Abstract

Interprocedural analysis is at the heart of numerous applications in programming languages, such as alias analysis, constant propagation, etc. Recursive state machines (RSMs) are standard models for interprocedural analysis. We consider a general framework with RSMs where the transitions are labeled from a semiring, and path properties are algebraic with semiring operations. RSMs with algebraic path properties can model interprocedural dataflow analysis problems, the shortest path problem, the most probable path problem, etc. The traditional algorithms for interprocedural analysis focus on path properties where the starting point is fixed as the entry point of a specific method. In this work, we consider possible multiple queries as required in many applications such as in alias analysis. The study of multiple queries allows us to bring in a very important algorithmic distinction between the resource usage of the one-time preprocessing vs for each individual query. The second aspect that we consider is that the control flow graphs for most programs have constant treewidth.

Our main contributions are simple and implementable algorithms that support multiple queries for algebraic path properties for RSMs that have constant treewidth. Our theoretical results show that our algorithms have small additional one-time preprocessing, but can answer subsequent queries significantly faster as compared to the current best-known solutions for several important problems, such as interprocedural reachability and shortest path. We provide a prototype implementation for interprocedural reachability and intraprocedural shortest path that gives a significant speed-up on several benchmarks.

Categories and Subject Descriptors F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—Program Analysis

1. Introduction

Interprocedural analysis and RSMs. Interprocedural analysis is one of the classic algorithmic problem in programming languages which is at the heart of numerous applications, ranging from alias analysis, to data dependencies (modification and reference side effect), to constant propagation, to live and use analysis [11, 14, 19, 22, 23, 29, 30, 32, 33, 36, 40, 45]. In seminal works [36, 40] it was shown that a large class of interprocedural dataflow analysis problems can be solved in polynomial time. A standard model for interprocedural analysis is recursive state machines (RSMs) (aka supergraph in [36]). A RSM is a formal model for control flow graphs of programs with recursion. We consider RSMs that consist of component state machines (CSMs), one for each method that has a unique entry and unique exit, and each CSM contains boxes which are labeled as CSMs that allows calls to other methods.

Algebraic path properties. To specify properties of traces of a RSM we consider a very general framework, where edges of the RSM are labeled from a complete semiring (which subsumes bounded and finite distributive semirings), and we refer to the labels of the edges as weights. For a given path, the weight of the path is the semiring product of the weights on the edges of the path, and to choose among different paths we use the semiring plus operator. For example, (i) with Boolean semiring (with semiring product as AND, and semiring plus as OR) we can express the reachability property; (ii) with tropical semiring (with real-edge weights, semiring product as standard sum, and semiring plus as maximum) we can express the most probable path property. The algebraic path properties expressed in our framework subsumes the IFDS/IDE frameworks [36, 40] which consider finite semirings and meet over all paths as the semiring plus operator. Since IFDS/IDE are subsumed in our framework, the large and important class of dataflow analysis problems that can be expressed in IFDS/IDE frameworks can also be expressed in our framework.

Two important aspects. In the traditional algorithms for interprocedural analysis, the starting point is typically fixed as the entry point of a specific method. In graph theoretic parlance, graph algorithms can consider two types of queries: (i) a pair query that given nodes u and v (called (u, v)-pair query) asks for the algebraic path property from u to v; and (ii) a single-source query that given a node u asks for the answer of (u, v)-pair queries for all nodes v. Thus the
Our contributions. In this work we consider RSMs where every CSM has constant treewidth, and the algorithmic question of an-
swering multiple single-source and multiple pair queries, where each query is a same-context query (a same-context query starts and
ends with an empty stack, see [16] for the significance of same-
context queries). In the analysis of multiple queries, there is a very
important algorithmic distinction between one-time preprocessing
(denoted as the preprocessing time), and the work done for each
individual query (denoted as the query time). There are two end-
points in the spectrum of tradeoff between the preprocessing and
query resources that can be obtained by using the classical algo-
rithms for one single-source query, namely, (i) the complete prepro-
cessing, and (ii) the no preprocessing. In complete preprocessing,
the single-source answer is precomputed with every node as the
starting point (for example, in graph reachability this corresponds to
computing the all-pairs reachability problem with the classical
BFS/DFS algorithm [17], or with fast matrix multiplication [21]).
In no preprocessing, there is no preprocessing done, and the al-
gorithm for one single-source query is used on demand for each
individual query. We consider various other possible tradeoffs in
preprocessing vs query time. Our main contributions are as follows:

1. (General result). Since we consider arbitrary semirings (i.e.,
not restricted to finite semirings) we consider the stack height
bounded problem, where the height of the stack is bounded by
a parameter h. While in general for arbitrary semirings there
does not exist a bound on the stack height, if the semiring
contains subsets of a finite universe D, and the semiring plus
operator is intersection or union, then solving the problem with
sufficiently large bound on the stack height is equivalent to
solving the problem without any restriction on stack height.
Our main result is an algorithm where the one-time preprocessing
phase requires $O(n \cdot \log n + h \cdot b \cdot \log n)$ semiring operations,
and each subsequent bounded stack height pair query can be
answered in constant number of semiring operations, where
n is the number of nodes of the RSM and b the number of boxes
(see Table 1 and Theorem 3). If we specialize our result to the
IFDS/IDE setting with finite semirings from a finite universe
of distributive functions $2^{|D|} \rightarrow 2^{|D|}$, and meet over all paths as
the semiring plus operator, then we obtain the results shown in
Table 2 (Corollary 4). For example, our approach with a factor
of $O(|D| \log n)$ overhead for one-time preprocessing, as
compared no preprocessing, can answer subsequent pair queries
by a factor of $O(n \cdot |D|)$ faster. An important feature of our
algorithms is that they are simple and implementable.

2. (Reachability and shortest path). We now discuss the signifi-
cance of our result for the very important special cases of reach-
ability and shortest path.

• (Reachability). The result for reachability with full prepro-
cessing, no preprocessing, and the various tradeoff that can
be obtained by our approach is obtained from Table 1 by
assuming for pair queries, full preprocessing requires quadratic
time and space (for all-pairs reach-
ability computation) and answers individual queries in con-
stant time; no preprocessing requires linear time and space
for individual queries; whereas with our approach (i) with
almost-linear $(O(n \cdot \log n))$ preprocessing time and space
we can answer individual queries in constant time, which is
a significant (from quadratic to almost-linear) improvement
over full preprocessing; or (ii) with linear space and almost-
linear preprocessing time we can answer queries in logarith-
mic time, which is a huge (from linear to logarithmic) im-
provement over no preprocessing. For example, if we con-
sider $O(n)$ pair queries, then both full preprocessing and
no preprocessing in total require quadratic time, whereas
our approach in total requires $O(n \cdot \log n + n \cdot \log n) =
O(n \cdot \log n)$ time.

• (Shortest path). We now consider the problem of shortest
path, where the current best-known algorithm is for push-
down graphs [37,33] and we are not aware of any bet-
ter bounds for RSMs (that have unique entries and exits).
The algorithm of [37] is a polynomial algorithm of degree four, and the full preprocessing requires $O(n^3)$ time
and quadratic space, and can answer single-source (resp.
pair) queries in linear (resp. constant) time; whereas the
no preprocessing requires $O(n^3)$ time and linear space for
both single-source and pair queries. In contrast, we show
that (i) with almost-quadratic $(O(n^3 \cdot \log n))$ preprocessing
time and almost-linear space, we can answer single-source
(resp. pair) queries in linear (resp. constant) time; or (ii) with
almost-quadratic preprocessing and linear space, we can
answer single-source (resp. pair) queries in linear (resp. loga-
ithmic) time. Thus our approach provides a significant the-
oretical improvement over the existing approaches.

There are two facts that are responsible for our improvement,
the first is that we consider that each CSM of the RSM has constant
treewidth, and the second is the tradeoff of one-time
preprocessing and individual queries. Also note that our results
apply only to same-context queries.

3. (Experimental results). Besides the theoretical improvements,
we demonstrate the effectiveness of our approach on several
well-known benchmarks from programming languages. We
use the tool for computing tree decompositions from [44].
Table 1: Interprocedural same-context algebraic path problem on RSMs with b boxes and constant treewidth, for stack height h.

<table>
<thead>
<tr>
<th>IDE/IFDS (complete preprocessing)</th>
<th>Preprocessing time</th>
<th>Space</th>
<th>Single source query</th>
<th>Pair query</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDE/IFDS (no preprocessing)</td>
<td>$O(n^2 \cdot</td>
<td>D</td>
<td>^3)$</td>
<td>$O(n \cdot</td>
<td>D</td>
</tr>
<tr>
<td>Our</td>
<td>$O(</td>
<td>D</td>
<td>^2 \cdot \log n \cdot (n + b \cdot</td>
<td>D</td>
<td>))$</td>
</tr>
</tbody>
</table>

Table 2: Interprocedural same-context algebraic path problem on RSMs with b boxes and constant treewidth, where the semiring is over the subset of $|D|$ elements and the plus operator is the meet operator of the IFDS framework. The special case of reachability is obtained when $|D| = 1$.

