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Abstract. Recent work emphasizes that the maximum entropy principle
provides a bridge between statistical mechanics models for collective behavior
in neural networks and experiments on networks of real neurons. Most of this
work has focused on capturing the measured correlations among pairs of neurons.
Here we suggest an alternative, constructing models that are consistent with the
distribution of global network activity, i.e. the probability that K out of N cells
in the network generate action potentials in the same small time bin. The inverse
problem that we need to solve in constructing the model is analytically tractable,
and provides a natural ‘thermodynamics’ for the network in the limit of large N .
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We analyze the responses of neurons in a small patch of the retina to naturalistic
stimuli, and find that the implied thermodynamics is very close to an unusual
critical point, in which the entropy (in proper units) is exactly equal to the
energy.

Keywords: phase diagrams (theory), neuronal networks (experiment), neuronal
networks (theory)
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Many of the most interesting phenomena of life are collective, emerging from interactions
among many elements, and physicists have long hoped that these collective biological
phenomena could be described within the framework of statistical mechanics. One
approach to a statistical mechanics of biological systems is exemplified by Hopfield’s
discussion of neural networks, in which simplifying assumptions about the underlying
dynamics led to an e↵ective ‘energy landscape’ on the space of network states [1]–[3].
In a similar spirit, Toner and Tu showed that simple stochastic dynamical models for
coordinating the motion of moving organisms, as in flocks of birds or schools of fish, can
be mapped to an e↵ective field theory in the hydrodynamic limit [4, 5].

A very di↵erent way of constructing a statistical mechanics for real biological systems
is through the maximum entropy principle [6]. Rather than making specific assumptions
about the underlying dynamics, we take a relatively small set of measurements on the
system as given, and build a model for the distribution over system states that is consistent
with these experimental results but otherwise has as little structure as possible. This
automatically generates a Boltzmann-like distribution, defining an energy landscape over
the states of the system; importantly, this energy function has no free parameters, but is
completely determined by the experimental measurements. As an example, if we look in
small windows of time where each neuron in a network either generates an action potential
(spike) or remains silent, then the maximum entropy distribution consistent with the mean
probability of spiking in each neuron and the correlations among spikes in pairs of neurons
is exactly an Ising spin glass [7]. Similarly, the maximum entropy model consistent with
the average correlations between the flight direction of a single bird and its immediate
neighbors in a flock is a Heisenberg model [8]. Starting with the initial work on the use
of pairwise maximum entropy models to describe small (N = 10–15) networks of neurons
in the retina, this approach has been used to describe the activity in a variety of neural
networks [9]–[16], the structure and activity of biochemical and genetic networks [17, 18],
the statistics of amino acid substitutions in protein families [19]–[25], and the rules of
spelling in English words [26]. Here we return to the retina, taking advantage of new
electrode arrays that make it possible to record from a large fraction of the ⇠200 output
neurons within a small, highly interconnected patch of the circuitry8. Our goal is not to

8 A full account of the experiments will be given elsewhere. Briefly, experiments were performed on the larval
tiger salamander, Ambystoma tigrinum tigrinum, in accordance with institutional animal care standards. Retinae
were isolated from the eye in darkness [30], and the retina was pressed, ganglion cells down, against a custom
fabricated array of 252 electrodes (size 8 µm, spacing 30 µm) [31]. The retina was superfused with oxygenated
Ringer’s medium (95% O2, 5% CO2) at 22 �C. Electrode voltage signals were acquired and digitized at 10 kHz by
a 252 channel preamplifier (Multi-Channel Systems, Germany). The sorting of these signals into action potentials
from individual neurons was done using the methods of [32, 33]. The stimulus was a 19 s grayscale movie clip of
a swimming fish and water plants in a fish tank, which was repeated 297 times. It was presented using a CRT
display (refresh rate 60 Hz), and focused on the photoreceptor layer of the retina using standard optics.
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give a precise model, but rather to construct the simplest model that gives us a glimpse of
the collective behavior in this system. For a di↵erent approach to simplification, see [27].

