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Models of neural responses to stimuli with complex spatiotemporal cor-
relation structure often assume that neurons are selective for only a small
number of linear projections of a potentially high-dimensional input.
In this review, we explore recent modeling approaches where the neu-
ral response depends on the quadratic form of the input rather than on
its linear projection, that is, the neuron is sensitive to the local covari-
ance structure of the signal preceding the spike. To infer this quadratic
dependence in the presence of arbitrary (e.g., naturalistic) stimulus dis-
tribution, we review several inference methods, focusing in particular
on two information theory–based approaches (maximization of stimu-
lus energy and of noise entropy) and two likelihood-based approaches
(Bayesian spike-triggered covariance and extensions of generalized lin-
ear models). We analyze the formal relationship between the likelihood-
based and information-based approaches to demonstrate how they lead
to consistent inference. We demonstrate the practical feasibility of these
procedures by using model neurons responding to a flickering variance
stimulus.

1 Introduction

A basic challenge in sensory neuroscience has been to develop con-
cise descriptions of how neurons encode and transmit information about
the stimulus. Models that attempt to capture the essence of this neu-
ral computation—the transformation of stimuli into spiking responses—
without necessarily being derived from an underlying dynamical or
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biophysical model of neural function are called functional models (see Wu,
David, & Gallant, 2006 for an in-depth review; also Agüera y Arcas, Fairhall,
& Bialek, 2003; Agüera y Arcas & Fairhall, 2003; Hong, Agüera y Arcas, &
Fairhall, 2007; Lundstrom, Hong, & Fairhall, 2008; Ostojic & Brunel, 2011, for
papers that link functional to dynamical models). As a consequence, func-
tional models are usually fully learned from data, and their success depends
critically on two factors: whether typical electrophysiological recordings
can provide adequate data for successful inference of the model’s parame-
ters and whether effective inference algorithms exist for these parameters.
Within these limitations, functional models have dramatically influenced
our view of early sensory processing by mathematically summarizing the
notions of receptive field, linear, and high-order stimulus sensitivity (cap-
tured by the filtering operations of matching order performed on the stim-
ulus), as well as subsequent neural computations leading to the generation
of a spike (captured by the nonlinearities operating on filter outputs).

In the functional modeling framework, the responses of many sensory
neurons can be well characterized by assuming that the initial transforma-
tion of the stimulus is a linear filtering operation, that is, that the response of
the neuron depends on only a single projection k·s(t) of the (possibly high-
dimensional) stimulus s(t) onto the neuron’s linear filter k (see Figure 1a).
This view has been so successful that we tend to use the terms filter and
receptive field interchangeably. For some neurons, however, their descrip-
tion in terms of a single linear filter is insufficient. One of the best-known
examples is that of a complex cell in the primary visual cortex. Complex
cells are characterized by the invariance of their responses to changes in the
phase of the stimulus: their response remains constant as s(t) is changed
into −s(t) by flipping dark regions of the stimulus into bright ones and vice
versa. The simplest way in which such an invariance could be captured
mathematically would be to assume that the stimulus s enters the neural
response squared rather than at linear order. In other words, the stimulus
sensitivity of complex cells is quadratic; it depends on the term sT(t)Qs(t),
where Q is a quadratic filter specific to each cell (see Figure 1c).

Even neurons that are adequately characterized by a single linear filter
when probed by relatively simple stimuli could modulate their responses
strongly when high-order features of the stimulus change. For example,
while retinal ganglion cells exhibit strong center-surround filters, they also
change the gain of their responses with changing contrast, a second-order
stimulus feature, within their receptive fields. Similar cases, where the stim-
ulus sensitivity is purely quadratic (e.g., non-phase-locked auditory mod-
els or some motion-sensitive neurons), or where quadratic features like the
shape of the signal envelope have a strong modulatory effect, are abundant
in the sensory periphery. Additionally, response phenomena beyond phase
invariance in the visual cortex, grouped together as relating to the nonclas-
sical receptive field, could also be manifestations of quadratic or high-order
sensitivity (Zetzsche & Nuding, 2005). This has recently sparked a lot of
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Figure 1: Functional models of neural computation. (a) The instantaneous firing
rate r, or probability per unit time of emitting a spike, in a linear-nonlinear
model neuron is obtained by passing the input signal through a linear filter
k and mapping the resulting value through a point-wise nonlinearity f. (b) A
multidimensional LN model neuron requires the signal to be filtered through K
(here, K = 2) linear filters. The stimulus projections are mapped into the firing
rate through a K-dimensional nonlinear function. (c) The model for quadratic
stimulus sensitivity. The initial filtering step is quadratic (determined by the
matrix Q), and the nonlinear function f is one-dimensional.

interest in developing generic and tractable methods for the functional
characterization of neural responses where the stimulus sensitivity could
be as high as second order.

In this review, we focus on neural models with quadratic stimulus sen-
sitivity and the corresponding inference methods, emphasizing recent ones
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that can be applied to any stimulus ensemble, including fully naturalistic
movies, and also to cases where the quadratic filter Q is a full-rank matrix.
We start with a brief overview of methods for inferring linear stimulus
sensitivity in section 2, which we extend to the discussion of models with
multiple linear features in section 3. We show how quadratic stimulus de-
pendence could arise as a special case of neural models with multiple linear
features and present biologically motivated examples of quadratic stimulus
sensitivity in section 4. We then review several complementary approaches
that can be used to learn quadratic stimulus dependence even when neu-
rons are responding to rich, naturalistic stimuli: we discuss the maximally
informative stimulus energy (Rajan & Bialek, 2012) and the maximization
of noise entropy (Fitzgerald, Rowekamp, Sincich, & Sharpee, 2011; Fitzger-
ald, Sincich, & Sharpee, 2011; Globerson, Stark, Vaadia, & Tishby, 2009) in
sections 5.1 and 5.2 followed by the Bayesian spike-triggered covariance
method (Park & Pillow, 2011) and related extensions of generalized linear
models to include quadratic stimulus dependence in section 5.3.1 We show
the conditions under which information-theoretic and likelihood-based ap-
proaches lead to consistent inference in the appendix.

2 Receptive Fields and Linear Stimulus Dependence

The space of all possible stimuli and the space of all possible neural re-
sponses is vast. Consider, for instance, all possible image sequences inci-
dent on the retina or sets of output spike trains. Our progress in building
functional models must therefore depend on making well-chosen simpli-
fying assumptions. An example of extreme simplification involves varying
the stimulus along a single dimension, as in the case of the orientation or
wavelength of a drifting grating visual stimulus, and representing the out-
put by a single scalar quantity, like the average firing rate in a chosen time
bin. These measurements have traditionally been represented in terms of
tuning curves and have provided basic insights into principles of sensory
(and population) coding (Dayan & Abbott, 2001). However, the relevance of
the tuning curve approach is limited by the choice of the dimension along
which the stimulus is manipulated, which may drastically underestimate
the complexity in the structure of the stimuli to which the neuron actually
responds. Despite these limitations, such studies have helped establish the
concept of a receptive field, the region of stimulus space where changes in
the stimulus modulate the spiking behavior of the neuron.

