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Abstract. The number of possible activity patterns in a population of neurons
grows exponentially with the size of the population. Typical experiments explore
only a tiny fraction of the large space of possible activity patterns in the
case of populations with more than 10 or 20 neurons. It is thus impossible,
in this undersampled regime, to estimate the probabilities with which most of
the activity patterns occur. As a result, the corresponding entropy—which is
a measure of the computational power of the neural population—cannot be
estimated directly. We propose a simple scheme for estimating the entropy in
the undersampled regime, which bounds its value from both below and above.
The lower bound is the usual ‘naive’ entropy of the experimental frequencies. The
upper bound results from a hybrid approximation of the entropy which makes
use of the naive estimate, a maximum entropy fit, and a coverage adjustment. We
apply our simple scheme to artificial data, in order to check their accuracy; we also
compare its performance to those of several previously defined entropy estimators.
We then apply it to actual measurements of neural activity in populations with
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up to 100 cells. Finally, we discuss the similarities and di↵erences between the
proposed simple estimation scheme and various earlier methods.
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1. Introduction

While simpler organisms appear to estimate probability densities rather e↵ortlessly,
statisticians have a notoriously di�cult time doing so. Since Shannon’s fundamental
work [15], they have developed a number of techniques for estimating a reduced quantity,
the entropy, which depends upon the entire probability distribution. Concretely, the
central di�culty is one of undersampling : if the number of possible configurations (or
states) is large, typical experiments do not explore these su�ciently thoroughly to estimate
the probability with which each occurs. In particular, the probability of the unobserved
configurations remains undetermined by the experiment and, if these constitute an
appreciable fraction of all possible configurations, then they may contribute to the entropy
significantly. The various estimation techniques developed so far propose di↵erent ways
to address this di�culty.

Shannon’s entropy [15] is defined as

H = �
X

µ

pµlog
2

(pµ) , (1)
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where the sum runs over all possible configurations and pµ denotes the (true) probability
with which the configuration labeled by µ occurs. A naive estimator, also referred to as the
maximum likelihood estimator because it makes use of the maximum likelihood estimates
of the probabilities, is given by

Ĥ
MLE

= �
X

µ

mµ

M
log

2

⇣mµ

M

⌘
, (2)

where mµ is the number of times configuration µ is seen in the experiment and M is
the total number of configurations seen in the experiment; i.e., mµ/M is the frequency
of occurrence of configuration µ. (Throughout, we designate estimates by a circumflex
accent.) This estimator assigns a vanishing probability of unobserved configurations and,
as a result, is negatively biased. Miller calculated the bias for the case in which the
number of data points, M , is larger that the number of configurations that occur with
non-vanishing probability, ⌦ [9]; the resulting, so-called, Miller–Madow correction reads

Ĥ
MM

= Ĥ
MLE

+
⌦ � 1

2M
. (3)

Clearly, this correction is useful only if the data are voluminous enough. In the context of
neural recordings, this is rarely the case, and several more e↵ective estimators have been
devised.

The method of jackknifing was introduced in [13] and [18], and it was later applied
to Shannon’s entropy in [22]. It amounts to evaluating naive estimations of the entropy
for di↵erent subdivisions of the data, and then to extrapolating the trend from small
to large subdivisions in such a way as to obtain an estimate of the entropy in the limit
of a large data set, in which the naive estimate and actual value match. A very similar
method was applied in the context of neural recordings more recently [16]. Subsequently,
more refined methods were introduced, also based upon estimating probabilities. In his
beautiful piece of work [11], Paninski lays out a number of general results and puts forth
the so-called best upper bound estimator. Yet a di↵erent kind of estimator is the coverage

adjusted estimator [3, 20], which addresses specifically the di�culty associated with the
fact that, in the undersampled regime, a number of configurations are unobserved in a
typical experiment. As these estimators share some commonalities with the estimator we
propose below, we relegate a more thorough discussion to the final section of the paper.
Other methods of estimation do not rely upon explicitly approximating the probabilities,
but rather follow a Bayesian approach, in which the key question is that of the choice of
priors [21, 10, 1]. Finally, some rigorous approaches [2, 19] o↵er estimators and bounds, but
these may fail in the highly undersampled regime most often encountered in the context
of neural data.

Estimating the entropy of the activity in a population of neurons is one way
of characterizing the ‘coding power’ of the population: the larger the entropy, the
more ‘configurations’ can be represented by the population. However, undersampling is
particularly severe in the context of neural recordings. If we restrict ourselves to a single
time bin and assume that each of N neurons can emit up to k spikes, then the population
can choose between (k + 1)N configurations (and this must be further raised to the power
of T if we allow T time bins). As a result, we would need at least as many as (k + 1)N data
points (and, in fact, many more) in order to have some chance of observing improbable
configurations. For a cortical microcolumn with as few as 104 neurons, and assuming a
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short time bin that allows no more than a single spike, we would have to measure twice
as many as 103010 data points. This number vastly exceeds the number of particles in the
Universe. Thus, whenever we estimate the entropy of neural recordings, we generally have
to do so in an extremely undersampled regime, in which a number of methods developed
previously fail as they assume an asymptotic behavior.