The maximum entropy approach is much more general than the construction of models
based on pairwise correlations. To be concrete, we consider small slices of time during
which each neuron in our network either generates an action potential or remains silent.
Then the states of individual neurons are defined by �i = 1 when neuron i generates a
spike, and �i = �1 when neuron i is silent. States of the entire network are defined by
~� ⌘ {�i}, and we are interested in the probability distribution of these states, P (~�). If we
know the average values of some functions fµ(~�), then the maximum entropy distribution
consistent with this knowledge is

P (~�) =
1

Z({gµ})
exp

"

�
X

µ

gµfµ(~�)

#

, (1)

where the couplings gµ have to be adjusted to match the measured expectation values
hfµ(~�)i.

In any given slice of time, we will find that K out of the N neurons generate spikes,
where

K = 1

2

NX

i=1

(�i + 1). (2)

One of the basic characteristics of a network is the distribution of this global activity,
PN(K). As an example, in figure 1 we show experimental results on PN(K) for groups
of N = 40 neurons in the retina as it views a naturalistic movie. In these experiments
(see footnote 8), we use a dense array of electrodes that samples 160 out of the ⇠200
ganglion cells in a small patch of the salamander retina, and we divide time into bins of
�⌧ = 20 ms. The figure shows the average behavior in groups of N = 40 cells chosen out
of this network, under conditions where a naturalistic movie is projected onto the retina.
The correlations between pairs of cells are small, but PN(K) departs dramatically from
what would be expected if the neurons generated spikes independently.

How do we construct the maximum entropy model consistent with the measured
PN(K)? Knowing the distribution PN(K) is equivalent to knowing all its moments, so the
functions fµ(~�) whose expectation values we have measured are f

1

(~�) = K, f
2

(~�) = K2,
and so on. Thus we can write

PN(~�) =
1

Z({gµ})
exp

"

�
NX

n=1

gnK
n

#

=
1

ZN
e�VN (K), (3)

where VN(K) is some e↵ective potential that we need to choose so that PN(K) comes out
equal to the experimentally measured P exp

N (K).
Usually the inverse problem for these maximum entropy distributions is hard. Here it

is much easier. We note that

PN(K) ⌘
X

~�

�

"

K, 1

2

NX

i=1

(�i + 1)

#

P (~�) (4)

=
1

ZN
N (K, N) e�VN (K), (5)
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Figure 1. Experimental results for PN (K), in groups of N = 40 neurons. On
the left, solid points show the distribution estimated by averaging over many
randomly chosen groups of N = 40 cells out of the N = 160 in our data set;
error bars are standard deviations across random halves of the duration of the
experiment. Open circles are the expectation if cells are independent. On the
right, the distribution of correlation coe�cients among pairs of neurons in our
sample. Because the experiment is long, the threshold for statistical significance
of the correlations is very low, |C

thresh

|  0.01. Almost all pairs of cells thus have
significant correlations, but these correlations are weak.

where

N (K, N) =
N !

(N � K)!K!
. (6)

The log of this number is an entropy at fixed K, SN(K) ⌘ ln N (K, N), so we can write

PN(K) =
1

ZN
exp [SN(K) � VN(K)] . (7)

Finally, to match the distribution PN(K) to the experimental measurement P exp

N (K), we
must have

VN(K) = � ln P exp

N (K) + SN(K) � ln ZN . (8)

In figure 2 we show the average results for VN(K) in networks of size N = 40.
We expect that both energy and entropy will be extensive quantities. For the entropy

SN(K) this is guaranteed by equation (6), which tells us that as N becomes large,
SN(K) ! Ns(K/N). It is an experimental question whether, in the networks we are
studying, there is something analogous to a thermodynamic limit in which, for large
N , we have VN(K) ! N✏(K/N). This is illustrated on the right in figure 2, where for
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Figure 2. The e↵ective potential and its dependence on system size. On the left,
results for N = 40 neurons, showing both the potential VN (K) (points with error
bars) and the entropy SN (K) (smooth curve); error bars are as in figure 1. On
the right, the behavior of VN (K = ↵N)/N , for ↵ = 0.05, showing the dependence
on N (points with error bars) and the extrapolation N ! 1 (square).

K/N = 0.05 we study the dependence of the energy per neuron on 1/N . There is a natural
extrapolation to large N , and this is true for all the ratios of K/N that we tested.

