and Limitation). A complex M is constructible by a finite sequence of
hole manipulating operations applied to a complex in the filtration of ι0 iff M ∈ K(P).

5 Case Studies

In this section, we illustrate the results of the hole manipulating operations on Alpha shapes
as defined in [6]. We begin with the formal introduction of this shape representation, and
follow up with concrete examples that demonstrate the utility of the operations.

Alpha shapes. Let X ⊆ Rd be finite and in general position. The Voronoi domain
of a point x ∈ X is the region of points, denoted dom(x) ⊆ Rd, that are at least as
close to x as to any other point y ∈ X. The Voronoi tessellation is the set of domains,
Vor(X) = {dom(x) | x ∈ X}. The Delaunay mosaic or Delaunay triangulation is isomorphic
to the nerve of the tessellation, Del(X) = {σ ⊆ X |

⋂
x∈σ dom(x) 6= ∅}, where we adopt the

convention from combinatorial topology and identify a set of points, σ, with its convex hull.
Assuming general position, Vor(X) is a primitive decomposition of Rd into convex polyhedra,
and Del(X) is the geometric realization of a simplicial complex in Rd.

For r ≥ 0, write Br(x) for the closed ball with center x ∈ X and radius r, and define
domr(x) = dom(x) ∩ Br(x). It is not difficult to see that these restricted domains form
a convex decomposition of the union of balls:

⋃
x∈X Br(x) =

⋃
x∈X domr(x). The Alpha

complex of X for radius r is the geometric realization of the nerve of the restricted domains:

Alphar(X) = {σ ⊆ X |
⋂

x∈σ
domr(x) 6= ∅}. (11)

It is a subcomplex of the Delaunay mosaic, and it has the same homotopy type as the union
of balls [5]. The Alpha shape is the underlying space of the Alpha complex, namely the set

12 Holes and Dependences in an Ordered Complex

of points in Rd covered by at least one simplex in Alphar(X). It is convenient to introduce
the function f : Del(X) → R that is defined such that f−1[−∞, r] = Alphar(X) for every
r ∈ R. We call f the radius function of the Delaunay mosaic, and we note that it maps every
simplex to the radius of the smallest sphere that passes through the vertices of the simplex
so that no point of X is contained in the open ball bounded by the sphere. Traditionally,
this is called the smallest empty circumsphere of the simplex. We have f(σ) = 0 for every
vertex, and f(∅) = −∞, by convention.

The radius function implies a partial order on the simplices, which we extend to a total
order by breaking ties in favor of lower-dimensional simplices, while breaking any remaining
ties arbitrarily. In other words, we order the simplices of Del(X) as σ0, σ1, . . . , σm such
that 0 ≤ i ≤ j ≤ m implies f(σi) < f(σj) or f(σi) = f(σj) and dim σi ≤ dim σj . This is a
monotonically ordered simplicial complex to which the operations described in Section 4 can
be applied.

Case study in R2. For illustrative purposes, we start with a 2-dimensional example of
1 000 points sampled from the drawing of a flower; see Figure 4 with panels (a) to (i). The
data set is shown in (a), and the Delaunay mosaic — which we recall consists of all triangles
whose circumcircles do not enclose any of the points — is shown in (b).

The next four panels illustrate the operations with one example each. In R2, we only have
cycles of dimension 0 and 1, and because the latter are more interesting, all four examples are
for 1-dimensional homology, which is indicated by the index of the operation. In panel (c),
we start with the Alpha complex for r = 0.0 and lock the six 1-cycles of largest persistence.
The result is a 1-dimensional complex with six loops. If we think of the data as a noisy
sample of a line drawing, this could serve as a reconstruction while preserving the homotopy
type. Note, however, the extra edges caused by the dependence structure in homology that
are attached to the six 1-cycles. Comparing the result with the Alpha complex for r = 25.0,
which has the same six holes, we observe that only a few of the edges and none of the
triangles are forced by the dependence structure and therefore appear in the reconstruction
in (c). Starting with the Alpha complex for r = 25.0, we show the result of filling the most
persistent, inner hole in panel (d), and the result of unlocking the corresponding 1-cycle in
panel (e). Observe that the unlocking operation recursively unlocks two of the five petals as
well in order to connect the inner hole with the outside. In contrast, the unfill operation
applied to the entire Delaunay mosaic in (f) removes a single triangle and there are no side
effects caused by the dependence structure.