Here, we put forth a new method for estimating the entropy in neural data. Our
prescription bears some similarity with coverage adjusted methods [3, 20], but di↵ers
from these in ways guided by our intuition about neural population activity. We propose
this scheme as a simple, and potentially useful, estimation device to the practitioner.
Indeed, we see as the main merits of this new method its conceptual and calculational
simplicity as well as the fact that it can be easily modified or refined in a number of ways.
The reminder of the paper is laid out as follows. In section 2, we set up the problem
and describe our estimation method; we then apply this method, first, to artificial data,
for which one knows the true entropy, as a control, and, second, to real neural data. In
section 3, we relate the method to earlier work and we describe briefly how it can be
refined.

2. Results

2.1. Setting up the problem

We consider the activity of a population of N neurons in a time bin so short that each
neuron fires at most one spike. Thus, the activity of the population can be represented by
an N -dimensional vector (or pattern) with binary entries; there are 2N possible vectors.
We label the neurons by the index i = 1, . . . , N and the activity vectors by the index
µ = 1, . . . , 2N . We further assume that, in a given experiment, we record a number, M , of
activity patterns. Among these M patterns, there are mµ patterns µ; that is, the activity

pattern labeled by µ is seen mµ times in the experiment. By definition,
P

2

N

µ=1

mµ = M . We
also define a number, M

1

, as the total number of singletons observed in the experiment,

M
1

=
2

NX

µ=1

mµ�mµ,1, (4)

where �m,n is the Kronecker function, which is non-vanishing and equal to one only if
m = n. Finally, we assume a strongly undersampled regime, with M ⌧ 2N . In that regime,
a large fraction of the pattern counts, mµ, are vanishing, i.e., most of the possible activity
patterns are unobserved in the experiment.

Our aim is to estimate the entropy of the population activity. If the true probability
with which each pattern occurs, pµ, were known, then we would obtain the entropy as

H = �
2

NX

µ=1

pµlog
2

(pµ) . (5)

However, as we have just mentioned, most patterns are unobserved, so that the
probabilities are unknown. We note that if the unknown probabilities are of the order of
2�N , and if the number of such activity patterns is of the order of 2N �K with K ⇠ O (1),
then their contribution to the entropy is appreciable, of the order of N/2K . If, for the
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moment, we ignore this problem and assign to each pattern a naive ‘counts probability’,
defined as

p̃µ ⌘ mµ

M
, (6)

we obtain a naive estimate of the entropy—in fact, the entropy of the experimental
counts—as

Ĥ< ⌘ �
2

NX

µ=1

p̃µlog
2

(p̃µ) = �
2

NX

µ=1

mµ

M
log

2

⇣mµ

M

⌘
. (7)

We denote this quantity by H< because it represents a lower bound to the actual entropy.
The reason is that it neglects all the unobserved patterns, which, as we have noted above,
can contribute significantly to the total entropy; in essence, this naive estimate assumes a
much narrower probability distribution than it likely is. Many of the estimation schemes
proposed hitherto advance ways to ‘adjust the coverage’ of the probability distribution in
a way to compensate for its artifactual ‘narrowing’ and, thus, correct for the bias in the
estimation. Hereafter, we propose another simple procedure.

For the sake of precision, we mention that Ĥ< is, in fact, an approximate lower bound,
as the count probabilities, mµ/M , are only approximations of the true probabilities, pµ;
the former are expected to match the latter up to a standard deviation of order

p
mµ/M .

We do not dwell on this distinction hereafter, because it is well known (see, e.g., [11]) that
the resulting uncertainty in the naive estimate of the entropy is largely overwhelmed by
the estimation bias, described above.

2.2. Singleton entropy estimator

The entropy is a sum of terms �pµlog
2

(pµ) over all possible patterns µ =
�
1, . . . , 2N

 
.

While it is, in principle, not required to estimate the full probability distribution in order
to estimate such a reduced quantity, many e↵ective estimators do, and so shall we. The
central idea, in our estimation scheme, is to treat those patterns that are observed reliably
(in an experiment) and those that are not on an unequal footing. Thus, we divide the
set of possible patterns into two groups; the first group is made up of patterns that are
observed at least twice (in an experiment),

group A ⌘ {µ such that mµ � 2} , (8)

and the second group is that of the unlikely patterns with at most one count,

group B ⌘ {µ such that mµ = 0 or 1} . (9)

Part of our rationale for thus dividing the possible patterns is that, in an undersampled
regime, seeing a pattern twice is already a guarantee that it occurs with relatively high
probability, whereas a single count does not carry the same meaning. Indeed, all we can
conclude from a singleton is that its true probability is at most of the order of 1/M .
In particular, two di↵erent patterns observed a single time each may occur with vastly
di↵erent true probabilities, while a singleton pattern and an unobserved pattern may occur
with very similar true probabilities.
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We then estimate the entropy of group A and that of group B, and express the full
entropy estimate as the sum of the two terms,

Ĥ> = Ĥ
A

+ Ĥ
B

. (10)