<table>
<thead>
<tr>
<th>IDE/IFDS (complete preprocessing)</th>
<th>Preprocessing time</th>
<th>Space</th>
<th>Single-source query</th>
<th>Pair query</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDE/IFDS (no preprocessing)</td>
<td>-</td>
<td>$O(n \cdot</td>
<td>D</td>
<td>)$</td>
<td>$O(n \cdot</td>
</tr>
<tr>
<td>Our</td>
<td>$O(n \cdot</td>
<td>D</td>
<td>^2 \cdot \log n \cdot (b \cdot</td>
<td>D</td>
<td>^4 + n))$</td>
</tr>
</tbody>
</table>

Table 3: Interprocedural same-context shortest path for RSMs with constant treewidth.

and all benchmarks of our experimental results have small treewidth. We have implemented our algorithms for reachability (both intraprocedural and interprocedural) and shortest paths (only intraprocedural), and compare their performance against complete and no preprocessing approaches for same-context queries. Our experimental results show that our approach obtains a significant improvement over the existing approaches (of complete and no preprocessing).

Technical contribution. Our main technical contribution is a dynamic algorithm (also referred to as incremental algorithm in graph algorithm literature) that given a graph with constant treewidth, after a preprocessing phase of $O(n \cdot \log n)$ semiring operations supports (1) changing the label of an edge with $O(\log n)$ semiring operations; and (2) answering pair queries with $O(\log n)$ semiring operations; and (3) answering single-source queries with $O(n)$ semiring operations. These results are presented in Theorem 2.

Nice byproduct. Several previous works such as $[27]$ have stated the importance and asked for the development of data structures and analysis techniques to support dynamic updates. Though our main results are for the problem where the RSM is given and fixed, our main technical contribution is a dynamic algorithm that can also be used in other applications to support dynamic updates, and is thus also of independent interest.

1.1 Related Work

In this section we compare our work with several related work from interprocedural analysis as well as for constant treewidth property.

Interprocedural analysis. Interprocedural analysis is a classic algorithmic problem in static analysis and several diverse applications have been studied in the literature $[1, 13, 22, 23, 29, 30, 32, 36, 40]$. Our work is most closely related to the IFDS/IDE frameworks introduced in seminal works $[36, 40]$. In both IFDS/IDE framework the semiring is finite, and they study the algorithmic question of solving one single-source query. While in our framework the semiring is not necessarily finite, we consider the stack height bounded problem. We also consider the multiple pair and single-source, same-context queries, and the additional restriction that RSMs have constant treewidth. Our general result specialized to finite semirings (where the stack height bounded problem coincides with the general problem) improves the existing best known algorithms for the IFDS/IDE framework where the RSMs have constant treewidth. For example, the shortest path problem cannot be expressed in the IFDS/IDE framework $[37, 38]$, but can be expressed in the GPR framework $[37, 38]$. The GPR framework considers the more general problem of weighted pushdown graphs, whereas we show that with the restriction to constant treewidth RSMs the bounds for the best-known algorithm can be significantly improved. Finally, several works such as $[24]$ ask for on-demand interprocedural analysis and algorithms to support dynamic updates, and our main technical contributions are algorithms to support dynamic updates in interprocedural analysis.

Recursive state machines (RSMs). Recursive state machines, which in general are equivalent to pushdown graphs, have been studied as a formal model for interprocedural analysis $[2]$. However, in comparison to pushdown graphs, RSMs are a more convenient formalism for interprocedural analysis. Games on recursive state machines with modular strategies have been considered in $[3, 13]$, and subcubic algorithm for general RSMs with reachability has been shown in $[15]$. We focus on RSMs with unique entries and exits and with the restriction that the components have constant tree width. RSMs with unique entries and exits are less expressive than pushdown graphs, but remain a very natural model for efficient interprocedural analysis $[36, 40]$.

Treewidth of graphs. The notion of treewidth for graphs as an elegant mathematical tool to analyze graphs was introduced in $[39]$. The significance of constant treewidth in graph theory is huge mainly because several problems on graphs become complexity-wise easier. Given a tree decomposition of a graph with low
Definition 3 (Tree decomposition and treewidth [10,39]). Given a graph \(G = (V,E)\), a tree-decomposition \(T(G) = (V_T, E_T)\) is a tree such that the following conditions hold:

1. \(V_T = \{B_0, \ldots, B_{n'-1} : \text{for all } 0 \leq i \leq n' - 1, B_i \subseteq V\} \) and \(\bigcup_{B_i \in V_T} B_i = V. \)
2. For all \((u,v) \in E\) there exists \(B_i \in V_T\) such that \(u,v \in B_i.\)
3. For all \(i,j,k\) such that there exist paths \(B_i \leadsto B_k\) and \(B_k \leadsto B_j\) in \(T(G)\), we have \(B_i \cap B_j \subseteq B_k.\)

The sets \(B_i\), which are nodes in \(V_T\) are called bags. The width of a tree-decomposition \(T(G)\) is the size of the largest bag minus 1 and the treewidth of \(G\) is the width of a minimum-width tree decomposition of \(G\). It follows from the definition that if \(G\) has constant treewidth, then \(m = O(n)\).

Example 1 (Graph and tree decomposition). The treewidth of a graph \(G\) is an intuitive measure which represents the proximity of \(G\) to a tree, though \(G\) itself not a tree. The treewidth of \(G\) is 1 precisely if \(G\) is itself a tree [39]. Consider an example graph and its tree decomposition shown in Figure 1. It is straightforward to verify that all the three conditions of tree decomposition are met. Each node in the tree is a bag, and labeled by the set of nodes it contains. Since each bag contains at most three nodes, the tree decomposition by definition has treewidth 2.

Intuitive meaning of tree decomposition. In words, the tree-decomposition \(T(G)\) is a tree where every node \((\text{bag})\) is subset of nodes of \(G\), such that: (1) every vertex in \(G\) belongs to some bag; (2) every edge in \(G\) also belongs to some bag; and (3) for every node \(v\) of \(G\), for every subpath in \(T(G)\), if \(v\) appears in the endpoints of the path, then it must appear all along the path.

Separator property. Given a graph \(G\) and its tree decomposition \(T(G)\), note that for each bag \(B\) in \(T(G)\), if we remove the set of nodes in the bag, then the graph splits into possibly multiple components (i.e., each bag is a separator for the graph). In other words, every bag acts as a separator of the graph.

Notations for tree decomposition. Let \(G\) be a graph, \(T = T(G)\), and \(B_0\) be the root of \(T\). Denote with \(Lv(B_0)\) the depth of \(B_0\) in \(T\), with \(Lv(B_0) = 0\). For \(u \in V\), we say that a bag \(B\) is the root bag at \(u\) if \(B\) is the bag with the smallest level among all bags that contain \(u\), i.e., \(B_u = \arg \min_{B \in V_T: u \in B} Lv(B)\). By definition, there is exactly one root bag for each node \(u\). We often write \(B_u\) for the root bag of node \(u\), and denote with \(Lv(u) = Lv(B_u)\). Finally, we denote with \(B_{(u,v)}\) the bag of the largest level that is the root bag of one of \(u, v\): A tree-decomposition \(T(G)\) is semi-nice if \(T(G)\) is a binary tree, and every bag is the root bag of at most one node.

Example 2. In the example of Figure 1 the bag \(\{2, 8, 10\}\) is the root of \(T(G)\), the level of node 9 is \(Lv(9) = Lv(\{8, 9, 10\}) = 1\), and the bag of the edge \((9, 1)\) is \(B_{(9,1)} = \{1, 8, 9\}\).

Theorem 1. (1) For every graph there exists a semi-nice tree decomposition that achieves the treewidth of \(G\) and uses \(n^2 = O(n)\) bags [23]. (2) For constant treewidth graphs, a balanced tree decomposition can be obtained in \(O(n \log n)\) time (i.e., simple path \(B_0 \leadsto B_k\) in \(T(G)\) has length \(O(\log n)\)) [23].

The algebraic path problem on graphs of constant treewidth. Given \(G = (V,E)\), a balanced, semi-nice tree-decomposition \(T(G)\) of \(G\) with constant treewidth \(t = O(1)\), a complete semiring \((\Sigma, \oplus, \otimes, \vec{0}, \vec{1})\), a weight function \(w: E \rightarrow \Sigma\), the algebraic path problem on input \(u, v \in V\) asks for the distance \(d(u, v)\) from node \(u\) to node \(v\). In addition, we allow the weight function to
change between successive queries. We measure the time complexity of our algorithms in number of operations, with each operation being either a basic machine operation, or an application of one of the operators of the semiring.