In the N ! 1 limit, the natural quantities are the energy and entropy per neuron, ✏
and s, respectively, and these are shown in figure 3. One clear result is that, as we look at
more and more neurons in the same patch of the retina, we do see the emergence of a well
defined, smooth relationship between entropy and energy s(✏). While most neural network
models are constructed so that this thermodynamic limit exists, it is not so obvious that
this should happen in real data. In particular, if we consider a family of models with
varying N in which all pairs of neurons are coupled, the standard way of arriving at
a thermodynamic limit is to scale the coupling strengths with N , and correspondingly
the pairwise correlations are expected to vary with N . In constructing maximum entropy
models, we cannot follow this path, since the correlations are measured and thus by
definition do not vary as we include more and more neurons. Here we focus not on
correlations but on the distribution PN(K), and thus the emergence of a thermodynamic
limit depends on the evolution of this distribution with N .

In the thermodynamic limit we have

PN(K) ! 1

ZN
exp [N (s(K/N) � ✏(K/N))] , (9)

which means that the distribution of K/N should become sharply peaked around its most
likely value. Put another way, as we look at larger and larger groups of cells, we expect
to see the mean spike count hKi grow linearly with N , but also the variance h(�K)2i
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Figure 3. Entropy versus energy. We compute the e↵ective energy per neuron,
✏ = VN (K)/N , averaged over multiple groups of N neurons chosen out of the 160
we have access to in the experiment, and then compare this with the entropy per
neuron, s = SN (K)/N . The extrapolation is as in figure 2, and the error bars in
energy (visible only when larger than symbols) are as in figure 2.

should grow linearly with N , and hence the variance should grow linearly with the mean;
the fractional variance in K, h(�K)2i/hKi2, should vanish as N becomes large. In fact,
sampling 900 groups of cells from N = 20 to 160, we see that the variance has a very precise
relation to the mean, but this is quadratic, not linear (figure 4). Further, the fractional
variance does seem to approach a limit at large N , but this limit is one, not zero. Thus, the
finite networks that we can observe seem typical of samples out of some idealized N ! 1
network with well defined properties, and in this sense we have a thermodynamic limit,
but these properties are quite unusual. As an aside, it is interesting that the relationship
between mean and variance across di↵erent subnetworks is so tight, despite the fact that
the system is very inhomogeneous, with the spiking probabilities of individual neurons
varying by more than an order of magnitude.

As we look at increasing numbers of neurons, the mean spike count does grow linearly
with N , on average across di↵erent choices of the N neurons. The fact that the variance of
the spike count grows as h(�K)2i / hKi2 (figure 4) thus means that at large N the ratio
h(�K)2i/N will diverge. But, from figure 2, the energy is a smooth, monotonic function
of K, with a derivative that never vanishes, at least over the range where we can make
reliable estimates. The divergence of h(�K)2i/N at large N thus suggests that the variance
of the energy will diverge, even when normalized by the number of neurons. However, this
normalized energy variance is the specific heat, and a diverging specific heat is a sign of
a critical point. Let us see if we can make this more explicit.

We recall that the plot of entropy versus energy tells us everything about the
thermodynamics of the system. In our maximum entropy construction, there is no real
temperature—k

B

T just provides units for the e↵ective energy VN(K). However, if we
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Figure 4. Variance and mean of spike counts. On the left, we select 900 groups
of cells, from N = 20 to 160, and compute the mean and variance of spike counts
K. On the right, we look at the fractional variance in spike counts; error bars are
the standard deviation across multiple groups with the same N , and the square
marks the extrapolation N ! 1.

have a model for the energy as a function of the microscopic state of the system, then
we can take this seriously as a statistical mechanics problem and imagine varying the
temperature. More precisely, we can generalize equation (3) to consider

PN(~�; �) =
1

ZN(�)
e��VN (K), (10)

where the real system is at � = 1. Then in the thermodynamic limit we have the
usual identities: the temperature is defined by @s/@✏ = �, the specific heat is C =
k

B

�2(�@2s/@✏2)�1, and so on. In particular, the vanishing of the second derivative of
the entropy implies a diverging specific heat, a signature of a critical point.

In our case, since the real system is at � = 1, the behavior of the network will be
dominated by states with an energy per neuron that solves the equation @s/@✏ = 1, but
figure 3 shows us that, as we consider more and more neurons, the function s(✏) seems to
be approaching s = �

0

✏, where �
0

= 0.999 ± 0.004 is one within errors. If we had exactly
s = ✏, then all energies would be solutions of the condition @s/@✏ = 1. Correspondingly,
the specific heat C would diverge, signaling that the operating point � = 1 is a critical
point. This is a very unusual critical point, since all higher derivatives of the entropy
vanish [29].