We label the entropy estimate by the subscript ‘>’ because, as we shall see, it is an
approximate upper bound to the value of the actual entropy. Since the probability
distribution over group A can be estimated faithfully, we calculate its entropy as the
‘naive entropy’ (the entropy of the experimental counts)

Ĥ
A

= �
X

µ2 group A

mµ

M
log

2

⇣mµ

M

⌘
. (11)

We now turn to group B: as we cannot estimate the probability distribution over group
B, we instead bound the corresponding entropy from above. A coarse treatment would
assume a uniform distribution over group B, but we can do better by constraining the
entropy by moments of the probability distribution—even in a severely undersampled
regime, moments can be estimated, while individual probabilities cannot. To do so, we
calculate the firing rate of each cell, as

ri ⌘ 1

M
1

X

µ2 group B

�i (µ) , (12)

where the function �i (µ) is equal to 1 if cell i is active in pattern µ and equal to 0
otherwise. We can then use the independent probability distribution,

pindep

µ ⌘ 1

Z

NY

i=1

{ri�i (µ) + (1 � ri) [1 � �i (µ)]} , (13)

where Z is a normalizing factor, adjusted so that

X

µ2 group B

pindep

µ =
M

1

M
, (14)

i.e., the probabilities sum to the fractional weight of group B. An upper bound to the
entropy over group B is then obtained as

Ĥ
B

⌘ �
X

µ2 group B

pindep

µ log
2

�
pindep

µ

�
. (15)

In practice, in an undersampled regime one expects that group B represents a
significant fraction of the 2N possible patterns and, hence, it is di�cult to compute the
normalization factor, Z, directly by summing over all patterns in group B. However, the
independent distribution provides a great simplification, as one can sum it easily over all

patterns,

2

NX

µ=1

pindep

µ =
1

Z
, (16)

�
2

NX

µ=1

pindep

µ log
2

�
p indep

µ

�
= � 1

Z

NX

i=1

[rilog
2

(ri) + (1 � ri) log
2

(1 � ri)] +
log

2

(Z)

Z
. (17)
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Since summing over group A is straightforward (as it is expected to be made up of
comparatively few patterns), one can use these identities to calculate Z and Ĥ

B

. By
writing the sum over the patterns in group B, in equation (15), as a di↵erence between a
total sum and a sum over group A only,

Ĥ
B

⌘ �
X

all µ

pindep

µ log
2

�
pindep

µ

�
+

X

µ2 group B

pindep

µ log
2

�
pindep

µ

�
, (18)

we can calculate the partition function and the entropy estimate as

Z =

0

@
2

NX

µ=1

pindep

µ

1

A
�1

=

0

@
X

µ2 group A

pindep

µ +
M

1

M

1

A
�1

, (19)

Ĥ
B

= � 1

Z

NX

i=1

[rilog
2

(ri) + (1 � ri) log
2

(1 � ri)]

+
log

2

(Z)

Z
+

X

µ2 group A

pindep

µ log
2

�
pindep

µ

�
. (20)

Finally, we arrive at an approximate upper bound to the total entropy,

Ĥ> = �
X

µ2 group A

mµ

M
log

2

⇣mµ

M

⌘

� 1

Z

NX

i=1

[rilog
2

(ri) + (1 � ri) log
2

(1 � ri)]

+
log

2

(Z)

Z
+

X

µ2 group A

pindep

µ log
2

�
pindep

µ

�
. (21)

In sum, we bound the entropy below by Ĥ<, the naive entropy defined in equation (7),
and above by Ĥ>, given in equation (21). As sampling becomes better and, as a result, the
fractional weight of group B, M

1

/M , decreases, Ĥ< and Ĥ> move toward each other. As
illustrated in the following sections, we extrapolate the bounds to the point M

1

/M = 0,
at which we obtain a tight interval which likely contains the actual entropy.

2.3. Illustration of the singleton method with artificial data

As a way to test our simple estimation scheme, we applied it to artificial data for which
we had access to accurate estimations of the entropy obtained by direct methods (see
below). We refer to the data we examined as ‘artificial data’ because population activity
patterns were sampled from a given probability distribution rather than being measured
experimentally. Still, the probability distribution was itself inferred from neural data; it
was not an arbitrary distribution.

Specifically, we started with simultaneous recordings of spike trains from populations
of ganglion cells in response to a natural movie [8]. Next, we fitted a maximum entropy
distribution constrained by the firing rates and pairwise correlations of all neurons, so
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that it took the form

pµ,N =
1

ZN
exp

 
NX

i=1

hi,Nsµ
i +

NX

i,j=1

Jij,Nsµ
i s

µ
j

!

, (22)

where sµ
i denotes the activity of cell i in pattern µ and hi,N and Jij,N are fitting parameters.

The parameters of the maximum entropy distribution were obtained by a gradient descent
algorithm, which made use of Monte Carlo sampling for the estimation of its moments
[17]. We applied this step of the procedure successively for di↵erent values of the total
number of ganglion cells under scrutiny, N , so as to illustrate our estimation scheme for
di↵erent population sizes; the subscript N acts as a reminder that the numerical values
of the parameters hi,N , Jij,N and ZN depend upon the population size. For each choice of
N , we then drew M = 11 270 000 activity patterns from the probability distribution pµ,N .
These constituted our ‘artificial data sets’.