2.3 Recursive state machines

Definition 4 (RSMs and CSMs). A single-entry single-exit recursive state machine (RSM from now on) over an alphabet Σ, as defined in [2], consists of a set $\{A_1, A_2, \ldots, A_k\}$, such that for each $1 \leq i \leq k$, the component state machine (CSM) $A_i = (B_i, Y_i, V_i, E_i, w_{t_i})$, where $V_i = N_i \cup \{E_n\} \cup \{E_x\} \cup C_i \cup R_i$, consists of:

- A set B_i of boxes.
- A map Y_i, mapping each box in B_i to an index in $\{1, 2, \ldots, k\}$.
- We say that a box $b \in B_i$ corresponds to the CSM with index $Y_i(b)$.
- A set V_i of nodes, consisting of the union of the sets $N_i, \{E_n\}, \{E_x\}, C_i$ and R_i. The number n_i is the size of V_i. Each of these sets, besides V_i, are w.l.o.g. assumed to be pairwise disjoint.
- The set N_i is the set of internal nodes.
- The node E_n is the entry node.
- The node E_x is the exit node.
- The set C_i is the set of call nodes.
- Each call node is a pair (x, b), where b is a box in B_i and x is the entry node $E_{Y_i(b)}$ of the corresponding CSM with index $Y_i(b)$.
- The set R_i is the set of return nodes. Each return node is a pair (y, b), where b is a box in B_i and y is the exit node $E_{Y_i(b)}$ of the corresponding CSM with index $Y_i(b)$.
- A set E_i of internal edges. Each edge is a pair in $(N_i \cup \{E_n\} \cup R_i) \times (N_i \cup \{E_x\} \cup C_i)$.
- A map w_i, mapping each edge in E_i to a label in Σ.

Definition 5 (Control flow graph of CSMs and treewidth of RSMs). Given a RSM $A = \{A_1, A_2, \ldots, A_k\}$, the control flow graph $G_i = (V_i, E_i)$ for CSM A_i consists of V_i as the set of vertices and E_i as the set of edges, where E_i consists of the edges E_i of A_i and for each box b, each call node (v, b) of that box (i.e. for $v = E_{Y_i(b)}$) has an edge to each return node (v', b) of that box (i.e. for $v' = E_{X_{Y_i(b)}}$). We say that the RSM has treewidth t if t is the smallest integer such that for each index $1 \leq i \leq k$, the graph $G_i = (V_i, E_i)$ has treewidth at most t. Programs are naturally represented as RSMs, where the control flow graph of each method of a program is represented as a CSM.

Example 3 (RSM and tree decomposition). Figure 2 shows an example of a program for matrix multiplication consisting of two methods (one for vector multiplication invoked by the one for matrix multiplication). The corresponding control flow graphs, and their tree decompositions that achieve treewidth 2 are also shown in the figure.

Box sequences. For a sequence L of boxes and a box b, we denote with $L \circ b$ the concatenation of L and b. Also, \emptyset is the empty sequence of boxes.

Configurations and global edges. A configuration of a RSM is a pair (v, L), where v is a node in $(N_i \cup \{E_n\} \cup R_i)$ and L is a sequence of boxes. The stack height of a configuration (v, L) is the number of boxes in the sequence L. The set of global edges E are edges between configurations. The map w_i maps each edge in E to a label in Σ. We have that there is an edge between configuration $c_1 = (v_1, L_1)$, where $v_1 \in V_i$, and configuration $c_2 = (v_2, L_2)$ with label $\sigma = w_i(c_1, c_2)$ if and only if one of the following holds:

- **Internal edge:** We have that v_2 is an internal node in V_i, and each of the following (i) $L_1 = L_2$, and (ii) $(v_1, v_2) \in E_i$; and (iii) $\sigma = w_i((v_1, v_2))$.
- **Entry edge:** We have that v_2 is the entry node $E_{Y_i(n)}$ for some box b, and each of the following (i) $L_1 = L_2 = \emptyset$; and (ii) $(v_1, (v_2, b)) \in E_i$; and (iii) $\sigma = w_i((v_1, (v_2, b)))$.
- **Return edge:** We have that $v_2 = (v, b)$ is a return node, for some exit node $v = E_x$ and some box b and each of the following (i) $L_1 = L_2 = \emptyset$; and (ii) $(v_1, v) \in E_i$; and (iii) $\sigma = w_i((v_1, v))$.

Note that in a configuration (v, L), the node v cannot be E_x or in C_i. In essence, the corresponding configuration is at the corresponding return node, instead of at the exit node, or corresponding entry node, instead of at the call node, respectively.

Execution paths. An execution path is a sequence of configurations and labels $P = \{(c_1, \sigma_1, c_2, \sigma_2, \ldots, \sigma_{k-1}, c_{k-1})\}$, such that for each integer i where $1 \leq i \leq k - 1$, we have that $(c_i, \sigma_{i+1}) \in E$ and $\sigma_i = w_i(c_i, c_{i+1})$. We call ℓ the length of P. Also, we say that the stack height of a execution path is the maximum stack height of a configuration in the execution path. For a pair of configurations c, c', the set $c \sim c'$, is the set of execution paths $(c_1, \sigma_1, c_2, \sigma_2, \ldots, \sigma_{k-1}, c_{k-1})$, for any ℓ, where $c = c_1$ and $c' = c_k$. For a set S of execution paths, the set $B(S, h) \subseteq S$ is the subset of execution paths, with stack height at most h. Given a complete semiring $\Sigma \oplus \otimes \circ \emptyset \mathbf{T}$, the distance of an execution path $P = (c_1, \sigma_1, c_2, \sigma_2, \ldots, \sigma_{k-1}, c_{k-1})$ is $d(P) = \bigotimes(d(c_i, \sigma_i) \circ \bigoplus(P_{i=c_i \bowtie \sigma_i}))$ (the empty product is \mathbf{T}). Given configurations c, c', the configuration distance $d(c, c')$ is defined as $d(c, c') = \bigoplus(P_{c \bowtie \sigma' = c'}) \circ \bigotimes(P)$. Note that the above definition of execution paths only allows for so called valid paths [36][40], i.e., paths that fully respect the calling contexts of an execution.

The algebraic path problem on RSMs of constant tree-width. Given (i) a RSM $A = \{A_1, A_2, \ldots, A_k\}$; and (ii) for each $1 \leq i \leq k$ a balanced, semi-nice tree-decomposition $\text{Tree}(A_i) = \text{Tree}(V_i, E_i)$ with constant treewidth at most $t = O(1)$; and (iii) a complete semiring $\Sigma \oplus \otimes \circ \emptyset \mathbf{T}$, the algebraic path problem on input nodes u, v, asks for the distance $d(u, \emptyset, (v, \emptyset))$, i.e. the distance between the configurations with the empty stack. Similarly, also given a height h, the bounded height algebraic path problem on input configurations c, c', asks for the distance $d(u, \emptyset, (v, \emptyset), h)$. When it is clear from the context, we will write $d(u, v)$ to refer to the algebraic path problem of nodes u and v on RSMs.

Remark 1. Note that the empty stack restriction implies that u and v are nodes of the same CSM. However, the paths from u to v
are, in general, interprocedural, and thus involve invocations and returns from other CSMs. This formulation has been used before in terms of same-context [15] and same-level [16] realizable paths and has several applications in program analysis, e.g. by capturing balanced parenthesis-like properties used in alias analysis [41].

2.4 Problems

We note that a wide range of interprocedural problems can be formulated as bounded height algebraic path problems.

1. Reachability i.e., given nodes u, v in the same CSM, is there a path from u to v? The problem can be formulated on the boolean semiring \(\{ \text{True}, \text{False} \} \).

2. Shortest path i.e., given a weight function \(wt : E \to \mathbb{R}_{\geq 0} \) and nodes u, v in the same CSM, what is the weight of the minimum-weight path from u to v? The problem can be formulated on the tropical semiring \((\mathbb{R}_{\geq 0} \cup \{\infty\}, \min, +, 0, \infty) \).

3. Most probable path i.e., given a probability function \(P : E \to [0,1] \) and nodes u, v in the same CSM, what is the probability of the highest-probable path from u to v? The problem can be formulated on the Viterbi semiring \(([0,1], \max, -, 0, 1) \).

4. The class of interprocedural, finite, distributive, subset (IFDS) problems defined in [16]. Given a finite domain \(D \), a universe of flow functions \(F \) containing distributive functions \(f : 2^D \to 2^D \), a weight function \(wt : E \to F \) associates each edge with a flow weight. The weight of an interprocedural path is then defined as the composition \(\circ \) of the flow functions along its edges, and the IFDS problem given nodes u, v asks for the meet \(\cap \) (union or intersection) of the weights of all \(u \to v \) paths. The problem can be formulated on the meet-composition semiring \((F, \cap, \circ, \emptyset, I) \), where \(I \) is the identity function.

5. The class of interprocedural distributive environment (IDE) problems defined in [40]. This class of dataflow problems is an extension to IFDS, with the difference that the flow functions (called environment transformers) map elements from the finite domain \(D \) to values in an infinite set (e.g., of the form \(f : D \to \mathbb{N} \)). An environment transformer is denoted as \(f[d \to \ell] \), meaning that the element \(d \in D \) is mapped to value \(\ell \), while the mapping of all other elements remains unchanged. The problem can be formulated on the meet-environment-transformer semiring \((F, \cap, \circ, \emptyset, I) \), where \(I \) is the identity environment transformer, leaving every map unchanged.

Note that if we assume that the set of weights of all interprocedural paths in the system is finite, then the size of this set bounds the stack height \(h \). Additionally, several problems can be formulated as algebraic path problems in which bounding the stack height can be viewed as an approximation to them (e.g., shortest path with negative interprocedural cycles, or probability of reaching a node \(v \) from a node \(u \)).