More generally, when we try to describe the probability distribution over states ~�
using ideas from statistical mechanics, we are free to choose the zero of the (e↵ective)
energy as we wish. A convenient choice is that the unique state of zero spikes—complete
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Figure 5. The probability of silence, and the e↵ective free energy. On the left,
the probability that a network of N neurons is in the silent state, where none of
the cells generate a spike within a window �⌧ ; error bars as in figure 1. Note that
this probability declines very slowly with the number of neurons N . On the right,
we translate the probability of silence into an e↵ective free energy per neuron,
and see that this varies linearly with 1/N , yielding the extrapolation N ! 1
(square).

silence in the network—should have zero energy. Unless there are exponentially many
states with probability equal to the silent state (which seems unlikely), in the large N
limit the entropy per neuron will also be zero at zero energy, but with this choice for the
zero of energy, the probability of the silent state is given by P

silence

= 1/Z, and Z = e�F ,
where F is the e↵ective free energy, since we are at � = 1. Thus if we can measure this
probability reliably, we can ‘measure’ the free energy, without any further assumptions.
We see in figure 5 that the probability of silence falls as we look at more and more neurons,
which makes sense since the free energy should grow with system size, but the decline in
the probability of silence is surprisingly slow. We can make this more precise by computing
the e↵ective free energy per neuron, f = F/N , also shown. This is a very small number
indeed, f ⇠ �0.01 at the largest values of N = 160 for which we have data.

We recall that, with k
B

T = 1, the free energy per neuron is f = h✏i � s
total

, where
h✏i denotes the average energy and s

total

is the total entropy of the system, again
normalized per neuron. Our best estimate of the entropy of the states taken on by the
network is s

total

⇠ 0.2 per neuron, which means that the free energy reflects a cancellation
between energy and entropy with a precision of at least ⇠5%. If we extrapolate to the
thermodynamic limit the cancellation becomes even more precise, so that the extensive
component of the free energy is f1 = �0.0051 ± 0.000 03 (figure 5). Notice that the small
value of the free energy means that the silent state occurs frequently, and hence we can
measure its probability very accurately, so the error bars are small. If we had a critical
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system in which s(✏) = ✏, the extensive component of the free energy would be exactly
zero.

In a normal thermodynamic limit (and � = 1), f1 = ✏⇤ � s(✏⇤), where ✏⇤ is the energy
at which @s/@✏ = 1. Geometrically, f1 is the intercept along the energy axis of a line with
unit slope that is tangent to the curve s(✏) at the point ✏⇤. From above we have s(0) = 0,
and then if s(✏) is concave (@2s(✏)/@✏2 < 0, so that the specific heat is everywhere positive)
we are guaranteed that f1 is negative, but to have f1 ! 0 then requires that @s(✏)/@✏  1
at ✏ = 0. In this scenario, pushing f1 toward zero requires both ✏⇤ and s(✏⇤) to approach
zero, so that the network is in a (near) zero entropy state despite the finite temperature.
This state would be similar to the critical point in the random energy model [28], but this
seems inconsistent with the evidence for a nonzero entropy per neuron.

To have near zero free energy with nonzero entropy seems to require something very
special. One possibility is to allow @2s(✏)/@✏2 > 0, allowing phase coexistence between the
✏ = 0 silent state and some other ✏ 6= 0 state. The other possibility is to have s(✏) = ✏, as
suggested by figure 3. Thus, while the observation of a nearly zero free energy per neuron
does not prove that the entropy is equal to the energy for all energies, it does tell us that
the network is in or near one of a handful of unusual collective states.

The model we have considered here of course throws away many things: we are not
keeping track of the identities of the cells, but rather trying to capture the global activity
of the network. On the other hand, because we are considering a maximum entropy model,
we know that what we are constructing is the least structured model that is consistent with
PN(K). It thus is surprising that this minimal model is so singular. As we have emphasized,
even without appealing to a model, we know that there is something special about these
networks of neurons because they exhibit an almost perfect cancellation of energy and
entropy. The more detailed maximum entropy analysis suggests that cancellation is not
just true on average, but rather that the entropy is almost precisely equal to the energy
as a function. This is consistent with hints of criticality in previous analyses, which
extrapolated from much smaller groups of neurons [10, 13, 29], although much more
remains to be done.
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