We then calculated the estimated lower bound to the entropy, Ĥ<, from equation (7)
and the estimated upper bound to the entropy, Ĥ>, from equation (21). For each choice
of N , we obtained a final estimated range of the entropy by extrapolating the values of
Ĥ< and Ĥ> to a high sampling limit. To achieve this, we divided the set of M activity
patterns (for a given N) into K subsets, with K = 2, 3, 4 or 5, by assigning each of the
M patterns randomly to one of the K subsets. Each choice of K yielded a di↵erent value
of the fraction of singletons, M

1

/M , which decreased monotonically as K increased. (This
amounts to saying that, for larger data sets, unobserved and rare patterns represented a
smaller fraction of the probability weight.) The estimated lower and upper bounds to the
entropy, Ĥ< and Ĥ>, also varied with K, and we plotted these as a function of M

1

/M . For
a given value of K, all of these quantities varied among the data subsets; we used their
average values. Finally, we extrapolated the values of Ĥ< and Ĥ> to the limit of perfect
sampling, M

1

/M = 0, with a quadratic polynomial. We expect that the extrapolated
values of Ĥ< and Ĥ> will converge at M

1

/M = 0, and choose their average to be our best
estimate of the entropy.

Figure 1 illustrates the outcome of the procedure just outlined in the cases of N = 20,
40, 60, 80 and 100 cells. Notice that the scales of the abscissa and the ordinate vary
substantially from panel to panel; in particular, M

1

/M takes a much larger range of values
when sampling responses from larger populations. In all cases, the extrapolated values of
Ĥ< and Ĥ> at M

1

/M = 0 match or di↵er very little, by about 0.1%. Furthermore, our
simple estimation scheme yields entropy values very close to those obtained by a numerical
integration of the heat capacity (see [17] for details on the latter). When the population is
su�ciently small, we can integrate over all the possible activity patterns numerically and,
as a result, calculate the true entropy directly. We did so for the case N = 20 (figure 1(A))
and found that the estimated entropy overestimated the true entropy by 0.03%, while the
heat capacity integration overestimated the true entropy by 0.1%. Interestingly, the lower
and upper bounds lie more or less symmetrically below and above the estimated entropy
(with the upper bound slightly closer to the estimated entropy than the lower bound).
Thus, a coarse estimation of the entropy as the average between the lower and upper
bounds, without extrapolation, would yield a much more reliable value than the naive
entropy estimate alone.
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Figure 1. Singleton entropy estimator applied to artificial data. (A) Upper bound
(Ĥ>, green) and lower bound (Ĥ<, red) entropies plotted against the fraction
of singletons (M

1

/M), for N = 20 cells, from a pairwise maximum entropy
model (solid circles). Quadratic extrapolations (lines) converge on estimates
at M

1

/M = 0 (open circles). Entropies estimated by integration of the heat
capacity (blue cross) and calculated by numerical integration over the probability
distribution (pink diamond) are similar. (B)–(E) Upper bound (Ĥ>, green)
and lower bound (Ĥ<, red) entropies plotted against the fraction of singletons
(M

1

/M) for larger populations with N = 40, 60, 80 and 100 cells, respectively.
The error bars (often not visible) are the standard deviation of entropy values
across all K data subsets. The quadratic extrapolations (lines), extrapolated
entropies (open circles) and entropy estimated by heat capacity integration (blue
cross) are as in panel (A). The error bars on the extrapolated values derive from
uncertainties in the parameters of the quadratic fits, according to the CurveFit
command in IgorPro 6.04.
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Figure 2. Comparison of the singleton entropy estimator to other entropy
estimators. Errors of entropy estimates from the singleton method (green circles),
jackknife method (blue triangles), Bayesian (NSB) method (purple diamonds),
coverage adjusted method (orange squares) and best upper bound (inverted pink
triangles) are plotted versus the number of cells, N . The error is defined as the
di↵erence between the estimated entropy and the value derived from heat capacity
integration.

2.4. Comparison of the singleton method with other entropy estimators

In the case of artificial data, discussed in the above section, we had access to a reliable
estimate of the entropy from numerical integration of the heat capacity corresponding
to the maximum entropy probability distribution [17]. We used it as a benchmark: we
evaluated the performance of various entropy estimators by referencing their outcomes
with respect to the estimate of the entropy from heat capacity integration, for di↵erent
choices of population size, N (figure 2). In this way, we compared the outcomes of the
singleton method to the outcomes of four previously proposed entropy estimators, namely,
the classic jackknife estimator [13, 18, 22, 16], a Bayesian (NSB) estimator [10], and the
more recent best upper bound estimator [11] and coverage adjusted estimator [3, 20]. (We
discuss the structure of the latter two and their similarities with the singleton method in
section 3. We mention here that, following [20], we did not use the actual total number of
possible patterns in the best upper bound estimator; rather, we used a naive estimate of
this quantity—the total number of distinct observed patterns. In [20], this version of the
estimator is referred to as ‘BUB�’. The best upper bound method was devised originally
to provide a rigorous bound to the entropy. In the undersampled cases of interest here,
this bound becomes loose. The naive choice in the BUB� method addresses this issue,
but because of it the method should be interpreted as yielding an approximation to the
entropy rather than a bound.)