The persistence diagram of the radius function guides the application of the hole manipu-
lating operations. Panel (g) shows the diagram for the 1 000 points example, using orange for
the points that represent 0-cycles and blue for the points that represent 1-cycles. Encoding
the status by drawing filled, unfilled, and dashed circles for holes in the past, presence, and
future, we see the diagram for r = 25.0. Indeed, there are 6 holes in the Alpha complex,
which correspond to the 6 points in the shaded upper-left quadrant. They are drawn as
unfilled circles, while the points below the quadrant are drawn as filled circles, and the points
to the right of the quadrant are drawn as dashed circles. In (h), we highlight the point with
maximum persistence, which we select for unlocking, and we show the points of all dependent
cells. The unlock operation moves all these point into the future unless they are already
there; see panel (i) and compare it with the diagrams in panels (g) and (h).

Case study in R3. We study the effects of the hole manipulating operations on the Alpha
shapes of Gramicidin A. This is a small protein that acts as an ion channel embedded in a
cell membranes, which explains the tunnel alongside the structure. We get the coordinates

H. Edelsbrunner and K. Ölsböck 13

(a) Data set. (b) Delaunay mosaic. (c) Lock1 at r = 0.0.

(d) Fill1 at r = 25.0. (e) Unlock1 at r = 25.0. (f) Unfill1 at r =∞.

(g) Persistence diagram. (h) Dependences for Unlock1. (i) Result for Unlock1.

Figure 4 (a) The data set in R2, and (b) its Delaunay mosaic. Panels (c), (d), (e), (f) show the
results of a lock, fill, unlock, unfill operation, each applied to an Alpha complex of the data set.
The last three panels show the persistence diagram of the radius function in (g), the dependences
encountered by the unlock operation in (h), and the resulting persistence diagram in (i).

of its atom centers from the Protein Data Base (PDB) and construct Alpha complexes based
on this point set. Figure 5 shows two of the Alpha shapes as well as the persistence diagram
of the radius function. We observe that one point is significantly more persistent than the
others; it corresponds to the ion channel of the protein.

We use the operations to manipulate the 1-cycle of highest persistence, which corresponds
to the functional channel of the protein, and the 2-cycle of highest persistence, which encloses
most of the volume defining the channel, as we will see shortly; see Figure 6 with panes (a)
to (i). Locking the 1-cycle at r = 0.0 in panel (a) effectively adds the canonical 1-cycle of the
birth edge. In addition, the operation adds a small number of other edges that are forced

14 Holes and Dependences in an Ordered Complex

(a) Alpha shape at r = 0.93. (b) Persistence diagram. (c) Alpha shape at r = 2.35.

Figure 5 Alpha shapes and persistence diagram of Gramicidin A. Triangles with no incident
tetrahedra are drawn in pale blue, while the others are drawn in darker blue, with the shade
depending on the normal vector. The high persistent tunnel is born at r = 0.93 and is the only hole
of the Alpha complex at r = 2.35. The persistence diagram uses orange for 0-cycles, blue for 1-cycles,
and green for 2-cycles. The holes of the Alpha complexes at r = 0.93 and r = 2.35 are highlighted
by showing the corresponding quadrants anchored on the diagonal. In the quadrant for r = 0.93,
we seem to see only two points, but they are both of non-trivial multiplicity and correspond to the
pentagons and hexagons of the Alpha shape in (a).