3. Dynamic Algorithms for Preprocess, Update and Query

In the current section we present algorithms that take as input a constant treewidth graph \(G \) and a balanced, semi-nice tree-decomposition \(\text{Tree}(G) \) (recall Theorem [1]), and achieve the following tasks:

1. Preprocessing the tree-decomposition \(\text{Tree}(G) \) of a graph \(G \) to answer algebraic path queries fast.

2. Updating the preprocessed \(\text{Tree}(G) \) upon change of the weight \(wt(u,v) \) of an edge \((u,v) \).

3. Querying the preprocessed \(\text{Tree}(G) \) to retrieve the distance \(d(u,v) \) of any pair of nodes \(u,v \).

In the following section we use the results of this section in order to preprocess RSMs fast, in order to answer interprocedural same-context algebraic path queries fast. Refer to Example 4.2 in Section 4 for an illustration on how these algorithms are executed on an RSM.

First we establish the following lemma which captures the main intuition of tree decompositions, namely, that bags \(B \) of the tree-decomposition \(\text{Tree}(G) \) are separators between nodes of \(G \) that belong to disconnected components of \(\text{Tree}(G) \) once \(B \) is removed.

Lemma 1 (Separator property). Consider a graph \(G = (V,E) \) and a tree-decomposition \(\text{Tree}(G) \). Let \(u,v \in V \) and \(P' : B_1, B_2, \ldots, B_j \) be the unique path in \(T \) such that \(u \in B_1 \) and \(v \in B_j \). For each \(i \in \{1,\ldots,j-1\} \) and for each path \(P : u \leadsto v \), there exists a node \(x_i \in (B_i \cap B_{i+1} \cap P) \).

Proof. Fix a number \(i \in \{1,\ldots,j-1\} \). We argue that for each path \(P : u \leadsto v \), there exists a node \(x_i \in (B_i \cap B_{i+1} \cap P) \). We construct a tree \(\text{Tree}'(G) \), which is similar to \(\text{Tree}(G) \) except that instead of having an edge between bag \(B_1 \) and bag \(B_{i+1} \), there is a new bag \(B_i \) that contains the nodes in \(B_i \cap B_{i+1} \), and there is an edge between \(B_i \) and \(B_i \). And one between \(B_i \) and \(B_{i+1} \). It is easy to see that \(\text{Tree}'(G) \) forms a tree decomposition of \(G \). Let \(C_1, C_2 \) be the two components of \(\text{Tree}(G) \) separated be \(B \), and w.l.o.g. \(u \in C_1 \) and \(v \in C_2 \). It follows by the definition of tree decomposition that \(B \) is a separator of \(\bigcup_{B \in C_1} B' \) and \(\bigcup_{B \in C_2} B' \). Hence, each path \(u \leadsto v \) must go through some node \(x_i \) in \(B \), and by construction \(x_i \in B_i \cap B_{i+1} \).

Intuition and U-shaped paths. A central concept in our algorithms is that of U-shaped paths. Given a bag \(B \) and nodes \(u,v \in B \) we say that a path \(P : u \leadsto v \) is U-shaped in \(B \), if one of the following conditions hold:

1. Either \(|P| > 1 \) and for all intermediate nodes \(w \in P \), we have \(\text{Lw}(u) \geq \text{Lw}(B) \),

2. or \(|P| \leq 1 \) and \(B \) is \(B_u \) or \(B_v \).

Informally, given a bag \(B \), a U-shaped path in \(B \) is a path that traverses intermediate nodes whose root bag is \(B \) and its descendants in \(\text{Tree}(G) \). In the following we present three algorithms for (i) preprocessing a tree decomposition, (ii) updating the data structures of the preprocessing upon a weight change \(wt(u,v) \) of an edge \((u,v) \), and (iii) querying for the distance \(d(u,v) \) for any pair of nodes \(u,v \). The intuition behind the overall approach is that for every path \(P : u \leadsto v \) and \(z = \arg\min_{x \in P} \text{Lw}(x) \), the path \(P \) can be decomposed into paths \(P_1 : u \leadsto z \) and \(P_2 : z \leadsto v \). By Lemma 1 if we consider the path \(P' : B_u \leadsto B_v \) and any bag \(B_i \in P' \), we can find nodes \(x,y \in B_i \) (not necessarily distinct). Then \(P_i \) is decomposed to a sequence of U-shaped paths \(P_i' \), one for each such \(B_i \), and the weight of \(P_i \) can be written as the \(\otimes \)-product of the weights of \(P_i' \), i.e., \(\otimes(P_i) = \bigotimes_i (\otimes(P_i')) \). Similar observation holds for \(P_2 \). Hence, the task of preprocessing and updating is to summarize in each \(B_i \) the weights of all such U-shaped paths between all pairs of nodes appearing in \(B_i \). To answer the query, the algorithm traverses upwards the tree \(\text{Tree}(G) \) from \(B_u \) and \(B_v \), and combines the summarized paths to obtain the weights of all such paths \(P_1 \) and \(P_2 \), and eventually \(P \), such that \(\otimes(P) = d(u,v) \).

Informal description of preprocessing. Algorithm Preprocess associates with each bag \(B \) a local distance map \(LD_B : B \times B \to \Sigma \). Upon a weight change, algorithm Update updates the local distance map of some bags. It will hold that after the preprocessing and each subsequent update, \(LD_B(u,v) = \bigoplus_{P \leadsto (u,v)} (\otimes(P)) \), where all \(P \) are U-shaped paths in \(B \). Given this guarantee, we later present an algorithm for answering \((u,v)\) queries with \(d(u,v) \), the distance from \(u \) to \(v \).

Algorithm Preprocess is a dynamic programming algorithm. It traverses \(\text{Tree}(G) \) bottom-up, and for a cur-
Method: dot_vector
Input: \(x, y \in \mathbb{R}^n \)
Output: The dot product \(x^\top y \)
1. result \(\leftarrow 0 \)
2. for \(i \leftarrow 1 \) to \(n \) do
3. \(z \leftarrow x[i] \cdot y[i] \)
4. result \(\leftarrow \) result + \(z \)
5. end
6. return result

Method: dot_matrix
Input: \(A \in \mathbb{R}^{n \times k}, B \in \mathbb{R}^{k \times m} \)
Output: The dot product \(A \times B \)
1. \(C \leftarrow \) zero matrix of size \(n \times m \)
2. for \(i \leftarrow 1 \) to \(n \) do
3. for \(j \leftarrow 1 \) to \(m \) do
5. \(C[i,j] \leftarrow \) the value returned by the call of line 4
6. end
7. end
8. return \(C \)

Method 1: Merge
Input: A bag \(B_x \) with children \(\{ B_i \} \)
Output: A local distance map \(LD_{B_x} \)
1. Assign \(\text{wt}'(x,x) \leftarrow (\bigotimes \{LD_{B_i}(x,x)^{\top}, \ldots, LD_{B_j}(x,x)^{\top}\})^{\top} \)
2. foreach \(u \in B_x \) with \(u \neq x \) do
3. Assign \(\text{wt}'(x,u) \leftarrow \bigotimes \{\text{wt}(x,u), LD_{B_1}(x,u), \ldots, LD_{B_j}(x,u)\} \)
4. Assign \(\text{wt}'(u,x) \leftarrow \bigotimes \{\text{wt}(u,x), LD_{B_1}(u,x), \ldots, LD_{B_j}(u,x)\} \)
5. end
6. foreach \(u, v \in E_{B_x} \) do
7. Assign \(\delta \leftarrow \bigotimes \{\text{wt}(u,x), \text{wt}'(x,x), \text{wt}'(x,v)\} \)
8. Assign \(LD_{B_u}(u,v) \leftarrow \bigotimes \{\delta, LD_{B_1}(u,v), \ldots, LD_{B_j}(u,v)\} \)
9. end

Algorithm 2: Preprocess
Input: A tree-decomposition \(Tree(G) = (V_T, E_T) \)
Output: A local distance map \(LD_B \) for each bag \(B \in V_T \)
1. Traverse \(Tree(G) \) bottom up and examine each bag \(B \) with children \(\{ B_i \} \)
2. if \(B \) is the root bag of some node \(x \) then
3. Assign \(LD_B \leftarrow \text{Merge on } B \)
4. else
5. foreach \(u, v \in B \) do
6. Assign \(LD_B(u,v) \leftarrow \bigotimes \{LD_{B_1}(u,v), \ldots, LD_{B_j}(u,v)\} \)
7. end
8. end

Lemma 2. At the end of Preprocess, for every bag \(B \) and nodes \(u, v \in E \), we have \(LD_B(u,v) = \bigoplus_{P \text{ U-shaped paths in } B} \{P\} \), where all \(P \) are U-shaped paths in \(B \).