For each method, we calculated the estimate of the entropy in the cases of N = 20, 40,
60, 80 and 100 cells. While the singleton method yielded values which were consistently
close to the estimate from heat capacity integration, the performance of the other
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estimators—jackknife, Bayesian, best upper bound and coverage adjusted—degraded
progressively for larger population sizes.

We note that the di↵erence between the outcome of the singleton method and that of
the heat capacity integration was of the order of one part in a thousand for several values
of N and was below one part in a hundred for all conditions tested. This discrepancy
is comparable to the relative di↵erence between the true value of the entropy and the
estimate from heat capacity, when we have access to the former in the case of N = 20
(figure 1(A)). We note also that our extrapolation of the lower bound to the entropy is
reminiscent of the jackknife method. The crucial di↵erence, however, is that we use M

1

/M
as the extrapolation variable instead of the inverse data size, K.

2.5. Illustration of the singleton method with neural data

Following a similar procedure to the one we applied to artificial data, we submitted real
neural data to the singleton method. For this, we used recordings of the activity of retinal
ganglion cells in response to a set of five di↵erent natural movies [12]; we divided the spike
raster of the population into M = 426 000 time bins of 20 ms each. We calculated the lower
and upper bounds to the entropy (equations (7) and (21), respectively) for populations of
N = 20, 40, 60, 80 and 100 cells. As in the case of artificial data, for each choice of N we
subdivided the data into K subsets, with K = 2–5, and, using the successive subdivisions,
we extrapolated the values of the lower and upper bounds to the limit of perfect sampling.
Our results are illustrated in figure 3; notice again the di↵erent scales of the abscissae and
ordinates for di↵erent numbers of neurons.

As a consistency check of the singleton method, the extrapolated values of the bounds
converge to neighboring values. As we take the average between the two values to be our
best estimate of the entropy, the di↵erence between the two values provides us with an
estimate of the reliability of the method. Here, we find that this di↵erence is less than one
part in a hundred.

3. Discussion

3.1. Summary and variations

In this study, we introduced a simple entropy estimator, which we called the singleton
estimator, useful in the undersampled regime commonly encountered in the context of
neural recordings. The singleton method finds an estimate of the entropy by extrapolating
lower and upper bounds to the entropy from the undersampled regime to the fully sampled
limit. In all the cases we examined, we checked the consistency of the method, finding that
the extrapolated lower and upper bounds very nearly matched. In the case of artificial
data, in which we had access to either the true entropy (from direct integration of the
probability distribution) or a reliable estimate of the entropy (from integration of the
heat capacity), we found that the singleton method yielded accurate estimates of the
entropy—with accuracy often of the order of one part in a thousand. Furthermore, a
comparison with other recently proposed entropy estimators suggested that the singleton
method was the most reliable: all the other methods underestimated the entropy by larger
amounts, ranging up to as much as 7–10% for N = 100 cells. However, our preliminary
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Figure 3. Singleton entropy estimator applied to real data. Upper bound (Ĥ>,
green) and lower bound (Ĥ<, red) entropies plotted against the fraction of
singletons (M

1

/M), for N = 20 (A), 40 (B), 60 (C), 80 (D) and 100 (E) real
neurons (solid circles). The error bars are the standard deviation of entropy values
across all K data subsets. The quadratic extrapolations (lines) converge on the
estimates at M

1

/M = 0 (open circles). The error bars on the extrapolated values
derive from uncertainties in the parameters of the quadratic fits, according to the
CurveFit command in IgorPro 6.04.
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evaluations of an improved Bayesian estimator newly proposed by Archer, Memming Park
and Pillow [1], using the same data set, indicate a significantly improved performance.

The key idea in our simple estimation method is to divide the data into two groups.
The first group (group A) is made up of patterns with reliably estimated probabilities; its
entropy can thus be estimated in a naive fashion. The second group (group B) contains
the rare patterns not sampled by the experiment and is the cause of the ‘unknown
bias di�culty’. Rather than estimating its entropy, we bound it from above in a way
that is constrained by the firing rates of the neurons. Using this ‘independent neurons
prescription’ yields a very simple form of a probability distribution which can then be
integrated to obtain the entropy bound, even if the distribution is so undersampled that
most of the patterns belong to group B. Extrapolating the resulting upper bound, together
with the lower bound from a naive (maximum likelihood) estimation of the entropy, yields
a tight bound around the estimated entropy. We emphasize that our aim, here, is to put
forth simple heuristics to estimate a numerical value for the entropy of neural activity;
we are not concerned with rates of convergence as a function of data volume, nor with
asymptotics otherwise. Furthermore, we have disregarded the question of the variance
of estimations (but see below), because the bias is known to overwhelm the variance.
However, we mention that the naive entropy estimate over group A of course varies from
experiment to experiment; as a result, our upper bound is an ‘approximate upper bound’.
The uncertainty in the estimate of the entropy of group A can be evaluated via the
variability of the counts, mµ.