by the dependence structure. The canonical cycle moves from the future to the presence,
while the additional edges give death to 0-cycles, which move from the presence to the past.
Locking the 2-cycle at r = 0.0 in panel (c), we see that it encloses a good portion of the
tunnel, which implies that the narrow openings of the tunnel are located near its opposite
ends. Filling the 1-cycle at r = 0.93 in panels (d) and (f) results in almost the same surface,
except that it remains open at one end and therefore does not enclose any volume. Unlocking
the maximum persistence 1-cycle at r = 2.35 in (g) gives a surprising result: instead of slicing
open the cylinder with a straight cut along one side, we see a spiral cut that leaves a spiraling
tube revealing the helix structure of the protein. Indeed, the connections are weaker and
the distances are larger between contiguous 360◦ turns of the helix than along the helix, so
cutting there is the action of least effort that achieves the desired result. On the other hand,
unfilling the same 1-cycle at r = 3.10 in (i) carves out a narrow tunnel that passes through
the protein. The operation resurrects this tunnel by moving the corresponding 1-cycle from
the past back to the presence. It opens a few additional tunnels as side effects caused by the
dependence structure.

6 Statistics

This section presents statistics about the sizes of the structures relevant for the hole ma-
nipulating operations. We have C++ implementations in 2 and 3 dimensions using the
CGAL-library [2] for geometric computations, and collect data for random point sets gener-
ated according to the Poisson point process. We only show results for the more important
3-dimensional case. We perform Experiments I, II, and III for an expected number of 125,
512, and 1000 points in [0, 1]3, respectively, averaging the results over 100 runs each. We
begin with the size of the simplicial complex, which in our case is the Delaunay mosaic of
the points; see Table 1. Since the Delaunay mosaic is necessarily acyclic, the numbers of
simplices determine the sizes of the components of the tri-partition discussed in Section 2.

H. Edelsbrunner and K. Ölsböck 15

p = −1 0 1 2 3 total
Experiment I 1.0 124.1 817.7 1 357.6 663.1 2 963.5
Experiment II 1.0 510.8 3 699.5 6 323.5 3 133.9 13 668.7
Experiment III 1.0 998.4 7 397.6 12 730.7 6 330.5 27 458.3

Table 1 Average numbers of simplices in the Delaunay mosaic of a Poisson point process in the
unit cube.

Densities of matrices. We compute the dependence structure defined in Section 3 with
the exhaustive reduction algorithm. In comparison to the standard reduction algorithm, it
produces denser matrices R and U but performs fewer column additions. Comparing the
density of C for the standard and the exhaustive column reduction algorithms in Table 2,
we see that the latter uses only about half the number of column additions. Perhaps this is
because the extra time invested in properly reducing early columns pays off later, when these
columns are used to reduce later columns. The difference between standard and exhaustive
reduction is even more pronounced when we work with rows rather than with columns.

Experiment I Experiment II Experiment III
std exh std exh std exh

density of R 0.061 0.159 0.014 0.046 0.007 0.026
density of U 0.203 0.336 0.065 0.124 0.039 0.078
density of C 0.118 0.076 0.032 0.018 0.017 0.009
density of Q 0.093 0.135 0.022 0.036 0.011 0.019
density of V 0.203 0.308 0.065 0.107 0.039 0.065
density of D 0.142 0.044 0.043 0.010 0.024 0.005

Table 2 Comparison between the standard reduction algorithm and the exhaustive reduction
algorithm for random points in [0, 1]3. We quantify the density of a matrix as the percentage of
non-zero elements. Upper half: matrices computed by column reduction. Lower half: matrices
computed by row reduction, in which Q corresponds to R, V to U , and D to C.

The densities of the matrices have a direct influence on the number of pairs that make up
the dependence structure. Focusing on the dependence structure for homology, U stores the
canonical cycles and chains that are used to close holes, and C stores the same information
in hierarchical form. The canonical cocycles and cochains that are used to open holes are
stored in V , but since the dependence structure is built from the column and not the row
reduced matrices, they are replaced by functionally equivalent information.