Proof. The proof is by induction on the parents. Initially, \(B \) is a leaf, and root of some node \(x \), thus each such path \(P \) can only go through \(x \), and hence will be captured by Preprocess. Now assume that the algorithm examines a bag \(B \), and by the induction hypothesis the statement is true for all \(\{ B_i \} \) children of \(B \). The correctness follows easily if \(B \) is not the root bag of any node, since every such \(P \) is a U-shaped path in some child \(B_i \) of \(B \). Now consider that \(B \) is the root bag some node \(x \), and any U-shaped path \(P' : u \rightsquigarrow v \) that additionally visits \(x \), and decompose it to paths \(P_1 : u \rightsquigarrow x, P_2 : x \rightsquigarrow x \) and \(P_3 : x \rightsquigarrow v \), such that \(x \) is not an intermediate node in either \(P_1 \) or \(P_3 \), and we have by distributivity:

\[
\bigoplus_{P'} \{P\} = \bigoplus_{P_1} \bigotimes \{P_1\}, \bigotimes \{P_2\}, \bigotimes \{P_3\}
\]

Note that \(P_1 \) and \(P_3 \) are also U-shaped in one of the children bags \(B_i \) of \(B_x \), hence by the induction hypothesis in lines 3 and 4 of Merge we have \(\text{wt}'(u,x) = \bigoplus_{P_1} \{P_1\} \) and \(\text{wt}'(x,v) = \bigoplus_{P_3} \{P_3\} \). Also, by decomposing \(P_2 \) into a (possibly unbounded) sequence of paths \(P_2' : x \rightsquigarrow x \) such that \(x \) is not intermediate node in any \(P_2' \), we get that each such \(P_2' \) is a U-shaped path in some child \(B_i \) of \(B \), and we have by distributivity and the
Lemma 2. \(\bigotimes_{P_2} = \bigoplus \{ \bigotimes(P_2^1), \bigotimes(P_2^2), \ldots \} \)

Finally, each U-shaped path \(P : u \leadsto v \) in \(B \) either visits \(x \), or is U-shaped in one of the children \(B_i \). Hence after line 3 of Method Merge has run on \(B \), for all \(u,v \in B \) we have that \(\text{LD}_B(u,v) = \bigoplus_{P:u\leadsto v} \bigotimes(P) \) where all \(P \) are U-shaped in \(B \). The desired results follows. \[\square \]

Lemma 3. Preprocess requires \(O(n) \) semiing operations.

Proof. Merge requires \(O(t^2) = O(1) \) operations, and Preprocess calls Merge at most once for each bag, hence requiring \(O(n) \) operations. \[\square \]

![Figure 3: Illustration of the inductive argument of Preprocess.](image)

Informal description of updating. Algorithm Update is called whenever the weight \(\text{wt}(x, y) \) of an edge of \(G \) has changed. Given the guarantee of Lemma 2 after Update has run on an edge update \(\text{wt}(x, y) \), it restores the property that for each bag \(B \) we have \(\text{LD}_B(u,v) = \bigoplus_{P:u\leadsto v} \bigotimes(P) \), where all \(P \) are U-shaped paths in \(B \). See Algorithm 3 for a formal description.

Algorithm 3: Update

Input: An edge \((x, y) \) with new weight \(\text{wt}(x, y) \)

Output: A local distance map \(\text{LD}_B \) for each bag \(B \in \mathcal{V}_T \)

1. Assign \(B \leftarrow B_{(x,y)} \), the highest bag containing the edge \((x, y) \)
2. Repeat
 3. Call Merge on \(B \)
 4. Assign \(B \leftarrow B' \) where \(B' \) is the parent of \(B \)
 5. Until \(\text{Lv}(B) = 0 \)

Lemma 4. At the end of each run of Update, for every bag \(B \) and nodes \(u,v \in B \), we have \(\text{LD}_B(u,v) = \bigoplus_{P:u\leadsto v} \bigotimes(P) \), where all \(P \) are U-shaped paths in \(B \).

Proof. First, by the definition of a U-shaped path \(P \) in \(B \) it follows that the statement holds for all bags not processed by Update, since for any such bag \(B \) and U-shaped path \(P \) in \(B \), the path \(P \) cannot traverse \((u,v) \). For the remaining bags, the proof follows an induction on the parents updated by Update, similar to that of Lemma 2.

Lemma 5. Update requires \(O(\log n) \) operations per update.

Proof. Merge requires \(O(t^2) = O(1) \) operations, and Update calls Merge once for each bag in the path from \(B(u,v) \) to the root. Recall that the height of \(\text{Tree}(G) \) is \(O(\log n) \) (Theorem 1), and the result follows. \[\square \]

Informal description of querying. Algorithm Query answers a \((u,v) \) query with the distance \(d(u,v) \) from \(u \) to \(v \). Because of Lemma 1 every path \(P : u \leadsto v \) is guaranteed to go through the least common ancestor (LCA) \(B_L \) of \(B_u \) and \(B_v \), and possibly some of the ancestors of \(B \). Given this fact, algorithm Query uses the procedure Climb to climb up the tree from \(B_L \) and \(B_u \) until it reaches \(B_v \) and then the root of \(\text{Tree}(G) \). For each encountered bag \(B \) along the way, it computes maps \(\delta_{u}(w) = \bigoplus_{P : w \leadsto v} \bigotimes(P) \), and \(\delta_{w}(u) = \bigoplus_{P : u \leadsto v} \bigotimes(P) \), where all \(P : u \leadsto v \) and \(P : v \leadsto u \) are such that the root bag of each intermediate node \(y \) is a descendant of \(B \). This guarantees that for path \(P \) such that \(d(u,v) = \bigoplus(P) \), when Query examines the bag \(B_1 \), that is the root bag of \(z \) = argmin \(w \in L \text{Lv}(x) \) it will be \(d(u,v) = \bigotimes(\delta_{u}(z), \delta_{v}(z)) \). Hence, for Query it suffices to maintain a current best solution \(\delta \) and update it with \(\delta \leftarrow \bigoplus \{ \delta_{u}(w), \bigotimes(\delta_{w}(x), \bigotimes(\delta_{v}(y))) \} \) every time it examines a bag \(B \) that is the root bag of some node \(x \). Figure 4 presents a pictorial illustration of Query and its correctness. Method 4 presents the Climb procedure which, given a current distance map of a node \(\delta \), a current bag \(B \) and a flag \(\text{Up} \), updates \(\delta \) with the distance to \((\text{Up} = \text{True}) \), or from \((\text{Up} = \text{False}) \).

Method 4: Climb

Input: A bag \(B \), a map \(\delta \), a flag Up
Output: A new map \(\delta \)

1. Remove from \(\delta \) all \(w \not\in B \)
2. Assign \(\delta(w) \leftarrow \emptyset \) for all \(w \in B \) and not in \(\delta \)
3. If \(B \) is the root bag of some node \(x \) then
 4. If Up then
 5. Update \(\delta \) with \(\delta(w) \leftarrow \bigoplus(\delta(w), \bigotimes(\delta(x), \text{LD}_B(x,w))) \)
 else
 6. Update \(\delta \) with \(\delta(w) \leftarrow \bigoplus(\delta(w), \bigotimes(\delta(x), \text{LD}_B(x,w))) \)

Lemma 6. Query returns \(\delta = (u,v) \).

Proof. Let \(P : u \leadsto v \) be any path from \(u \) to \(v \), and \(z = \text{argmin}_{w \in \text{Lv}(x)} \text{Lv}(x) = \text{PD} \), where \(\text{PD} \) is the lowest level node in \(P \). Decompose \(P \) as \(P_1 : u \leadsto z, P_2 : z \leadsto v \), and it follows that \(\bigotimes(P) = \bigotimes(P_1, \bigotimes(P_2)) \). We argue that when Query examines \(B_z \), it will be \(\delta_{u}(z) = \bigoplus_{P_1} \bigotimes(P_1) \) and \(\delta_{v}(z) = \bigoplus_{P_2} \delta_{v}(z) = \bigotimes(P_2) \). We focus only on the \(\delta_{u}(z) \) case here, as the \(\delta_{v}(z) \) is similar. We argue inductively that when algorithm Query examines a bag \(B_z \), for all \(w \in B_z \) we have \(\delta(w) = \bigotimes(P') \). Then \(P' \) are such that for each intermediate node \(y \) we have \(\text{Lv}(y) \geq \text{Lv}(x) \). Initially (line 1), it is \(x = u, B_u = B_z, \) and every such \(P' \) is U-shaped in \(B_z \), hence \(\text{LD}_{B_z}(x,w) = \bigotimes(P') \) and \(\delta_{v}(w) = \bigoplus_{P_2} \bigotimes(P_2) \). Now consider that Query examines a bag \(B_z \). Lines 7 and 8 and the claim holds for \(B_z \), a descendant of \(B_z \) previously examined by Query. If \(x \) does not occur in \(P' \), it is a consequence of Lemma 1 that \(w \in B_{z'} \), hence the induction hypothesis, \(P' \) has been considered by Query. Otherwise, \(x \) occurs in \(P' \) and decompose \(P' \) to \(P'_1, P'_2 \), such that \(P'_2 \) ends with the first occurrence of \(x \) in \(P' \), and it is \(\bigotimes(P_2) = \bigotimes(P'_1', \bigotimes(P'_2)) \). Note that \(P'_2 \) is a U-shaped path in \(B_z \), hence \(\text{LD}_{B_z}(x,w) = \bigotimes(P'_2) \). Finally, as a consequence of Lemma 1 we have that \(x \in B_{z'}, \) and by the in-
Algorithm 5: Query