Our simple estimation scheme may be modified or refined in a number of ways. For
example, one may wonder whether it would make more sense to define group B as made
up of all the patterns represented not at most a single time in the data, but at most q
times in the data. Doing so would make the estimate of the entropy of group A more
reliable, because counts are more faithfully representative of probabilities in the case of
large counts. But it would also shift some of the probability weight from group A to group
B, which causes the bias and on the entropy of which our handle is a relatively rough upper
bound. We expect that, in most cases, it would be unfavorable to thus trade bias against
a reduced variance—but it is a quantitative question, to be studied in specific instances
of data sets. Still, conceptually, one can say that one-counts are ‘morally di↵erent’ from
q-counts: if M is su�ciently large, seeing a given pattern at least twice in an experiment
indicates that this pattern is likely; but if it is seen only a single time, there is no way to
argue that it is likelier than an unobserved pattern. We note that a tacit assumption is
that patterns are drawn independently; thus, we assume that spike trains are binned over
a time scale that largely ensures independence among bins.

3.2. Relation with previous work

3.2.1. Paninski’s best upper bound estimator. Paninski’s best upper bound estimator [11]
is obtained by replacing a sum over all possible patterns by a sum over the data set,

Ĥ
BUB

=
MX

j=1

ajhj, (23)
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where hj is equal to the number of patterns that occur exactly j times in the data set,

hj =
⌦X

µ=1

�mµ,j. (24)

For the particular choice of coe�cients aj = � (j/M) log
2

(j/M), we retrieve the maximum
likelihood estimator, Ĥ

MLE

. The average of Ĥ
BUB

defined in equation (23) is then obtained
as

D
Ĥ

BUB

E
=

MX

j=1

aj hhj i

=
MX

j=1

aj

⌦X

µ=1

⌦
�mµ,j

↵

=
⌦X

µ=1

MX

j=1

aj

✓
M

j

◆
pj

µ (1 � pµ)M �j . (25)

For a good estimator, one would like this polynomial form to approximate well the form
of the true entropy,

H = �
⌦X

µ=1

pµlog
2

(pµ) . (26)

In essence, Paninski derives coe�cients, aj, which minimize an error functional. Thus, his
approach is very di↵erent from ours; however, it is similar in that he also treats the rare
patterns di↵erently from the likely patterns. Specifically, in his error functional, he weighs
the ‘local bias’,

� xlog
2

(x) �
MX

j=1

aj

✓
M

j

◆
xj (1 � x)M �j , (27)

where x 2 [0, 1], with a prefactor

f (x) =

(
⌦ if x < 1/⌦,

1/x if x � 1/⌦.
(28)

In other words, the rare patterns are penalized in a more stringent way than the likely
patterns. In our simple scheme, the entropy bound is tightened by submitting the
estimation of the probabilities of the rare patterns to the constraints of the measured
firing rates of the neurons.

3.2.2. Coverage adjusted estimators. Entropy estimators that are conceptually closer to
our proposed scheme are the so-called coverage adjusted estimators [3, 20]. In these, the
set of possible patterns in also divided into two groups but, unlike our prescription, here
the first group (call it group A0) is made up of all the observed patterns, while the second
group (call it group B0) contains all the unobserved patterns. The entropy is then estimated
by making use of two tricks. We note that we cannot take as the estimated values of the
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probabilities, p̂µ, of patterns in group A0 their maximum likelihood values,

p̂µ =
mµ

M
, (29)

because this choice would assign a vanishing probability weight to group B0. We must
suppress these values by the ‘coverage’ of group A0, i.e., by the estimated probability weight
of group A0 . A simple scheme, discussed in the section 3.2.3, indicates that the frequency
of singletons, M

1

/M , provides a good estimate of the total probability weight of the
unobserved patterns. This observation in turn yields a simple prescription for suppressing
the probabilities of observed patterns by an adequate amount, as

p̂µ =

✓
1 � M

1

M

◆
mµ

M
. (30)

However, this prescription is not su�cient to yield an estimate of the entropy, because
it does not carry any information on the contribution of group B0 to the entropy; indeed;
since group B0 is made up of unobserved patterns, we would be hard-pressed to make
any precise statement about these. However, we can still make an adjustment proposed
by Horvitz and Thomson [6], consistent with the existence of group B0, as follows. They
considered a problem in which one would like to estimate the total sum of ⌦ numbers xµ,

S =
⌦X

µ=1

xµ. (31)

The twist, here, is not only that the samples, � ⌘ (xµ1 , xµ2 , . . . , xµM ), are under-
representative, with M < ⌦, but also that the labels, µ

1

, . . . , µM , are drawn with (in
general, non-uniform) probability, pµ. The naive estimator

Ŝ =
X

labels µ observed
in the sample �

xµ (32)

is biased because a given value xµ will be under-represented or over-represented depending
upon the probability with which it is present in the sample. Horvitz and Thomson proposed
instead the estimator given by

Ŝ =
X

labels µ observed
in the sample �

xµ

⇡µ
, (33)

where ⇡µ is the probability with which label µ is observed in the sample. This estimator
can be trivially rewritten as