Number of dependences. The total number of dependences is roughly an order of
magnitude larger than the number of simplices. Specifically, we have about 26, 145, and
318 thousand dependences on average in Experiments I, II, and III, and a comparison with
Table 1 shows that this is about ten times the total number of simplices in the mosaics. We
provide detailed quantitative information in Table 3, which differentiates between types and
dimensions. More precisely, for each type, dimension, and experiment, Table 3 gives the
average number of pairs of the given type that originate from a simplex of the given dimension.
Some of these numbers do not depend on the sampled points, such as the dependences of
type BD, of which there is exactly one per simplex (counting the pair twice, once in forward
direction and once in backward direction), and the face pairs, of which there are exactly p+ 1
for each p-simplex. Because of symmetry, we get the same total number of pairs in forward
and in backward direction. Since pairs go from left to right and lower-dimensional cell tend to
precede higher-dimensional cells in this order, it is not surprising that the average out-degree
in the forward direction is higher for lower dimensions and in the backward direction is higher
for higher dimensions. Note that there is exactly one vertex that gives death, and this vertex
accumulates the largest number of dependences of type DB.

16 Holes and Dependences in an Ordered Complex

Experiment I Experiment II Experiment III
0 1 2 3 0 1 2 3 0 1 2 3

δ birth 13.2 4.8 1.9 - 14.5 4.9 2.0 - 14.8 4.9 2.0 -
BD 1.0 1.0 1.0 - 1.0 1.0 1.0 - 1.0 1.0 1.0 -
BB 0.9 0.2 0.0 - 0.9 0.3 0.1 - 0.9 0.3 0.1 -
δ death 13.2 6.2 2.0 0.0 13.8 6.5 2.0 0.0 14.8 6.6 2.0 0.0
DB 123.1 55.4 10.2 0.0 509.8 87.8 13.7 0.0 997.4 104.8 15.3 0.0
DD 0.0 1.2 1.4 0.9 0.0 1.3 1.5 1.0 0.0 1.3 1.6 1.0
total 16.0 14.5 8.4 0.9 17.4 18.5 10.2 1.0 17.7 20.6 11.0 1.0
∂ birth 1.0 2.0 3.0 - 1.0 2.0 3.0 - 1.0 2.0 3.0 -
DBT 1.0 9.8 10.7 - 1.0 14.0 14.0 - 1.0 16.3 15.5 -
BBT 0.9 0.2 0.0 - 0.9 0.3 0.1 - 0.9 0.3 0.1 -
∂ death 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0
BDT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
DDT 0.0 1.2 1.4 0.9 0.0 1.3 1.5 1.0 0.0 1.3 1.6 1.0
total 2.8 10.8 9.5 5.9 2.9 14.6 11.2 6.0 2.9 16.7 12.0 6.0

Table 3 Average number of dependences of different types originating from a p-simplex. Upper
half: to capture the pairs relevant for locking and filling, we count the dependences in forward
direction, distinguishing the ones that originate from birth-giving and from death-giving simplices.
Lower half: to capture the pairs relevant for unlocking and unfilling, we count the dependences
in backward direction, distinguishing again the ones that originate from birth-giving and from
death-giving simplices.

We observe that the numbers barely change between experiments, which suggests that
they are primarily local. The numbers we get for the Gramicidin data are very similar to
those in Table 3.

Size of operations. Recall that the operations open and close holes by recursive compu-
tation. Rather than just the pairs originating from the simplex to which the operation is
applied, we need the entire emanating paths to understand the action taken by an operation.
Consider for example the lock operation applied to σi. By design, the algorithm adds the
missing simplices in the canonical cycle defined by σi. Rather than fetching these simplices
from the matrix U , which stores the canonical cycle in column i, the algorithm finds the
missing simplices by following paths in P . Generally these paths contain more simplices than
just those in the canonical cycle. The same can be said about filling, and the situation is
similar but not entirely symmetric for unlocking and unfilling, which replace the removal
of the canonical cocycles and cochains by functionally equivalent deletions of cells. This
asymmetry is caused by basing the dependence structure on the column reduced rather than
the row reduced matrices.