Central to the receptive field concept is the notion of locality in the
stimulus or feature space. For instance, a ganglion cell in the retina may
be sensitive only to specific changes in light intensity that occur within
a small visual angle (Hartline, 1940). A productive way of capturing this

1We have worked out this problem in parallel with Park and Pillow (2011).
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notion of locality has been to think of a receptive field as one or more filters
that act on the stimulus; only stimulus variations that result in measurable
changes in the filter output have the ability to affect the neural response.
In this view, neurons perform dimensionality reduction by projecting the
stimulus down into a small number of features. Consequently, the success
of data analysis techniques built around this idea must depend on whether
a small number of features or filters suffices to fully account for the neuron’s
sensitivity and its response properties.

Methods based in systems identification theory have provided system-
atic procedures to infer both the receptive fields of neurons as well as
subsequent computations (see Table 1 for an overview of various func-
tional models and related inference techniques). These techniques usually
share two key features. One is that they can (and sometimes must) be used
with stimuli that sample the stimulus space broadly, making no explicit as-
sumptions about which stimulus features are important. This is in contrast
to the restricted stimuli employed for measuring tuning curves. The other
is that the procedures usually involve a series of approximations that can
provably yield a better description of the system if more data are available.
Among the earliest to be used successfully, Wiener and Volterra expansions
helped identify the first- and second-order kernels mapping the stimulus to
response time traces in various systems (Marmarelis & Marmarelis, 1978;
Recio-Spinoso, Temchin, van Dijk, Fan, & Ruggero, 2005; Sakai, 1992; Schet-
zen, 1989; Victor & Knight, 1979; Wiener, 1958). However, in many cases,
the strong intrinsic nonlinearities underlying spike generation require a
large number of terms in Wiener-Volterra expansions, even though the un-
derlying stimulus sensitivity might be much simpler and therefore of low
order.2 Models in which the (possibly linear) projections of the stimulus in
the receptive field were decoupled from the nonlinearities underlying spike
generation, as in linear-nonlinear (LN) architectures illustrated in Figure 1,
made further progress feasible.

LN and LN-like models have been used widely and profitably to predict
the firing rate traces of single sensory neurons, because their parameters can
be easily inferred under suitable conditions. However, the more intriguing
cases are the ones where LN models perform poorly or fail entirely. One
such failure mode is the inability to account for the statistics of neural ac-
tivity beyond the mean firing rate. Specifically, real sensory neurons often
have variability that is smaller than that attributed to Poisson processes (de
Ruyter van Steveninck, Lewen, Strong, & Bialek, 1997); phenomena like

2When we speak of the order (e.g., linear, quadratic), we refer to the order of the kernel
operating on the stimulus, which can be defined unambiguously. In contrast, the order of
the neural processing system as a whole depends on stimulus statistics; for example, high-
order statistical structure in the stimulus can conflate first- and second-order responses of
the system. Likewise, aspects of the response explained by a second-order kernel inferred
though gaussian noise depend on the power spectrum of the input.
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refractoriness and spike frequency adaptation are not captured by LN
models (Berry & Meister, 1998), and in neural populations, uncoupled LN
models fail to reproduce the basic covariance structure of neural activity
(Granot-Atedgi, Tkačik, Segev, & Schneidman, 2012; Pillow et al., 2008;
Schneidman, Berry, Segev, & Bialek, 2006). Some of these issues can be
addressed by adding suitable dynamical complexity beyond the linear fil-
tering stage to make the nonlinearities in spike generation more realistic
(Keat, Reinagel, Reid, & Meister, 2001; Paninski, Pillow, & Simoncelli, 2004)
or by including interactions between neurons in models of neural firing
(Granot-Atedgi et al., 2012; Pillow et al., 2008).

A different kind of failure of LN models rests on the assumption that
stimulus sensitivity occurs through a single linear projection (or a small
number of them). One example is contrast adaptation, where a simple LN
model derived from a white noise stimulus of a certain variance fails to
predict the response to a stimulus with smaller or larger variance (Bac-
cus & Meister, 2002; Borst & Egelhaaf, 1987; van Hateren, 1992; de Ruyter
van Steveninck, Zaagman, & Mastebroek, 1986; Smirnakis, Berry, Warland,
Bialek, & Meister, 1997). Other examples include the failure to account for
the sensitivity of retinal ganglion cells to fine spatial detail (possibly be-
cause of nonlinear summation within the receptive field; Demb, Zaghloul,
Haarsma, & Sterling, 2001; Schwartz et al., 2012), or to stimulus motion
(Berry, Brivanlou, Jordan, & Meister, 1999; Chen et al., 2012; Gollisch &
Meister, 2010; Schwartz, Taylor, Fisher, Harris, & Berry, 2007). Generally
these difficulties emerge clearly when the stimulus statistics change or in-
crease in complexity beyond those used to infer the model, for instance,
by becoming more “naturalistic”—that is, having pairwise temporal and
spatial correlation, skewed first-order histograms, or statistical structure
beyond second order.

The problems with LN models can generally be addressed in two possi-
ble ways. In the first, LN models can be extended to account for a particular
phenomenon on a specific stimulus, for example, by adding a contrast gain
control mechanism (Schwartz & Simoncelli, 2001; Schwartz, Chichilnisky,
& Simoncelli, 2002) or by an ad hoc rescaling of nonlinearities (Brenner, de
Ruyter van Steveninck, & Bialek, 2000) to account for contrast adaptation
in an experiment where the variance of a gaussian input is modulated. The
second approach is to find the complete (or close to complete) set of fea-
tures to which the neuron responds by examining the neural responses to
relatively rich noise stimuli or fully naturalistic stimuli. Noise stimulation
(e.g., white noise) is analytically convenient and can provide easily obtain-
able unbiased estimates of linear filters, but it remains highly unnatural.
While ethologically more relevant, fully natural stimuli can lead to techni-
cal obstacles in model inference, mainly due to the statistical intractability
of the natural ensemble (Geisler, 2008; Simoncelli & Olshausen, 2001). The
choice of the appropriate stimulus deserves a lengthier discussion (e.g.,
Rust & Movshon, 2005), which is beyond the scope of this review. We do,



Learning Quadratic Receptive Fields 1669

however, wish to emphasize two points. First, it has been shown that under
conditions of naturalistic stimulation, even basic filter responses of cells
can change (Sharpee et al., 2006), and response mechanisms that are in-
tractable via noise stimulation become engaged (e.g., Olveczky, Baccus, &
Meister, 2007). As a consequence, finding the complete set of features that
characterize the neural response across different stimulus ensembles is an
elusive goal, and in practice we are often satisfied with results specific to
one rich stimulus type. The second point is methodological: the applica-
bility of some inference techniques is restricted to special stimulus types,
while others permit unbiased inference with arbitrary stimuli, a distinction
we make explicit in the second column of Table 1.

To characterize the sensitivity of a neuron to the selected rich stimulus
ensemble more fully, one can look for multiple linear filters. A number of
approaches exist for this task (see Table 1). While some (e.g. spike-triggered
covariance, STC) permit us to identify several relevant stimulus dimen-
sions, understanding how the corresponding stimulus projections influ-
ence spiking output can be difficult unless we make further simplifying
assumptions. One possible anatomically motivated simplification of a mul-
tifeature LN model is a cascade LN (an LNLN) model, where the nonlin-
early transformed filter outputs are linearly summed and passed through a
spike-generating nonlinearity. Despite some successes (Bölinger & Gollisch,
2012; Gollisch & Herz, 2005; Schwartz et al., 2012), the general problem of
inferring cascading models with multiple linear filters remains technically
challenging (usually involving difficult optimizations). A somewhat sim-
pler LNL system has proven to account for the behavior of the Y-type retinal
ganglion cells very well and is tractable to infer using a sum-of-sinusoids
version of the Wiener formalism (Victor & Knight, 1979; Victor & Shapley,
1979, 1980).