Ŝ =
MX

i=1

�ixµi , (34)

with �i = (mµi⇡µi)
�1; as before, mµ denotes the number of times the label µ appears in the

sample (i.e., the count). Using this form and that of the probability of a given (ordered)
sample,

p (�) = pµ1 · pµ2 · · · · · pµM , (35)
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we can show readily that this estimator is unbiased,

D
Ŝ
E

=
X

all �

p (�)
MX

i=1

�ixµi

= M
X

all �

p (�)
xµ

mµ⇡µ

= M
X

all �

MX

m=1

✓
M � 1

m � 1

◆
pm

µ (1 � pµ)M �m xµ

m⇡µ
. (36)

However, this expression is none other than the full sum in equation (31), since

MX

m=1

✓
M � 1

m � 1

◆
pm

µ (1 � pµ)M �m M

m
= 1 � (1 � pµ)M , (37)

which amounts, precisely, to the probability that label µ appears in the sample, ⇡µ.
We can translate these two prescriptions—coverage adjustment and Horvitz–Thomson

adjustment—in the case of entropy estimation, by setting xµ = �pµlog
2

(pµ), and we obtain
the coverage adjusted estimator of entropy, as

Ĥ
CAE

= �
X

µ in group A

!

p̂µlog
2

(p̂µ)

1 � (1 � p̂µ)M , (38)

where p̂µ is given in equation (30). It is worth noting the similarities and di↵erences
between this estimator and the one we propose in this paper. As in our case, the coverage
adjusted estimator divides the data into two groups—‘known’ and ‘unknown’—and it
adjusts the values of naive probability estimates as a function of the weight of singletons
(one-counts in the data). In contrast to our case, it includes the singletons in the ‘known’
group and does not rely upon any estimate of probabilities within the ‘unknown’ group.
In our scheme, the ‘unknown’ group is, in fact, partially known: from singletons, we derive
enough knowledge about the firing properties of neurons to be able to approximate the
probabilities in the (largely) ‘unknown’ group and, as a result, bound its entropy.

3.2.3. The Good–Turing Bayesian scheme. In naive estimates of the entropy, the
normalized count (i.e., the frequency), mµ/M , is equated to the probability of a given
pattern. Good points out that, in a Bayesian framework, one can make a finer estimate;
he reports the method in [5], where he also mentions that it was suggested to him by
Turing. In essence, the method is rather simple and goes as follows. Consider a pattern
that has appeared m times in the data. If the set of true probabilities is known to us, we
can calculate the probability that this pattern is the pattern labeled by µ, as

⇢µ ⌘
⇣

M
m

⌘
pm

µ (1 � pµ)M �m

P
⌦

⌫=1

⇣
M
m

⌘
pm

⌫ (1 � p⌫)
M �m

. (39)
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As a result, the ‘average estimated probability’ associated with this pattern, which we
denote by hp̂ (m)i, is obtained as

hp̂ (m)i =
⌦X

µ=1

pµ⇢µ

=

P
⌦

µ=1

⇣
M
m

⌘
pm+1

µ (1 � pµ)M �m

P
⌦

⌫=1

⇣
M
m

⌘
pm

⌫ (1 � p⌫)
M �m

=
m + 1

M + 1

P
⌦

µ=1

⇣
M+1

m+1

⌘
pm+1

µ (1 � pµ)(M+1)�(m+1)

P
⌦

⌫=1

⇣
M
m

⌘
pm

⌫ (1 � p⌫)
M �m

. (40)

Now, the denominator is simply the average number of patterns that appear m times
in an M -point data set and, similarly, the numerator is the average number of patterns
that appear m + 1 times in an (M + 1)-point data set. If we estimate these from the
data—estimates which are more robust than estimates of the probabilities themselves—
we obtain the estimate of the probability of pattern µ, if it has appeared m times in the
data, as

p̂µ (m) =
m + 1

M + 1

nM+1

(m + 1)

nM (m)
⇡ m + 1

M

nM (m + 1)

nM (m)
, (41)

where nM (m) is the number of di↵erent patterns that appear m times each in the data.
This estimate ought to be contrasted with the naive estimate,

p̂µ =
m

M
. (42)

The above arguments suggest that we would be better o↵ using the Good–Turing form,
rather than the naive one, in calculating our bounds. Another point of interest also emerges
from this framework: the Good–Turing form implies that the total probability weight of
all the patterns that appear m times each in the data is estimated at nM (m + 1) /M . In
particular, the total weight of the unobserved patterns is estimated to be the frequency
of singletons, M

1

/M . This conclusion provides a justification for the coverage adjustment
discussed in section 3.2.2, but it di↵ers from our simple procedure in which we took
the frequency of singletons, M

1

/M , to represent the combined probability weights of the
singletons and the unobserved patterns. We attempted to refine our estimation procedure
by using the Good–Turing estimates of activity pattern probabilities, instead of their naive
(count) estimates, to obtain a tighter upper bound, Ĥ>. However, there was considerable
sampling variability in the values of nM(m) for intermediate values of m, yielding a
prohibitive variability in Ĥ> (data not shown).