Experiment I Experiment II Experiment III
p = 0 1 2 p = 0 1 2 p = 0 1 2

p-cycle 2.0 10.9 12.1 2.0 17.6 17.3 2.0 21.9 20.1
(p+ 1)-chain 4.5 12.1 7.0 6.6 25.9 10.8 8.3 35.7 12.9
p-cochain 5.1 8.6 6.8 6.8 15.5 11.1 7.3 20.3 13.7
(p+ 1)-cocycle 56.6 11.6 1.0 105.1 17.1 1.0 135.2 19.9 1.0
Lockp 4.0 50.2 139.0 4.5 112.6 382.2 5.0 176.0 633.2
Fillp 15.1 88.1 157.1 24.5 234.2 414.6 34.4 382.8 677.2
Unlockp 707.7 78.9 7.1 2 093.6 222.0 11.0 3 570.2 362.7 13.0
Unfillp 686.7 77.1 6.0 2 065.8 218.5 9.8 3 536.4 357.8 11.9
Table 4 Upper half: average number of simplices of a canonical cycle, cochain, chain, cocycle.

Lower half: average number of dependences for locking, filling, unlocking, unfilling. We disregard
the status and count every dependent cell. The order of rows in the two halves is parallel, stressing
the relation between the operation and the targeted feature, which for Lockp is a p-cycle, for Fillp

is a (p+ 1)-chain, for Unlockp is a p-cochain, and for Unfillp is a (p+ 1)-cocycle.

H. Edelsbrunner and K. Ölsböck 17

Table 4 sheds light on the difference by giving the average sizes of the canonical cycles,
chains, cocycles, and cochains, as well as the average numbers of cells along the relevant
paths of the dependence structure. The latter set contains all cells that are possibly affected
by the operation, which implies that their number gives an upper bound on the average
number of status changes per operation, but this upper bound is likely to be rather loose. We
observe an anomaly in Experiment III, in which the average size of the canonical 2-cochain is
13.7, while the average number of dependent 2-cells for unlocking is only 13.0. This does not
contradict the correctness of the unlock operation, which we recall is based on the column
reduced matrices and therefore finds a faster way to unlock the 2-cycles than by removing
the canonical 2-cochains.

7 Discussion

The main contribution of this paper is a mathematical framework for manipulating hole
systems in complexes and software that implements the operations in 3 dimensions. The
main new concept is the dependence structure of an ordered complex, which is a partial
order on the cells such that the filtrations of its linear extensions characterize what can and
what cannot be constructed within this framework. Here are some open structural questions
about the framework.

We can reduce the boundary matrix with column or with row operations and we can
choose a strategy anywhere between standard and exhaustive reduction. Characterize
how the partial orders computed with different reduction algorithms differ from each
other.
Is it true that the linear extensions of the partial orders obtained from all possible reduced
versions of an ordered boundary matrix exhaust the equivalence class of monotonic
orderings with same persistence pairing? If yes, is there a compact representation of this
collection of monotonic orderings?
Keeping the reduced matrix constant is a rather stringent requirement. Can this be
relaxed — for example to keeping the birth-death pairs constant — without sacrificing
any of the structural results?

The existence of the partial order opens up new opportunities, such as decorating the
persistence diagram with additional structural information about the data, or polynomial-
time algorithms for questions that seemed unapproachable before.

What is the geometric or topological meaning of the degree of a cell in the dependence
structure, possibly differentiating between types of pairs?
Are there worthwhile optimization questions on hole systems over the collection of linear
extensions of a partial order that can be solved in polynomial time, for example by flow
algorithms?

The software introduced in this paper promises to be useful in the study of bio-molecules, as
mentioned in the introduction. It will be interesting to determine application questions in
this area that have the potential to benefit from the new capabilities, and to incorporate the
software in domain-specific packages that help in the better understanding of the biochemical
basis of life.