Models in which the stimulus sensitivity is quadratic rather than of lin-
ear order are of particular biological significance, as we briefly touched on
in section 1. Quadratic stimulus dependence is formally a restricted case
of LNLN models, which in turn are an instance of multifeature LN mod-
els. Taken together, biologically motivated quadratic stimulus dependence
provides the necessary mathematical simplifications for the very general
multifeature LN model that make the problem of inferring quadratic mod-
els tractable. Next we briefly introduce multifeature LN models and then
focus specifically on the issue of quadratic stimulus dependence.

3 Multiple Linear Features

In a typical experiment, a neuron can be driven by a synthetic stimulus
containing any desired statistical structure. For probing the visual system,
for example, this stimulus might be a random binary checkerboard, a drift-
ing grating, or full-field light intensity flicker. If the neuron’s response de-
pends solely on the stimulus presented in the recent past of duration T (and
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possibly on its own previous spiking behavior), we can restrict our attention
to stimulus clips s of length ≥T. These clips are drawn from a distribution
P(s) that characterizes the stimulus; the N components of the vector s rep-
resent successive stimulus values in time and optionally across space. Our
task is then to infer the dependence of the instantaneous spiking probability
(firing rate) at time t, on the stimulus s(t) presented just prior to t.

If the neuron is well described by an LN model, where the spiking rate
r is an arbitrary positive, point-wise nonlinear function f of the stimulus
projected onto the filter, r(s) = f (k · s), and the stimulus distribution is
chosen to be spherically symmetric, P(s) = P(|s|), we can use the spike-
triggered average (STA) to obtain an unbiased estimate of the single linear
filter k (de Boer & Kuyper, 1968; Simoncelli et al., 2004). Spike-triggered
covariance (STC) generalizes the filter inference to cases where the firing rate
depends nonlinearly on K ≥ 1 projections of the stimulus, r(s) = f (k1 · s,
k2 · s, . . . , kK · s) (de Ruyter van Steveninck & Bialek, 1988). The number
of relevant linear filters K is equal to the number of nonzero eigenvalues
of the spike-triggered covariance matrix. A successful application of STC
requires P(s) to be gaussian. STC has been used successfully, for example, to
understand the computations performed by motion-sensitive neurons of the
blowfly (Bialek & de Ruyter van Steveninck, 2005), map out the sensitivity
to full-field flickering stimuli in salamander retinal ganglion cells (Fairhall
et al., 2006), explore contrast gain control (Rust, Schwartz, Movshon, &
Simoncelli, 2004; Schwartz et al., 2002), and understand adaptation in the
rodent barrel cortex (Maravall et al., 2007).3

3Before moving on, it seems appropriate to return to the Wiener-Volterra formalism
and contrast it with spike-triggered methods for recovering LN models. The underlying
assumptions of the two approaches may appear to be substantially different: first, be-
cause of the presence of the nonlinear (N) transformation in the LN model, and second,
because the output of the LN model is usually taken to predict the rate of a stochastic
point process, while Wiener-Volterra series are intended for analyzing deterministic sys-
tems (Wiener, 1958). Nevertheless, it is easy to see that when uncorrelated (i.e., white)
gaussian noise is used to extract the filters of the LN model using spike-triggered av-
erage (STA) and spike-triggered covariance (STC), STA and STC also provide unbiased
estimates (up to a scaling factor) of first- and second-order Wiener-Volterra kernels. The
difference arises in subsequent analysis steps. In case of LN models, STA and STC are used
solely as dimensionality-reduction steps to identify the relevant subspace of the stimuli
in which the nonlinear transformation acts, while in the Wiener-Volterra formalism, STA
and STC are literally the first two terms in a functional expansion that provides the best
least-squares fit to the observed firing rate. Victor and Johannesma (1986) have further
demonstrated that the Wiener-Volterra formalism is a special case of a general probabilis-
tic maximum entropy framework for describing the joint distributions of stimuli and the
responses they evoke. In this framework, for example, the classic Wiener-Volterra formal-
ism is recovered if the stimulus distribution is gaussian and the response variable is also
gaussian with additive noise. If the output variable is binary (spike/no spike), the same
maximum entropy approach reduces to identifying LN-type models with exponential
nonlinearities.
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While powerful and simple to use, spike-triggered covariance (STC) is
guaranteed to yield unbiased results only for gaussian stimuli (Paninski,
2003).4 Under this restriction, STC can reliably extract from K = 1 to K ∼ 10
relevant linear filters (Rust et al., 2004) for realistic recording durations. It is
much more difficult to directly sample the K-dimensional nonlinear func-
tion f for K larger than 2 or 3 without making additional assumptions. In case
of quadratic stimulus dependence, however, such a simplification occurs
naturally. Every real, symmetric matrix, including the putative quadratic
filter Q, can be spectrally decomposed into Q =

∑N
i=1 λikik

T
i . The response

of the quadratic model is thus

r = f (sT · Q · s) = f

[
N∑

i=1

λi(ki · s)2

]

, (3.1)

explicitly demonstrating that quadratic models are special cases of the
LNLN cascade, where the first linear stage applies the filters ki, the first
nonlinear stage squares the projections, the second linear stage is a summa-
tion with weights λi, and the final transformation applies the nonlinearity
f (·). This means that to infer quadratic dependence, we can identify the
relevant stimulus filters using STC, parameterize the nonlinearity as a 1D
nonlinear function of a linear combination of squared filter projections, and
use maximum likelihood to infer the parameters of the nonlinearity (see,
e.g., Schwartz et al., 2002).

Unfortunately, the gaussian ensemble can be a serious restriction for
neurons that do not respond well (or at all) to unstructured stimuli; further-
more, under exclusively gaussian stimulation, we are likely to miss several
neural mechanisms that depend on naturalistic statistical structure such as
correlations and intermittency. A versatile method should therefore be able
to successfully infer the multiple-filter dependence of a neuron probed with
any stimulus of arbitrary complexity. Maximally informative dimensions
(MID) (Sharpee et al., 2004) or likelihood inference for single-filter general-
ized linear models (Gerwinn et al., 2010; Paninski, 2004; Pillow, 2007; Pillow
et al., 2008; Truccolo et al., 2004) have been used to this end when the de-
pendence is linear, but until recently, the attempts to incorporate quadratic
stimulus dependence into procedures that can be used with arbitrary stim-
uli have been uncommon.

4Specifically, if stimuli are nongaussian (even if spherically symmetric), there exist
nonlinear functions f for which filter estimates given by STC will be biased. An example
of such bias with the binary stimulus is given in Schwartz et al. (2006).