3.2.4. Maximum entropy models and the reliable interaction model. In past years,
maximum entropy models [7] have emerged as promising formalisms for summarizing
the statistical properties of large, correlated neural populations; more specifically,
for predicting the probabilities with which population activity patterns occur and
for estimating the corresponding entropy. In these models, some activity-dependent
quantities, fa (µ), are averaged over the data, and this average is used to constrain
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the entropy, which is maximized otherwise. This procedure yields an estimate of the
probability, as

p̂{fa},µ = exp

 

�
X

a

�afa (µ)

!

, (43)

where the values of the prefactors, �a, are chosen so that the average of fa (µ) over
the distribution p̂{fa},µ matches its average over the data. The resulting probability
distribution is the one that maximizes entropy while fixing the average of the functions
fa (µ). Such a procedure thus provides an upper bound to the entropy of the output of a
neural population.

If the population is large or if the data are not voluminous enough, the derivation of
a maximum entropy model from neural data can become computationally very di�cult.
First, the functions fa (µ) have to be chosen to be ‘simple enough’ so that the data o↵er
a su�ciently e�cient sampling to calculate their average reliably. In many cases, fa (µ)
have been chosen as low-order products of the single-cell activities,

f
0

(µ) = 1, (44)

f
1,i (µ) = si (µ) , (45)

f
2,ij (µ) = si (µ) sj (µ) , (46)

where si (µ) is the activity of cell i in pattern µ. Note that the above choice for f
0

(µ) will
yield a probability distribution normalized to unity. In most studies, n-point higher-
order terms do not appear because the data are not voluminous enough for a reliable
estimate of the corresponding moments for all choices of subsets of n neurons. Second,
the numerical optimization of the parameters in the model requires a thorough sampling
of the estimated probability distribution, which becomes computationally prohibitive for
large enough neural populations.

While pairwise maximum entropy models have been applied to populations of more
than one hundred neurons [17, 14], careful inspection reveals that higher-order interactions
may become statistically significant for populations with more than 40 neurons. In order
to address this point, an alternative approach has been introduced recently, under the
name of the reliable interaction model [4]. Thus, the reliable interaction model takes well-
sampled probabilities as its constraints and estimates the probabilities of rare patterns by
extrapolation, assuming a form

p̂{fa},µ = exp

 

↵
0

+
NX

i=1

↵isi (µ) +
NX

i,j=1

↵ijsi (µ) sj (µ)

+
NX

i,j,k=1

↵ijksi (µ) sj (µ) si (µ) + · · ·
1

A . (47)

In general, such an approach would fail. The reason why it works well for neural data is
that, if the binning in time is su�ciently fine, the activity patterns are very sparse: only a
small minority of patterns, each with very few spikes across the population, occur reliably.
As a result, only a small subset of higher-order coe�cients (‘interactions’) are found to be
non-vanishing and the rest can be neglected. Presumably, also, the structure of correlation
in neural systems is such that only a moderate number of higher-order interaction terms
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are non-vanishing, but these are highly relevant in shaping the distribution of activity.
In practice, non-vanishing interactions appear up to fourth order and these are so sparse
that the total number of non-vanishing interactions sums to less than the corresponding
number of interactions in the pairwise maximum entropy model [4].

We note that, in fact, the reliable interaction model can be viewed as resulting from
an approximate maximum entropy procedure, with the particular choice of functions

f
0

(µ) =
Y

i

�iµ,0, (48)

f
1,i (µ) = �iµ,1

Y

j 6=i

�jµ,0, (49)

f
2,ij (µ) = �iµ,1�jµ,1

Y

k 6=i,j

�kµ,0, (50)

f
3,ijk (µ) = �iµ,1�jµ,1�kµ,1

Y

l 6=i,j,k

�lµ,0, (51)

. . . , (52)

where �iµ,0(1)

is a Kronecker delta equal to 1 if the ith neuron in pattern µ is silent
(active) and equal to 0 otherwise. If we set, by convention, that si (µ) = 1 if the ith
neuron in pattern µ is active and si (µ) = 0 if it is silent, a maximum entropy procedure
yields the form of equation (47) up to higher-order corrections (which come with the
particular structure that derives from expanding the products of terms �iµ,0 = 1 � si (µ)).
An important point to note, here, is that the constants in the distribution of equation (47)
are chosen so as to match the pattern probabilities that can be estimated reliably directly
from the data, but they do not ensure the normalization of the distribution. While the
reliable interaction model captures well some aspects of the neural activity statistics [4],
it does not represent a well-defined probabilistic model. A direct implementation of
the normalization constraint su↵ers from the same sampling di�culty as plagues the
usual maximum entropy approaches. Perhaps, this issue can be addressed by one of the
adjustment methods described above.

In sum, maximum entropy models and the reliable interaction model have
complementary strengths: the former are normalized and, hence, yield an estimate of the
entropy, but are intractable for large neural populations; the latter is tractable even in the
context of large populations, provided that the activity is sparse, but is non-normalized
and, hence, cannot be used to estimate entropy. Our simple scheme for estimating entropy
may be viewed as a hybrid of these two approaches. We rely upon the frequently occurring
patterns to make direct estimates of probabilities and we adjust for the rare patterns with
an independent maximum entropy model.
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