Input: A pair \((u, v)\) of \(G\)

Output: The distance \(d(u, v)\) from \(u\) to \(v\)

1. Initialize map \(\delta_u\) with \(\delta_u(w) = LD_B(u, w)\)
2. Initialize map \(\delta_v\) with \(\delta_v(w) = LD_B(v, w)\)
3. Assign \(B_L\) ← the LCA of \(B_u, B_v\) in Tree\((G)\)
4. Assign \(B \leftarrow B_u\)
5. \textbf{repeat}
6. Assign \(B \leftarrow B’\) where \(B’\) is the parent of \(B\)
7. Call Climb on \(B\) and \(\delta_u\) with flag Up set to True
8. until \(B = B_L\)
9. Assign \(B \leftarrow B_v\)
10. \textbf{repeat}
11. Assign \(B \leftarrow B’\) where \(B’\) is the parent of \(B\)
12. Call Climb on \(B\) and \(\delta_v\) with flag Up set to False
13. until \(B = B_L\)
14. Assign \(B \leftarrow B_L\)
15. Assign \(\delta \leftarrow \bigotimes_{B
\in B_L} \otimes (\delta_u(x), \delta_v(x))\)
16. \textbf{repeat}
17. Assign \(B \leftarrow B’\) where \(B’\) is the parent of \(B\)
18. Call Climb on \(B\) and \(\delta_u\) with flag Up set to True
19. Call Climb on \(B\) and \(\delta_v\) with flag Up set to False
20. if \(B\) is the root bag of some node \(x\) then
21. Assign \(\delta \leftarrow \bigotimes \{\delta, \otimes (\delta_u(x), \delta_v(x))\}\)
22. until \(Lv(B) = 0\)
23. return \(\delta\)

This algorithm, \(\delta_u(x) = \bigotimes_P (\otimes(P))\). It follows that after Query processes \(B_u\), it will be \(\delta_u(w) = \bigotimes_P (\otimes(P))\). By the choice of \(z\), when Query examines the bag \(B_u\), it will be \(\delta_u(z) = \bigotimes_P (\otimes(P))\). A similar argument shows that at that point it will also be \(\delta(z) = \bigotimes_P (\otimes(P))\), hence at that point \(\delta = \bigotimes (\otimes(P), \otimes(P)) = d(u, v)\).

Lemma 7. Query requires \(O(\log n)\) semiring operations.

Proof. Climb requires \(O(n^2) = O(1)\) operations and Query calls Climb once for every bag in the paths from \(B_u\) to \(B_v\). Recall that the height of Tree\((G)\) is \(O(\log n)\) (Theorem 1), and the result follows.

We conclude the results of this section with the following theorem.

Theorem 2. Consider a graph \(G = (V, E)\) and a balanced, semi-nice tree-decomposition Tree\((G)\) of constant treewidth. The following assertions hold:

1. Preprocess requires \(O(n)\) semiring operations;
2. Update requires \(O(\log n)\) semiring operations per edge weight update; and
3. Query correctly answers distance queries in \(O(\log n)\) semiring operations.

Witness paths. Our algorithms so far have only been concerned with returning the distance \(d(u, v)\) of the pair query \(u, v\). When the semiring lacks the closure operator (i.e., for all \(s \in \Sigma\) it is \(s^* = T\)), as in most problems e.g., reachability and shortest paths with positive weights, the distance from every \(u\) to \(v\) is realized by an acyclic path. Then, it is straightforward to also obtain a witness path, i.e., a path \(P : u \equiv v\) such that \(\otimes(P) = d(u, v)\), with some minor additional preprocessing. Here we outline how.

Whenever Merge updates the local distance \(LD_B(u, v)\) between two nodes in a bag \(B\), it does so by considering the distances to and from an intermediate node \(x\). It suffices to remember that intermediate node for every such local distance. Then, the witness path to a local distance in \(B\) can be obtained straightforwardly by a top-down computation on Tree\((G)\) starting from \(B\). Recall that in essence, Query answers a distance query \(u, v\) by combining several local distances along the paths \(B_u \leftarrow B_u\) and \(B_v \leftarrow B_v\), where \(x\) is the node with the minimum level in a path \(P : u \equiv v\) such that \(\otimes(P) = d(u, v)\). Since from every such local distance a witness sub-path \(P_i\) can be obtained, \(P\) is reconstructed by juxtaposition of all such \(P_i\). Finally, this process costs \(O(|P|)\) time.

4. Algorithms for Constant Treewidth RSMs

In this section we consider the bounded height algebraic path problem on RSMs of constant treewidth. That is, we consider (i) an RSM \(A = \{A_1, A_2, \ldots, A_k\}\), where \(A_i\) consists of \(n_i\) nodes and \(b_i\) boxes; (ii) a complete semiring \((\Sigma, \otimes, \otimes, \mathbb{1})\); and (iii) a maximum stack height \(h\). Our task is to create a datastructure that after some preprocessing can answer queries of the form: Given a pair \((u, v)\), \(d(u, v)\) (also recall Remark 1). For this purpose, we present the algorithm RSMDistance, which performs such preprocessing using a datastructure \(D\) consisting of the algorithms Preprocess, Update and Query of Section 3. At the end of RSMDistance it will hold that algebraic path pair queries in a CSM \(A\) can be answered in \(O(\log n_i)\) semiring operations. We later present some additional preprocessing which suffers a factor of \(O(\log n_i)\) in the preprocessing space, but reduces the pair query time to constant.

Algorithm RSMDistance. Our algorithm RSMDistance can be viewed as a Bellman-Ford computation on the call graph of the RSM (i.e., a graph where every node corresponds to a CSM, and an edge connects two CSMS if one appears as a box in the other). Informally, RSMDistance consists of the following steps.

1. First, it preprocesses the control flow graphs \(G_i = (V_i, E_i)\) of the CSMS \(A_i\) using Preprocess of Section 3 where the weight function \(w_{i,b}\) for each \(G_i\) is extended such that \(w_{i,b}(e, (en, b), (ex, b)) = \mathbb{0}\) for all pairs of call and return nodes to the same box \(b\). This allows the computation of \(d(u, v, 0)\) for...
all pairs of nodes \((u, v)\), since no call can be made while still having zero stack height.

2. Then, iteratively for each \(\ell\), where \(0 \leq \ell < h - 1\), given that we have a dynamic datastructure \(D\) (concretely, an instance of the dynamic algorithms Update and Query from Section 3) for computing \(d(u, v, \ell)\), the algorithm does as follows: First, for each \(G_i\) whose entry to exit distance \(d(En_i, Ex_i)\) has changed from the last iteration and for each \(G_i\) that contains a box pointing to \(G_i\), it updates the call to return distance of the corresponding nodes, using Query.

3. Then, it obtains the entry to exit distance \(d(En_j, Ex_j)\) to see if it was modified, and continues with the next iteration of \(\ell + 1\).

See Algorithm 6 for a formal description.

Algorithm 6: RSMDistance

\begin{verbatim}
Input: A set of control flow graphs \(G = \{G_i\}_{1 \leq i \leq k}\), stack height \(h
1 \textbf{for each } G_i \in G \textbf{ do }
2 \hspace{1em} \text{Construct the tree-decomposition } Tree(G_i)
3 \hspace{1em} \text{Call Preprocess on } Tree(G_i)
4 \end{verbatim}

\begin{verbatim}
\hspace{1em} \text{distances } \leftarrow \{\text{Call Query on (En_i, Ex_i) of } G_i\}_{1 \leq i \leq k}
5 \hspace{1em} \text{modified } \leftarrow \{1, \ldots, k\}
6 \hspace{1em} \text{for } \ell = 0 \text{ to } h - 1 \text{ do }
7 \hspace{2em} \text{modified'} \leftarrow \emptyset
8 \hspace{2em} \text{for each } i \in \text{modified do }
9 \hspace{3em} \text{Call } G_i \text{ with the weight change } \text{wt(en_i, ex_i)} \leftarrow \text{distances}[i]
10 \hspace{3em} \text{Call Query on (En_j, Ex_j)}
11 \hspace{3em} \text{if } d(En_j, Ex_j) \neq \text{distances}[j] \text{ then }
12 \hspace{4em} \text{modified'} \leftarrow \text{modified'} \cup \{j\}
13 \hspace{4em} \text{distances}[j] \leftarrow d(En_j, Ex_j)
14 \hspace{2em} \text{end for each do }
15 \hspace{1em} \text{modified' } \leftarrow \text{modified'}
16 \hspace{1em} \text{end for do }
17 \hspace{1em} \text{end for do }
18 \hspace{1em} \text{end for do }
19 \end{verbatim}

Correctness and logarithmic pair query time. The algorithm RSMDistance is described so that a proof by induction is straightforward for correctness. Initially, running the algorithm Preprocess from Section 3 on each of the graphs \(G_i\) allows querying for the distances \(d(u, v, 0)\) for all pairs of nodes \((u, v)\), since no method call can be made. Also, the induction follows directly since for every \(A_j\), updating the distance from call nodes \((en, b)\) to the corresponding return nodes \((ex, b)\) of every box \(b\) that corresponds to a CSM \(A_j\), whose distance \(d(En_j, Ex_j)\) was changed in the last iteration \(\ell\), ensures that the distance \(d(u, v, \ell + 1)\) of every pair of nodes \(u, v\) in \(A_j\) is computed correctly. This is also true for the special pair of nodes \(En_i, Ex_i\), which feeds the next iteration of RSMDistance. Finally, RSMDistance requires \(O(\sum_{i=1}^{k}(n_i \cdot \log n_i))\) time to construct a balanced tree decomposition (Theorem 1). \(O(n)\) time to preprocess all \(G_i\) initially, and \(O(\sum_{i=1}^{k}(n_i \cdot \log n_i))\) to update all \(G_i\) for one iteration of the loop of Line 5 (from Theorem 2). Hence, RSMDistance uses \(O(\sum_{i=1}^{k}(n_i \cdot \log n_i))\) preprocessing semiring operations. Finally, it is easy to verify that all preprocessing is done in \(O(n)\) space.