18 Holes and Dependences in an Ordered Complex

References
1 D. Cohen-Steiner, H. Edelsbrunner and D. Morozov. Vines and vineyards by updating

persistence in linear time. In “Proc. 22nd Ann. Sympos. Comput. Geom., 2006”, 119–126.
2 CGAL. Computational Geometry Algorithms Library. http://www.cgal.org.
3 H. Edelsbrunner. Surface reconstruction by wrapping finite point sets in space. In Discrete and

Computational Geometry. The Goodman–Pollack Festschrift, 379–404, eds. B. Aronov, S. Basu, J.
Pach and M. Sharir, Springer-Verlag, 2003.

4 H. Edelsbrunner, M.A. Facello, P. Fu and J. Liang. Measuring proteins and voids in proteins.
In “Proc. 28th Ann. Hawaii Internat. Conf. System Sci., 1995”, vol. V: Biotech. Comput., 256–264.

5 H. Edelsbrunner and J.L. Harer. Computational Topology. An Introduction. Amer. Math. Soc.,
Providence, Rhode Island, 2010.

6 H. Edelsbrunner and E.P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graphics 13
(1994), 43–72.

7 H. Edelsbrunner and K. Ölsböck. Tri-partitions and bases of an ordered complex. Manuscript,
IST Austria, Klosterneuburg, Austria, 2018.

8 H. Edelsbrunner and A. Zomorodian. Computing linking numbers of a filtration. Homology,
Homotopy, and Applications 5 (2003), 19–37.

9 A. Hatcher. Algebraic Topology. Cambridge Univ. Press, Cambridge, England, 2002.
10 G. Kalai. Enumeration of q-acyclic simplicial complexes. Israel J. Math. 45 (1983), 337–351.
11 V. Kurlin. A fast persistence-based segmentation of noisy 2D clouds with provable guarantees.

Pattern Recognit. Lett. 83 (2016), 3–12.
12 A.R. Leach. Molecular Modelling: Principles and Applications. Second edition, Prentice Hall, 2001.
13 Y.L. Lee, S.D. Barthel, P. Dlotko, S.M. Moosavi, K. Hess and B. Smit. Quantifying

similarity of pore-geometry in nanoporous materials. Nature Communications 8 (2017), doi:10.1038/-
ncomms15396.

14 J.R. Munkres. Elements of Algebraic Topology. Perseus, Cambridge, Massachusetts, 1984.
15 P. Rosenstiehl and R.C. Read. On the principal edge tripartition of a graph. Annals Discrete

Math. 3 (1978), 195–226.
16 T. Simões, D. Lopes, S. Dias, F. Fernandes, J. Pereira, J. Jorge, C. Bajaj and A. Gomes.

Geometric detection algorithms for cavities on protein surfaces in molecular graphics: a survey.
Comput. Graphic Forum (2017), doi:10.1111/cgf.13158.

H. Edelsbrunner and K. Ölsböck 19

(a) Lock1 at r = 0.0. (b) Dependences. (c) Lock2 at r = 0.0.

(d) Fill1 at r = 0.93, top view. (e) Dependences. (f) Fill1 at r = 0.93.

(g) Unlock1 at r = 2.35. (h) Dependences. (i) Unfill1 at r = 3.10.

Figure 6 Results of operations manipulating the 1-cycle and 2-cycle of highest persistence in the
Delaunay mosaic of Gramicidin A. The middle column shows the dependences for the operations
illustrated in the corresponding rows. (a) Locking the 1-cycle at r = 0.0. (c) Locking the 2-cycle at
r = 0.0. (d) Top view after filling the 1-cycle at r = 0.93. (f) Side view of the same complex. (g)
Unlocking the 1-cycle at r = 2.35 reveals the helix structure of the protein. (i) Unfilling the 1-cycle
at r = 3.10 opens a narrow tunnel passing through the length of the protein.

	Introduction
	Background
	Dependence Structure
	Operations
	Case Studies
	Statistics
	Discussion