1672 K. Rajan, O. Marre, and G. Tkačik

4 Quadratic Stimulus Dependence

Let us start by discussing a few examples of quadratic stimulus dependence.
Consider a situation where the neuron has a vanishing spike-triggered
average, as with complex cells, non-phase-locked auditory neurons (Recio-
Spinoso et al., 2005), or motion-sensitive neurons. In these cases, a natural
starting point would be a search for more than a single linear filter. For a
model complex cell in the visual cortex, we would find two phase-shifted
vectors k1 and k2 that together form a quadrature pair, such that the most
informative variable concerning the neuron’s firing is the power,

r(s) = f [(k1 · s)2 + (k2 · s)2]. (4.1)

Similarly, models of contrast gain control in the retina also include sensi-
tivity to second-order features in the stimulus, with the spiking probability
of the form (Schwartz et al., 2002),

r(s) =
f (k0 · s)

∑M
i=1 wi(ki · s)2 + σ 2

, (4.2)

where the quadratic terms in the denominator scale down the gain at high
contrast (in this case, however, the neuron has a nonvanishing linear filter
k0).

A simulated model neuron showing contrast adaptation is shown in
Figure 2a, featuring first- as well as second-order stimulus sensitivity. The
model neuron is probed with a flickering variance stimulus, in which the
variance of white noise (with a very short correlation time) is dynamically
modulated by a noise process correlated over a longer timescale (Fairhall,
Lewen, Bialek, & de Ruyter van Steveninck, 2001). With this synthetic stim-
ulus, the separation of timescales allows us to partition the stimulus into
chunks with approximately constant luminance variability σ 2

L . This variance
is directly related to the temporal contrast, C = σL/L̄, because the average
mean light intensity L̄ is kept constant. Within each stimulus segment, we
can use STA to recover the LN model, as shown in Figures 2b and 2c. Our
real goal, however, is to infer a joint model valid across the whole stimu-
lus ensemble and ultimately to do so with naturalistic stimuli of scale-free
power spectra and no clear separation between the fast fluctuations and the
slow variance modulation.

We can describe these and similar examples by a generic quadratic model
neuron that is sensitive to both a second-order function of the input (param-
eterized here by a real, symmetric matrix Q) as well as a linear projection
(parameterized by the filter k0):

r(s) = f (k0 · s, sT · Q · s). (4.3)
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(a) (b) (c)

Figure 2: A synthetic contrast-adapting neuron probed with the flickering vari-
ance stimulus. The instantaneous spiking rate is given by r(t) = f (k0 · s(t) +
sT(t) · Q · s(t) + µ), where f (·) = log(1 + exp(·)), µ is an offset (bias), and the
quadratic kernel Q is a rank 2 matrix with a quadrature pair of eigenvectors.
(a) The stimulus is sampled at % = 1ms and is given by s(t) = exp[A(t)]w(t),
where w(t) is an uncorrelated white noise of fixed variance and A(t) is a gaussian
noise process with correlation time τc = 1s. The stimulus can be chopped into
segments of duration τ ≤ τc, which can be sorted by local contrast C (grayscale;
lighter shade denotes higher contrast). Spike-triggered average analysis can be
applied to recover effective LN models for all stimulus segments sharing the
same local contrast. (b) The linear filters recovered at various contrast levels
C (grayscale; filters are displaced along vertical axis for readability). At lower
contrasts, the neuron produces fewer spikes, making the filter estimate noisier,
but the shape of the filter is constant across a range of C and closely approx-
imates the model filter k0. (c) The nonlinearities for different contrast levels
C (grayscale; nonlinearities displaced along vertical axis for readability). The
slope of the nonlinearity decreases with increasing contrast (although the adap-
tation is not perfect in this example) to prevent rapid saturation of the response
at high C.

Graphically, while a threshold LN model with a linear filter corresponds to
a classifier whose separating hyperplane is perpendicular to the filter, the
proposed LN model with a threshold nonlinearity and a quadratic filter Q
is selective for all stimuli that lie outside an N-dimensional ellipsoid whose
axes correspond to the eigenvectors of Q.

For the contrast gain control model described in equation 4.2, the matrix
Q is of rank M, with eigenvalues wi and eigenvectors ki, i > 0. The complex
cell example described in equation 4.1 has k0 = 0 and Q =

∑2
i=1 kik

T
i ; in

other words, Q is a rank 2 matrix. While these examples feature quadratic
dependences involving matrices of low rank, it is possible to extend
quadratic models to biologically relevant cases where the matrix is of high
rank (Rajan & Bialek, 2012). For example, the probability of spiking could
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be a nonlinear function of the power p(t), r(t) = f [p(t)], where the power
is given by

p(t) =
∫

dτ f2(τ )

[∫
dt′ f1(t − τ − t′)s(t′)

]2

. (4.4)

Here s(t) is the stimulus, and f1 and f2 are linear filters such as those used to
describe non-phase-locked auditory neurons. If the smoothing time of the
second filter f2 is larger than that of the first filter f1, Rajan and Bialek (2012)
have shown that the quadratic kernel Q for this model has a rich (full-rank)
spectrum.

5 Inferring Quadratic Stimulus Dependence from Data

In this section we review methods that permit the inference of low- or
full-rank quadratic kernels, Q, with arbitrary stimuli.

5.1 Finding Quadratic Filters Using Information Maximization. De-
spite their utility and simplicity, spike-triggered methods require the use of
statistically simple stimuli and, in particular, exclude the use of stimuli with
naturalistic statistics (e.g., those with 1/ f spectra, nongaussian histograms
or high-order correlations). This is a big challenge when studying neurons
beyond the sensory periphery that are responsible for extracting high-order
structure or neurons that remain unresponsive to white noise presentations
(e.g., those in the auditory pathway). To address this issue and recover filters
in an unbiased manner with an arbitrary stimulus distribution, maximally
informative dimensions (MID) (Kouh & Sharpee, 2009; Sharpee et al., 2004,
2006) have been developed and utilized to recover simple cell receptive
fields, among other examples. MID looks for a linear filter k that maxi-
mizes the information between the presence or absence of a spike and the
projection x of the stimulus onto k, x = k · s. Information per spike is then
given by the Kullback-Leibler divergence of P(x|spike), the spike-triggered
distribution (the distribution of stimulus projections preceding the spike),
and P(x), the prior distribution (the overall distribution of projections),

Ispike =DKL
[
P(x|spike)||P(x)

]
=

∫
dx P(x|spike) log2

P(x|spike)

P(x)
. (5.1)

Given the spike train and the stimulus, finding k becomes an information
optimization problem in Ispike that can be solved using various annealing
methods, although the existence of local extrema could make this a non-
trivial task.

Spike-triggered methods and MID do not explicitly assume a form for
the nonlinearity f (·) in the LN model; instead, they provide unbiased
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estimates of the filters, and once the filters are known, the nonlinearity can
be reconstructed using the Bayes’ rule from the sampled spike-triggered
and prior distributions,

f (x) ∝ P(spike|x) = P(x|spike)P(spike)

P(x)
, (5.2)

where P(spike) is directly proportional to the average firing rate during the
experiment.