After the last iteration of algorithm RSMDistance, we have a datastructure \(D\) that occupies \(O(n)\) space and answers distance queries \(d(u, v, h)\) in \(O(\log n_i)\) time, with \(u, v \in V_i\), by calling Query from Theorem 3 for the distance \(d(u, v)\) in \(G_i\).

Example 4. We now present a small example of how RSMDistance is executed on the RSM of Figure 2 for the case of reachability. In this case, for any pair of nodes \((u, v)\), we have \(d(u, v) = True\) iff \(u\) reaches \(v\). Table 4(a) illustrates how the local distance maps \(LD_{B_u}\) look for each bag \(B_u\) of each of the CSMs of the two methods dot_vector and dot_matrix. Each column represents the local distance map of the corresponding bag \(B_u\), and an entry \((u, v)\) means that \(LD_{B_u}(u, v) = True\) (i.e., \(u\) reaches \(v\)). For brevity, in the table we hide self loops (i.e., entries of the form \((u, u)\)) although they are stored by the algorithms. Initially, the stack height \(h = 0\), and Preprocess is called for each graph (line 5). The new reachability relations discovered by Merge are shown in bold. Note that at this point we have \(wt(4, 5) = False\) in method dot_matrix, as we do not know whether the call to method dot_vector actually returns. Afterwards, Query is called to discover the distance \(d(4, 6)\) in method dot_vector (line 5). Table 4(b) shows the sequence in which Query examines the bags of the tree decomposition, and the distances \(\delta_1, \delta_2\) and \(\delta\) it maintains. When \(B_2\) is examined, \(\delta = True\) and hence at the end Query returns \(\delta = True\). Finally, since Query returns \(\delta = True\), the weight \(wt(4, 5)\) between the call-return pair of nodes \((4, 5)\) in method dot_matrix is set to True. An execution of Update (line 11) with this update on the corresponding tree decomposition (Table 3) for \(\ell = 1\) updates the entries \((4, 5)\) and \((4, 3)\) in \(LD_{B_2}\), method dot_matrix (shown in bold). From this point, any same-context distance query can be answered in logarithmic time in the size of its CSM by further calls to Query.

Linear single-source query time. In order to handle single-source queries, some additional preprocessing is required. The basic idea is to use RSMDistance to process the graphs \(G_i\), and then use additional preprocessing on each \(G_i\) by applying existing algorithms for graphs with constant treewidth. For graphs with constant treewidth, an extension of Lemma 7 from [16] allows us to precompute the distance \(d(u, v)\) for every pair of nodes \(u, v \in V_i\) that appear in the same bag of \(Tree(G_i)\). The computation required is similar to Preprocess, with the difference that this time \(Tree(G_i)\) is traversed top-down instead of bottom-up. Additionally, for each examined bag \(B\), a Floyd-Warshall algorithm is run in the graph \(G_i\) induced by \(B\), and all pairs of distances are updated. It follows from Lemma 7 of [16] that for constant treewidth, this step requires \(O(n_i)\) time and space.

After all distances \(d(u, v)\) have been computed for each \(B\), it is straightforward to answer single-source queries from some node \(u\) in linear time. The algorithm simply maintains a map \(A : V_i \rightarrow \Sigma\), and initially \(A(v) = d(u, v)\) for all \(v \in B_u\), and \(A(v) = 0\) otherwise. Then, it traverses \(Tree(G_i)\) in a BFS manner starting at \(B_u\), and for every encountered bag \(B\) and \(v \in B\), if \(A(v) = 0\), it sets \(A(v) = \bigoplus_{z \in B}(\bigotimes_{x \in z}(A(z), d(z, v)))\). For constant treewidth, this results in a constant number of semiring operations per bag, and hence \(O(n_i)\) time in total.

Constant pair query time. After RSMDistance has returned, it is possible to further preprocess the graphs \(G_i\) to reduce the pair query time to constant, while increasing the space by a factor of \(\log n_i\). For constant treewidth, this can be obtained by adapting Theorem 10 from [16] to our setting, which in turn is based on a rather complicated algorithmic technique of [1]. We present a more intuitive, simpler and implementable approach that has a dynamic programming nature. In Section 5 we present some experimental results obtained by this approach.

Recall that the extra preprocessing for answering single-source queries in linear time consists in computing \(d(u, v)\) for every pair of nodes \((u, v)\) that appear in the same bag, at no overhead. To handle pair queries in constant time, we further traverse each \(Tree(G_i)\) one last time, bottom-up, and for each node \(u\) we store maps \(F_u, T_u : V_i \rightarrow B_u \rightarrow \Sigma\), where \(V_i \rightarrow B_u\) is the subset of \(V_i\) of nodes that appear in \(B_u\) and its descendants in \(Tree(G_i)\). The maps are...
such that $F_u(v) = d(u, v)$ and $T_u = d(v, u)$. Hence, F_u stores the distances from u to nodes in V^B_u, and T_u stores the distances from nodes in V^B_u to u. The maps are computed in a dynamic programming fashion, as follows:

1. Initially, the maps F_u and T_u are constructed for all u that appear in a bag B which is a leaf of $\text{Tree}(G_i)$. The information required has already been computed as part of the preprocessing for answering single-source queries. Then, $\text{Tree}(G_i)$ is traversed up, level by level.

2. When examining a bag B such that the computation has been performed for all its children, for every node $u \in B$ and $v \in V^B_u$, we set $F_u(v) = \bigoplus_{e \in E_B} (d(u, z), F_z(v))$, and similarly for $T_u = \bigoplus_{e \in E} (d(z, u), T_z(v))$.

An application of Lemma 1 inductively on the levels processed by the algorithm can be used to show that when a bag B is processed, for every node $u \in B$ and $v \in V^B_u$, we have $T_u(v) = \bigoplus_{P:u \leftarrow v} \bigotimes (P)$ and $F_u(v) = \bigoplus_{P:u \leftarrow v} \bigotimes (P)$. Finally, there are $O(n_i)$ semiring operations done at each level of $\text{Tree}(G_i)$, and since there are $O(\log n_i)$ levels, $O(n_i \cdot \log n_i)$ operations are required in total. Hence, the space used is also $O(n_i \cdot \log n_i)$.

We furthermore preprocess $\text{Tree}(G_i)$ in linear time and space to answer LCA queries in constant time (note that since $\text{Tree}(G_i)$ is balanced, this is standard). To answer a pair query u, v, it suffices to first obtain the LCA B of u and v, and it follows from Lemma 4 that $d(u, v) = \bigoplus_{e \in E_B} (T_e(u), F_e(v))$, which requires a constant number of semiring operations.

We conclude the results of this section with the following theorem. Afterwards, we obtain the results for the special cases of the IFDS/IDE framework, reachability and shortest path.

Theorem 3. Fix the following input: (i) a constant treewidth RSM $A = \{A_1, A_2, \ldots, A_h\}$, where A_i consists of n_i nodes and b_i boxes; (ii) a complete semiring $(\Sigma, \oplus, \ominus, \ominus \ominus)$; and (iii) a maximum stack height h. RSM Distance uses $O(\max\{\log n_i, h\})$ preprocessing semiring operations and

1. Using $O(n)$ space it correctly answers same-context algebraic pair queries in $O(\log n_i)$ and same-context algebraic single-source queries in $O(n_i)$ semiring operations.
2. Using $O(\sum_{i=1}^{h}(n_i \cdot \log n_i))$ space, it correctly answers same-context algebraic pair queries in $O(1)$ semiring operations.

IFDS/IDE framework. In the special case where the algebraic path problem belongs to the IFDS/IDE framework, we have a meet-composition semiring (F, \cap, \emptyset, I), where F is a set of distributive flow functions $2^D \rightarrow 2^D$, D is a set of data facts, \cap is the meet operator (either union or intersection), \emptyset is the flow function composition operator, and I is the identity flow function. For a fair comparison, the \cap semiring operation does not induce a unit time cost, but instead a cost of $O(|D|)$ per data fact (as functions are represented as bipartite graphs [55]). Because the set D is finite, and the meet operator is either union or intersection, it follows that the image of every data fact will be updated at most $|D|$ times. Then, line 7 of RSMDistance needs to change so that instead of h iterations, the body of the loop is carried up to a fixpoint. The amortized cost per G_i is then $b_i \cdot \log n_i \cdot |D|^3$ (as there are $|D|$ data facts), and we have the following corollary (also see Table 2).