In classical MID, one finds a (set of) linear filter(s) by maximizing
equation 5.1 with respect to k. To generalize this inference method to
quadratic stimulus dependence, a naive approach would make use of the
spectral decomposition in equation 3.1. One would try recovering the
quadratic dependence of Q in equation 4.3 by multidimensional MID (see
Table 1), hoping to infer all {ki} as orthogonal informative dimensions.
While formally true, this is infeasible in practice because maximizing the
mutual information would involve sampling N-dimensional distributions
from stimulus samples that are limited in number by the number of spikes
(Sharpee et al., 2004). Information-theoretic STC (iSTAC) evades this prob-
lem, but at the cost of going back to gaussian stimuli and assuming a gaus-
sian spike-triggered distribution; under those restrictions, it can be used to
infer quadratic stimulus dependence (Pillow & Simoncelli, 2006).

To address this problem efficiently without imposing restrictions on the
prior and spike-triggered ensembles, the inference problem can be formu-
lated by assuming quadratic dependence on the stimulus from the start,
as proposed in Rajan and Bialek (2012). A quadratic filter Q can be recon-
structed from an observed spike train by maximizing the information in
equation 5.1, where x is now given by x = sT · Q · s. Taking a derivative of
equation 5.1 with respect to Q gives us a gradient,

∇QI=
∫

dx PQ(x)
[〈

ssT∣∣x, spike
〉
−

〈
ssT∣∣x

〉] d
dx

(
PQ(x|spike)

PQ(x)

)

, (5.3)

where 〈 · 〉 indicates averaging over the spike-triggered and prior distri-
butions, respectively, and the subscript Q makes the dependence of the
probability distributions explicit. Only the symmetric part of Q contributes
to x, and the overall scale of the matrix is irrelevant to the information, mak-
ing the number of free parameters N(N + 1)/2 − 1. This approach makes
the inference problem tractable even when Q is of high rank.

To learn the maximally informative stimulus energy (MISE) or the
quadratic filter Q, we can ascend the gradient in successive learning steps
(Rajan & Bialek, 2012),

Q → Q + γ ∇QI. (5.4)
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The probability distributions within the gradient are obtained by comput-
ing x for all stimuli, choosing an appropriate binning for the variable x, and
sampling binned versions of the spike-triggered and prior distributions.
The 〈ssT〉 averages are computed separately for each bin, and the integral in
equations 5.1 and 5.3 and the derivative in equation 5.3 are approximated
as a sum over bins and as a finite difference, respectively. To deal with local
maxima in the objective function, we can use a large starting value of γ and
gradually decrease γ during learning. This basic algorithm can be extended
by using kernel density estimation and stochastic gradient ascent and an-
nealing methods, but we do not report these technical improvements here.

It is also possible to select an approximate linear basis in which to expand
the matrix Q by writing

Q =
M∑

µ=1

αµB(µ). (5.5)

The basis can be chosen so that increasing the number of basis components
M allows the reconstruction of progressively finer features in Q. We consid-
ered as {B(µ)} a family of gaussian bumps that tile the space of the N × N
matrix Q and whose scale (standard deviation) is inversely proportional
to

√
M. For M → N2/2, the matrix set becomes a complete basis, allowing

every Q to be exactly represented by the vector of coefficients α. In such a
matrix basis representation, the learning rule becomes

αµ → αµ + γ

N∑

i, j=1

∂I
∂Qi j

B(µ)
i j , (5.6)

where applying the chain rule on ∇QI yields the Trace[∇Q(α) · B] update
term for each step.

We illustrate this approach with two examples. In the first example,
we make use of the matrix basis expansion from equation 5.5 to infer a
quadratic kernel K that is of high rank. For K, we used a highly structured
500 × 500 matrix as shown in Figure 3a. While this is not an example of a
receptive field from a real neuron, it illustrates the validity of the approach
even when the response has an atypical and highly structured dependence
on the stimulus. The stimuli were natural image clips from the Penn Natu-
ral Image database, flattened into a high-dimensional vector representation
s (Tkačik et al., 2011), and the spikes were generated by thresholding the
term sT · K · s. Gaussian basis matrices, similar to the 225 shown in Fig-
ure 3b, were used to expand the quadratic kernel, reducing the number of
free parameters from approximately 2.5 × 105 to a few hundred. We start
the gradient ascent with a large γ value of 1 and progressively scale it
down to 0.1 near the end of the algorithm; Figure 3e shows the information
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Figure 3: Reconstructing a high-rank quadratic filter using stimuli extracted
from natural scenes. (a) A complex high-rank matrix K is used as a quadratic
filter for a model neuron that fires whenever sT · K · s exceeds a fixed threshold.
K is thus the “true” quadratic filter for our threshold quadratic model neuron.
(b) The collection of 225 gaussian matrix basis functions whose peaks densely
tile the matrix space is shown here. A trial matrix is constructed as a linear sum
(with coefficients {αµ}) of the basis matrices, and information optimization is
performed over {αµ}. (c) Normalized reconstruction error, shown by the filled
circle, decreases as the number of basis functions M increases from 4 to 400. With
enough data, perfect reconstruction is possible as the number of basis functions
M approaches the number of independent pixels in K. The two open circles
show reconstructions with M = 100 or M = 225 basis functions, respectively.
(d) The maximally informative stimulus energy Q after maximizing mutual
information using 400 basis functions is shown here. (e) Mutual information
increases as learning progresses according to equation 5.4, peaks at the 40th
step, and remains unchanged thereafter. Learning step 100 is the point where
the maximally informative Q is extracted and plotted in panel d.

plateauing in about 20 learning steps. The maximally informative quadratic
filter reconstructed from 400 basis coefficients is shown in Figure 3d. Figure
3c demonstrates how the root-mean-squared reconstruction error system-
atically decreases as the number of basis functions M is increased from 4 to
400, improving precision. Insets show two inferred matrices with M = 100,
corresponding to the first open circle, showing a marked improvement
with M = 225, corresponding to the second open circle. Reconstruction
error drops to approximately 1% for M = 400.

In contrast to standard MID where the number of spikes required grows
exponentially in the number of filters extracted, the data requirement for
this approach is proportional to the square of the stimulus dimension for
a matrix kernel with no additional structural simplifications (these data
requirement- and performance-related issues are explored in detail in Rajan
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& Bialek, 2012). For the examples shown in this review, expansion in matrix
basis reduces this number to the order of stimulus dimension, making this
procedure pertinent to experimentalists.

The second example shows the MISE analysis of the synthetic neuron
presented in Figure 2 where the stimulus-response relationship is more
biologically realistic. Here, a smooth nonlinear function f is used, and the
model has a linear and a quadratic kernel. The analysis is applied to the
flickering variance stimulus without partitioning it into regions of fixed
contrast. With ∼2 × 104 spikes, the method recovers the linear filter k0 as
well as the quadratic kernel, which turns out to have the two dominant
eigenvectors, k1 and k2, corresponding to the quadrature pair of filters
used to construct Q, as shown in Figure 4b.

These examples show that quadratic filters can be extracted using in-
formation maximization for both low-rank and full-rank matrices, under
natural stimulation and with realistic numbers of spikes. Importantly, for
cases where the stimulus sensitivity is both linear and quadratic, MISE does
not explicitly assume that the collective effect of two filtering operations is
necessarily additive, that is, that x = k0 · s + sT · Q · s; rather, the depen-
dence can be an arbitrary 2D nonlinear function, f (k0 · s, sT · Q · s). Unlike
the quadratic generalizations of GLM presented below, this allows MISE
to fully recover forms of contrast gain control that have a parametric form
similar to equation 4.2.

5.2 Finding Quadratic Filters Using Maximization of Noise Entropy.
Another information-theoretic approach for inferring single-neuron sensi-
tivities is derived from the principle of noise entropy maximization (Fitzger-
ald, Rowekamp et al., 2011; Fitzgerald, Sincich et al., 2011; Globerson et al.,
2009). Suppose that the spiking or silence of a chosen neuron in a time
bin indexed by t is represented by a binary variable yt ∈ {0, 1}. From data,
we can reliably estimate certain statistics of the neural response, such as
the average spiking rate 〈yt〉t , the spike-triggered average 〈yts(t)〉t , or the
spike-triggered covariance 〈yts(t)s(t)

T〉t , where the brackets 〈 · 〉t denote
averaging across the duration of the experiment. In general, all of these
statistics are of the form 〈Oµ(s)yt〉t , where µ indexes the different operators
whose expectation values we are computing.

The crucial step is to look for maximum entropy approximations to
P(y|s), the distribution of the (binary) neural response given the stimulus.
Maximum entropy distributions are as unstructured (random, therefore
parsimonious) as possible with the constraint that they exactly reproduce
the measured expectation values of a chosen set of statistics, {Oµ} (Jaynes,
1957a, 1957b). When the variable y is binary, it can easily be shown that
these distributions have the form of the logistic function,

P(y = 1|s) = 1
1 + e−F(s)

, (5.7)
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Figure 4: Recovering the synthetic model of the contrast gain control neuron
using a flickering variance stimulus. The spikes were simulated using the same
model presented in Figure 2. (a) The true quadratic kernel of the model is a ma-
trix of rank 2 with the two filters combining in quadrature to estimate the signal
power or variance. (b) The reconstructed kernel using the quadratic extension
of the GLM. The space of matrices was spanned by an 85-dimensional basis of
gaussian bumps (some resulting granularity is obvious in the reconstruction).
The dominant eigenvectors of the inferred matrix are plotted in (c) with circles
(solid black lines show the true values) along with the recovered linear filter
(circles) and its true value (solid black line). Inferring of the same model using
MISE shows convergence in (d) and the recovered quadratic kernel is plotted
in (e). (f) The linear filter and the eigenvectors of the quadratic kernel recovered
with MISE (circles), compared to the true values (black solid line). Note that
quadratic filter eigenvectors are only determined up to a sign.

where F resembles the free energy in statistical physics,

F(s) =
∑

µ

λµOµ(s), (5.8)

and λµ are the Lagrange multipliers that have to be set such that the set of
statistics measured in the data equals the expectation values of the same
operators under distribution P, that is, 〈Oµ(s)y〉P = 〈Oµ(s)y〉t . To apply
this general framework to the inference of quadratic filters, Fitzgerald,
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Rowekamp et al. (2011) choose the mean firing rate, STA and STC as con-
straints, which yields the following response distribution:

P(y = 1|s) = 1
1 + exp(µ + k0 · s + sT · Q · s)

, (5.9)

where {µ, k0, Q} act as the Lagrange multipliers λµ conjugated to the oper-
ators {y, ys, yssT}. Numerically, the task is to solve for parameters {µ, k0, Q}
that satisfy a set of constraints: 〈y〉t = 〈y〉P (matching the measured mean
firing rate to that of the model), 〈ys〉t = 〈ys〉P (matching the measured STA
to that of the model), and 〈yssT〉t = 〈yssT〉P (matching the measured STC to
that of the model). This is a convex optimization task and can be solved by
conjugate gradient descent.

An attractive feature of this approach emerges when we rewrite the
information per spike I(spike; s) as a difference between the total and the
noise entropy,

I(spike; s) =
∑

s

P(s)
∑

y

P(y|s) log2
P(y|s)

P(y)

= S[P(y)] − 〈S[P(y|s)]〉s, (5.10)

where S[P(x)] = −
∑

x P(x) log2 P(x) is the entropy of P(x). The first term
(total entropy) is fully determined by the probability of spiking 〈y〉t ,
S[P(y)] = −〈y〉t log2〈y〉t − (1 − 〈y〉t ) log2(1 − 〈y〉t ), because y is a binary
variable. The mean firing rate is one of the statistics constrained in the
model for P(y|s), ensuring consistency. Since our model for P(y|s) has max-
imum entropy given the observed constraints, we are effectively setting an
upper bound on the noise entropy 〈S[P(y|s)]〉s and therefore a lower bound
on the mutual information I. As more and more statistics O(s) are included
as constraints into the maximum entropy model for equation 5.7, the noise
entropy must progressively drop and information must increase toward
the true value (which is bounded by the output entropy). At the point
where this lower bound on information meets the actual information per
spike (which can be empirically estimated from repeated stimulation; see,
e.g., Brenner et al., 2000), we obtain the complete set of relevant stimulus
statistics {Oµ} that characterize the sensitivity of the neuron.

Fitzgerald, Rowekamp et al. (2011) show that this framework is appli-
cable for inferring quadratic neural filters on synthetic and real data and
compare it to MID. This method is applicable to any stimulus ensemble but
requires assumptions beyond those needed for MID or MISE—namely, that
the nonlinear function is logistic and that the contributions of the linear and
quadratic filters combine additively. The advantage of this method is that
the optimization problem remains convex, does not suffer from the expo-
nential curse of dimensionality (like multidimensional MID), and is flexible,
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allowing different constraints (beyond the STA and STC) to be used for con-
structing models of the stimulus-conditional distribution P(y|s).

5.3 Finding Quadratic Filters in a Likelihood Framework: Extensions
to GLM and Bayesian STC. A powerful technique for modeling neural
spiking behavior is the generalized linear model (GLM) framework (Panin-
ski, 2004; Truccolo et al., 2004). Recently, GLM has been used to account for
the stimulus sensitivity, dependence on spiking history, and connectivity
in a population of 27 retinal ganglion cells in the macaque retina (Pillow
et al., 2008). For a single neuron, the model assumes that the instantaneous
spiking rate r(t) is a nonlinear function f of a sum of contributions,

r(t) = f
[
k · s(t) + q · y(t−) + µ

]
, (5.11)

where k is a linear filter acting on the stimulus s, q is a linear filter acting
on the spiking history y(t−) of the neuron, and µ is an offset or an intrinsic
bias toward spiking or silence. When the stimulus and the spike train are
discretized into time bins of duration %, the probability of observing (an
integral number of) yt spikes is Poisson, with a mean given by rt% (where
the subscript indexes the time bin). Here, we neglect the history dependence
of the spikes (with no loss of generality) and focus instead on the stimulus
dependence; since each time bin is conditionally independent given the
stimulus (and past spiking), the log likelihood for any spike train {yt} is
(Pillow, 2007),

log P({yt}|s) =
∑

t

yt log rt − %
∑

t

rt + c, (5.12)

where c is independent of both µ and k. This likelihood can be maximized
with respect to µ and k (and, optionally, with respect to g) given ade-
quate spikes, providing an estimate of the filters from neural responses
to complex, even natural stimuli. In contrast to maximally informative ap-
proaches, such as the stimulus energy derived in section 5.1 (Rajan & Bialek,
2012), the functional form of the nonlinearity f is an explicit assumption in
likelihood-based methods like GLM. For specific classes of the function f,
such as f (z) = log[1 + exp(z)], exp(z), or 0z1, the likelihood optimization
problem is convex, and gradient ascent is guaranteed to find a unique global
maximum.