Corollary 1 (IFDS/IDE). Fix the following input a (i) constant treewidth RSM $A = \{A_1, A_2, \ldots, A_h\}$, where A_i consists of n_i nodes and b_i boxes; and (ii) a meet-composition semiring (F, \cap, \emptyset, I) where F is a set of distributive flow functions $D \rightarrow D$, \cap is the flow function composition operator and \emptyset is the meet operator.

1. Algorithm RSMDistance uses $O(\max\{\log n_i, |D|^2 \})$ preprocessing time, $O(|D|)$ space, and correctly answers same-context algebraic pair queries in $O(\log n_i \cdot |D|^2)$ time, and same-context algebraic single-source queries in $O(n_i \cdot |D|^2)$ time.
2. Algorithm RSMDistance uses $O(|D|)$ space, and correctly answers same-context algebraic pair queries in $O(|D|^2)$ time, and same-context algebraic single-source queries in $O(\min\{\log n_i, |D|^2\})$ time.

Reachability. The special case of reachability is obtained by setting $|D| = 1$ in Corollary 1.

Shortest paths. The shortest path problem can be formulated on the tropical semiring $(\mathbb{R}_{\geq 0} \cup \{\infty\}, \min, +, \infty, 0)$. We consider that both semiring operators cost unit time (i.e., the weights occurring in the computation fit in a constant number of machine words). Since we consider non-negative weights, the distance between any pair of nodes is realized by an interprocedural path of stack height at most

| Table 4: Illustration of RSMDistance on the tree decompositions of methods dot_vector and dot_matrix from Figure 2. Table (a) shows the local distance maps for each bag and stack height $\ell = 0, 1$. Table (b) shows how the distance query $d(1, 6)$ in method dot_vector is handled. |
Corollary 2 (Shortest paths). Fix the following input a (i) constant treewidth RSM $A = \{A_1, A_2, \ldots, A_k\}$, where A_i consists of n_i nodes and b_i boxes; (ii) a tropical semiring $(\mathbb{R}_{\geq 0} \cup \{\infty\}, \min, +, \infty, 0)$. RSMDistance uses $O(\sum_{i=1}^{k} (n_i \cdot \log n_i + b_i \cdot \log n_i))$ preprocessing time and:

1. Using $O(n)$ space, it correctly answers same-context shortest path pair queries in $O(\log n_i)$, and same-context shortest path single-source queries in $O(n_i)$ time.

2. Using $O(\sum_{i=1}^{k} (n_i \cdot \log n_i))$ space, it correctly answers same-context shortest path pair queries in $O(1)$ time.

Interprocedural witness paths. As in the case of simple graphs from Section 3 we can retrieve a witness path for any distance $d(u, v, h)$ that is realized by acyclic interprocedural paths $P : (u, \emptyset) \sim (v, \emptyset)$, without affecting the stated complexities. The process is straightforward. Let A_i contain the pair of nodes u, v on which the query is asked. Initially, we obtain the witness interprocedural path $P^* : u \sim v$, as described in Section 3. Then, we proceed recursively to obtain a witness path P_i between the entry $E_{n, j}$ and exit $E_{x, j}$ nodes of every CSM A_j such that P^* contains an edge between a call node (e_n, b) and a return node (e_x, b) with $Y_{j}(B) = j$. That is, we reconstruct a witness path for every call to a CSM whose weight has been summarized locally in A_i. This process constructs an interprocedural witness path $P : u \sim v$ such that $\otimes(P) = d(u, v)$ in $O(|P|)$ time.

5. Experimental Results

Set up. We have implemented our algorithms for linear-time single-source and constant-time pair queries presented in Section 4 and have tested them on graphs obtained from the DaCapo benchmark suit [6] that contains several, real-world Java applications. Every benchmark is represented as a RSM that consists of several CSMs, and each CSM corresponds to the control flow graph of a method of the benchmark. We have used the Soot framework [43] to obtain the control flow graphs, where every node of the graph corresponds to one Jimple statement of Soot, and the tool of [44] to obtain their tree decompositions. Our experiments were run on a standard desktop computer with a 3.4GHz CPU, on a single thread.

Interprocedural reachability and intraprocedural shortest path. In our experiments, we focus on the important special case of reachability and shortest path. We consider CSMs of moderate to large size (all CSMs with at least five hundred nodes), as for small CSMs the running times are negligible. The first step is to execute an interprocedural reachability algorithm from the program entry to discover all actual call to return edges $(e_n, b), (e_x, b)$ of every CSM A_j (i.e., all invocations that actually return), and then consider the control flow graphs G_i independently.

- **Reachability.** For every G_i, the complete preprocessing in the case of reachability is done by executing n_i DFSs, one from each source node. The single-source query from u is answered by executing one DFS from u, and the pair query u, v is done similarly, but we stop as soon as v is reached. This methodology correctly answers interprocedural same-context reachability queries.

- **Shortest path.** For shortest path we perform intraprocedural analysis on each G_i. We assign both positive and negative weights to each edge of G_i uniformly at random from the range $[-10, 10]$. For general semiring path properties, the Bellman-Ford algorithm [17] is a very natural one, which in the case of shortest path can handle positive and negative weights, as long as there is no negative cycle. To have a meaningful comparison with Bellman-Ford (as a representative of a general semiring framework), we consider both positive and negative weights, but do not allow negative cycles. For complete preprocessing we run the classical Floyd-Warshall algorithm. Under no preprocessing, for every single-source and pair query we run the Bellman-Ford algorithm.

Results. Our experimental results are shown in Table 5.

1. The average treewidth of control flow graphs is confirmed to be very small, and does not scale with the size of the graph. In fact, even the largest treewidth is four.

2. The preprocessing time of our algorithm is significantly less than the complete preprocessing, by factor of 1.5 to 4 times in case of reachability, and by orders of magnitude in case of shortest path.

3. In both reachability and shortest path, all queries are handled significantly faster after our preprocessing, than no preprocessing. We also note that for shortest path queries, Bellman-Ford answers single-source and pair queries in the same time, which is significantly slower than both our single-source and pair queries. Finally, we note that for single-source reachability queries, though we do not provide theoretical improvement over DFS (Table 2), the one-time preprocessing information allows for practical improvements.

Since our work focuses on same-context queries and the IFDS/IDE framework does not have this restriction, a direct comparison with the IFDS/IDE framework would be biased in our favor. In the experimental results for interprocedural reachability with same-context queries we show that we are faster than even DFS (which is faster than IFDS/IDE).

Description of Table 5. In the table, the second (resp. third) column shows the average number of nodes (resp. treewidth) of CSMs of each benchmark. The running times of preprocessing are gathered by averaging over all CSMs in each benchmark. The running times of querying are gathered by averaging over all possible single-source and pair queries in each CSM, and then averaging over all CSMs in each benchmark.

6. Conclusions

In this work we considered constant treewidth RSMs, as control flow graphs of most programs have constant treewidth. We presented algorithms to handle multiple same-context algebraic path queries, where the weights belong to a complete semiring. Our algorithms have small additional one-time preprocessing, but answer subsequent queries significantly faster than no preprocessing both in terms of theoretical bounds and in practice, even for basic problems such as reachability and shortest path. While in this work we focused on RSMs with unique entries and exits, an interesting theoretical question is to extend our results to RSMs with multiple entries and exists.

Acknowledgements. We thank anonymous reviewers for helpful comments to improve the presentation of the paper.

References

<table>
<thead>
<tr>
<th>Benchmarks</th>
<th>Interprocedural Reachability</th>
<th>Intraprocedural Shortest path</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preprocessing</td>
<td>Reachability</td>
</tr>
<tr>
<td>antlr</td>
<td>698</td>
<td>1.0</td>
</tr>
<tr>
<td>blot</td>
<td>698</td>
<td>2.3</td>
</tr>
<tr>
<td>chart</td>
<td>1159</td>
<td>1.5</td>
</tr>
<tr>
<td>eclipse</td>
<td>656</td>
<td>1.6</td>
</tr>
<tr>
<td>top</td>
<td>1259</td>
<td>1.7</td>
</tr>
<tr>
<td>hoqlib</td>
<td>698</td>
<td>1.0</td>
</tr>
<tr>
<td>python</td>
<td>748</td>
<td>1.5</td>
</tr>
<tr>
<td>luindex</td>
<td>885</td>
<td>1.3</td>
</tr>
<tr>
<td>lusearch</td>
<td>885</td>
<td>1.3</td>
</tr>
<tr>
<td>pmd</td>
<td>644</td>
<td>1.4</td>
</tr>
<tr>
<td>xalan</td>
<td>698</td>
<td>1.0</td>
</tr>
<tr>
<td>jflex</td>
<td>1091</td>
<td>1.6</td>
</tr>
<tr>
<td>muffin</td>
<td>1022</td>
<td>1.7</td>
</tr>
<tr>
<td>javac</td>
<td>711</td>
<td>1.1</td>
</tr>
<tr>
<td>polyglot</td>
<td>698</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 5: Average statistics gathered from our experiments on the DaCapo benchmark suit. Times are in microseconds.