While the tractability consequent to convexity of the objective function
is a big strength of this approach, the disadvantage is that if the chosen
nonlinearity f is different from the true function f ′ used by the neuron, the
filters inferred by maximizing likelihood in equation 5.12 could be biased.
If we relax the stringent requirement for convexity, we can choose more
general nonlinear functions for the model, for example, by parameterizing
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the nonlinearity in a point-wise fashion and inferring it jointly with the
filters. For this discussion, however, we assume that f has been selected from
the specific class of nonlinearities guaranteed to yield a convex likelihood
function.

How can we extend GLM to situations where the neuron’s response
is more complex than a single linear projection of the stimulus? We start
with a proposal and follow up with a review of Park and Pillow (2011),
which has provided a fuller analysis and several interesting extensions.
One possibility is to expand the stimulus clip s of dimension N into a larger
space first, for instance, by forming ssT (of dimension N × N), and then
operate on this object with a filter:

∑N
i, j=1(sis j)Qi j. Such a term can be added

to the argument of f in the model exemplified in equation 5.11. Specifically,
we propose a generalized quadratic model of the following form,

r(t) = f [k · s(t) + sT(t) · Q · s(t) + g · y(t−) + µ]. (5.13)

If we want to retain convexity, we cannot simply expand Q in its eigen-
basis and infer its vectors by maximizing the likelihood directly, because
the eigenvectors appear quadratically. However, we can expand Q into a
weighted sum of matrix basis functions, as in equation 5.5, making the
argument of f a linear function of basis coefficients αµ,

r(t) = f



k · s(t) +
M∑

µ=1

[
sT(t) · B(µ) · s(t)

]
αµ + g · y(t−) + µ



 . (5.14)

Existing methods for inferring GLM parameters (Pillow et al., 2008) can be
used to learn the linear and the quadratic filter Q efficiently. After extracting
Q, we can check if a few principal components account for most of its
structure (this is equivalent to checking whether Q is indeed a low-rank
matrix). To summarize, this procedure provides a way of extracting multiple
filters with GLM that is analogous to diagonalizing the spike-triggered
covariance matrix on the gaussian stimulus ensemble.

We have implemented such a generalized quadratic model using the
flickering variance stimulus shown in Figure 2. The results are shown in
Figure 4a. The recovered quadratic kernel decomposes into a quadrature
pair of filters, and we recover the correct linear filter k0. While this method is
restricted to a linear combination of first- and second-order filters within the
nonlinearity, the distinct advantage over MISE is that the inference problem
is always convex with the appropriate choice of nonlinear functions.

Park and Pillow (2011) consider an exponentiated general quadratic
function of the following form (rewritten in the notation of this review),

r(s) = exp(sT · Q · s + k0 · s + µ). (5.15)
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They first show that under a gaussian stimulus ensemble, the expected log
likelihood can be expressed in terms of the STA, STC, and the covariance
matrix of the stimulus and derive the closed-form expressions for maximum
likelihood estimates of the quadratic kernel, linear filter, and bias term.
Next, the generalization to arbitrary stimuli is achieved by numerically
optimizing the true (as opposed to expected) likelihood. In contrast to our
suggestion of using the matrix basis expansion (which becomes an implicit
regularizer on choosing the dimensionality of the basis), Park and Pillow
implement a Bayesian regularizer by imposing a prior on the quadratic
kernel as follows.

The matrix is first decomposed into the eigensystem, Q =
∑N

i=1 σiwiw
T
i ,

where w are not forced to have an L2 norm of 1 and σi = ±1 to indicate
whether the filter i is excitatory or suppressive (as in STC; Schwartz et al.,
2006). Then a zero-mean gaussian prior N (0,α−1

i I) is put on each eigen-
vector wi, where the hyperparameter αi determines the variance of the
elements of eigenvector i (αi → ∞ corresponds to eliminating the direction
i from the quadratic kernel and reducing its rank by 1). Next, an itera-
tive algorithm alternates between optimizing the likelihood with respect
to model parameters and optimizing the evidence given the parameters
with respect to αi. This procedure efficiently and accurately identifies the
rank of the quadratic kernels in synthetic examples, providing an automatic
alternative for distinguishing the significant from sampling-noise-induced
eigenvectors in the STC and quadratic kernel inference. Finally, the authors
show that equation 5.15 can be further generalized from the exponentiated
quadratic function to a wider class of elliptic nonlinearities at no additional
computational cost.

To summarize this section, the reviewed work shows that Bayesian gen-
eralization of STC and the generalization of GLMs to quadratic stimulus
dependence yield equal probabilistic models for neural encoding that can
be efficiently inferred for a restricted class of nonlinear functions. However,
attention needs to paid to maintain the convexity of the optimization pro-
cedure and deal with the large number of free parameters in the quadratic
kernel. Basis expansions as well as regularization with Bayesian priors seem
like feasible candidates to this end.

6 Discussion

While powerful conceptually, the notion that neurons respond to multi-
ple projections of the stimulus onto orthogonal filters is difficult to turn
into a tractable inference procedure when the number of filters is large.
To address this concern, alternative encoding models have been proposed
where the neuron can be sensitive to high-order features in the stimulus.
Instead of being described by multiple linear filters, the neuron’s sensitiv-
ity properties are captured by a single quadratic filter (and, optionally, an
additional linear filter). We have reviewed several inference methods for
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such quadratic stimulus dependence based on information maximization as
well as maximizing likelihood. With MISE, no assumptions are made about
how the projection onto the quadratic filter combines with the linear filter
projection and how both map onto the spiking probability. This approach
yields unbiased filter estimates under any stimulus ensemble but requires
optimization in a rugged information landscape. Noise entropy maximiza-
tion is a flexible, maximum-entropy-based framework for modeling the
probability of spiking given a stimulus. It is computationally tractable and
provides a convenient bound on the information per spike but assumes a
specific form of the nonlinearity. Alternatively, with a specific choice of non-
linearity and filter basis, likelihood inference within the GLM class can be
extended to quadratic stimulus dependence while retaining the convexity
of the objective function. By formulating the problem as Bayesian inference
and choosing sparsifying priors for the quadratic filter, the true rank of the
quadratic filter can also be inferred from data.

All of these approaches for inferring quadratic stimulus dependence
are complementary; as we show in the appendix, both information-
maximization- and maximum-likelihood-based inference methods provide
consistent filter estimates under defined conditions. A possible way to ben-
efit from the tractability of likelihood formulations and maximization of
noise entropy could be to use them to initialize a more general search using
information maximization. This could potentially help avoid optimization
problems in the rugged information landscape and remove the additive
restrictions on the combination of linear and quadratic features.

Examples of recent work establishing the connection between the high-
order structure of natural scenes and neural mechanisms beyond the sen-
sory periphery (Karklin & Lewicki, 2009; Tkačik, Prentice, Victor, & Bala-
subramanian, 2010) make the development of methods for neural character-
ization such as the ones presented here very timely. Phenomena like phase
invariance, adaptation to local contrast, or sensitivity to the signal envelope
are widespread features of sensory neural responses (Baccus & Meister,
2004; Hubel & Wiesel, 1965; Touryan, Lau, & Dan, 2002). Moreover, as our
abilities to record in vivo from the sensory systems of awake and behaving
animals expand, so should the methods to analyze such recordings, where
the relevant stimuli may no longer be perfectly controllable because of the
animal’s interaction with the environment (Kerr & Nimmerjahn, 2012). The
methods presented here will help us systematically elucidate sensitivity to
high-order statistical features from responses of sensory neurons to natural
stimuli.

Appendix: Formal Relationship Between Information-Theoretic
and Likelihood-Based Inference

We now demonstrate analytically that under rather general assumptions,
the linear or quadratic filters obtained by maximizing mutual information
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match the filters inferred by maximizing likelihood. We extend a reason-
ing we used previously in the context of inferring protein-DNA sequence-
specific interactions in Kinney, Tkačik, and Callan (2007), to neural re-
sponses (see also Kouh & Sharpee, 2009; Williamson, Sahani, & Pillow,
2011).

In the following, x remains the projection of the stimulus s onto the linear
(xt = k · st) or quadratic (xt = sT

t · Q · st) filter, with time discretized in bins
of duration % and indexed by subscript t. We collect all the parameters
describing the filter into a vector θ1. Given a single xt, yt spikes are generated
according to a conditional probability distribution π (yt |xt ). This probability
distribution is typically assumed to be Poisson with a mean given by f (xt )

in the case of GLM, but we take a different approach.
We discretize xt into x = 1, . . . , K bins and parameterize π (yt|xt ), which is

a Ymax × K matrix, by a vector θ2. Apart from assuming a cutoff value for the
number of spikes per bin Ymax (which can always be chosen large enough
to assign an arbitrarily low probability of observing >Ymax spikes in any
real data set) and a particular discretization of the projection variable x, we
leave the probabilistic relationship π (y|x) between the projection and spike
count completely unconstrained. The transformation from the stimulus to
the spikes is then a Markov chain, fully specified by θ = {θ1, θ2},

st
θ1−→

k or Q
xt

θ2−→
π

yt . (A.1)

The likelihood of the spike train {yt} given the stimulus s is P({yt}|s) =∏T
t=1 π (yt |xt ), where T is the total number of time bins in the data set. With

x discretized into K bins, any data set can be summarized by the count matrix
cyx =

∑T
t=1 δ(y, yt )δ(x, xt ), where δ is the Kronecker delta. Note that cyx =

T p̃(y, x), where p̃ is simply the empirical distribution of the probability of
observing y spikes jointly with the projection x. In terms of c, the likelihood
of the observed spike train is P({yt}|s) =

∏Ymax
y=0

∏K
x=1 π (y|x)

cyx . Assuming
that x is adequately discretized and π is Poisson with mean f (x), we will
recover the generalized likelihood of equation 5.12.

Suppose we are only interested in inferring the filter (parameterized
by θ1) but not the filter-to-spike mapping π (parameterized by θ2). While
avoiding any explicit assumptions about the structure of π , we can integrate
the likelihood over θ2 with some prior Pp(θ2) such that

P({yt}|s) =
∫

dθ2 Pp(θ2)
∏

y,x

π (y|x)
cyx . (A.2)

This resulting likelihood, called the model-averaged likelihood, is now
only a function of θ1. The prior Pp(θ2) can take many forms, but since we
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discretized x, thereby making π (y|x) into a (conditional probability) matrix,
the simplest choice is the uniform prior. In this case, we set θ2 equal to the
entries in the π (y|x) matrix and choose P(θ2) to be uniform over all valid
matrices π , such that the matrix entries are positive and the normalization
constraint,

∑
y π (y|x) = 1 for every x, is enforced.

For any choice of priors, we can rewrite equation A.2 as

P({yt}|s) =
∫

dθ2 Pp(θ2) exp



T
∑

y,x

p̃(y, x) log π (y|x)



 , (A.3)

which can be reorganized into

P({yt}|s) =
∫

dθ2Pp(θ2) exp
[
T

{
Ĩ(y; x) − S̃(y)

−〈DKL( p̃(y|x) || π (y|x))〉p̃(x)

}]
. (A.4)

Here Ĩ(y; x) =
∑

y,x p̃(y, x) log p̃(y,x)

p̃(y) p̃(x)
is the empirical mutual information

between spike counts y and the projection x, S̃(y) is the empirical spike
count entropy, and the “correction” term in brackets measures the average
Kullback-Leibler divergence (DKL) between the empirical and model con-
ditional distributions. Importantly, only this correction term is a function
of the π and thus of θ2 and is affected by the prior Pp(θ2), which is being
integrated over; the other terms can therefore be pulled outside the integral.
We can write the log likelihood per time bin as

L = 1
T

log P({yt}|s) = Ĩ(y; x) − S̃(y) − -, (A.5)

where the correction is

- = − 1
T

log
∫

dθ2 Pp(θ2)e
−T〈DKL( p̃(y|x) || π (y|x))〉p̃(x) . (A.6)

It is necessary to show that as the number of data T grows, the correction -

decreases for a given choice of prior distribution Pp(θ2), and for the choice of
uniform prior this is analytically tractable (Kinney et al., 2007). Intuitively,
it is clear that as T → ∞, the empirical distribution p̃(y|x) converges to the
true underlying distribution p(y|x), and the integral becomes dominated
by the extremal point θ∗

2 , such that, in the saddle point approximation,

-(T → ∞) ∼ 〈DKL(p(y|x) || π∗(y|x))〉p(x). (A.7)



Learning Quadratic Receptive Fields 1687

The distribution π∗(y|x) is the closest distribution to p(y|x) in the space over
which the prior Pp(θ2) is nonzero. As long as the prior assigns a nonzero
probability to any (normalized) distribution, the divergence in - will de-
crease and - will vanish as T grows. The case in which - does not decay
occurs when the prior completely excludes certain distributions by assign-
ing a zero probability to them, while the data p(y|x) precisely favor those
excluded distributions.

Returning to the log likelihood per time bin L in equation A.5, as we
decrease the time bin %, we enter a regime where there is only 0 or 1 spike
per bin, that is, y ∈ {0, 1}. Then the empirical information per time bin Ĩ(y; x)

can be written as

Ĩ(y; x) = p̃(y = 0)DKL( p̃(x|y = 0)|| p̃(x))

+ p̃(y = 1)DKL( p̃(x|y = 1)|| p̃(x)), (A.8)

that is,

Ĩ(y; x) = p̃(silence)Ĩsilence + p̃(spike)Ĩspike. (A.9)

If the information in the spike train is dominated by the information
carried in spikes (Brenner et al., 2000), then the likelihood from equation A.5
becomes

L = p̃(spike)Ĩspike + . . . , (A.10)

where . . . are terms that either do not depend on the filter parameters θ1
(i.e., entropy of the spike counts S̃(y)) or vanish entirely as the size of data
set grows (-).

The identity in equation A.10 is the sought-after connection between
the inference using information maximization and the likelihood-based ap-
proach. In the limit of small time bins, maximizing the information per spike
Ispike on the right-hand side of the identity (in maximally informative ap-
proaches, as in Rajan and Bialek (2012), Sharpee et al. (2004), and section 5.1
of this review) is the same as maximizing the model-averaged likelihood L
of equation A.5 on the left-hand side of the identity.
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