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Abstract - A criterion, similar to the information criterion
of a stationary AR model, is introduced for an adaptive
(non-stationary) autoregressive model. It is applied to non-
stationary EEG data. It is shown that the criterion can be
used to determine the update coefficient, the model order,
and the estimation algorithm.
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I. INTRODUCTION

An adaptive autoregressive (AAR) model addresses the
problem of non-stationary spectral analysis. Adaptively
estimated autoregressive parameters are useful in many
applications, examples are the on-line spectral analysis of
heart rate variability [1], as well as EEG-based brain-
computer interfacing [2].
Many different AAR estimation algorithms are available
LMS, [3,4], RLS [5,6] and Kalman filtering [6,7], recursive
AR algorithm [1,3]; Furthermore, information criteria like
AIC [8], etc. are applicable only to stationary AR models.

II. METHOD

An AAR model with order p is written as

 y(t) = a1(t)*y(t-1) + ... + ap(t)*y(t-p) + x(t) =

       = a(t)T*Y(t-1) + x(t)     i=1..p (1)

The difference with (stationary) autoregressive (AR) model
being, that the AAR parameters vary with time. The one-step
prediction error is

 e(t) = y(t) - â(t-1)T*Y(t-1) (2)

The difference between the prediction error e(t) and the
innovation process x(t) is that in the former one the estimated
parameters rather than the "true" model parameters are used.

AAR parameters are estimated using a variety of adpative
algorithms. Taking UC to be the update coefficient and k(t)
the update gain the following algorithms have been proposed:

LMS 1 [3]:
â(t) = â(t-1) + UC/MSY*e(t)*Y(t-1)

LMS 2 ([4], modified):
â(t) = â(t-1) + UC/σ²x(t)*e(t)*Y(t-1)

RAR 1 ([1, 3], exponential forgetting function):
A(t) = (1-UC)*A(t)+UC*Y(t)*Y(t)T

k(t) = UC*A(t)*Y(t)/(UC*Y(t)T*A(t)*Y(t)+1) 
â(t) = â(t-1) + k(t)T*e(t)

RAR 2 ([1], whale forgetting function):
A(t) = c1*A(t-1)+c2*A(t-2)+c3*Y(t)*Y(t)T

(1-(1-2*UC)*z^-1)² = 1 + c1*(z^-1) + c2*(z^-2)
c3 = 1+c1+c2

Kalman Filtering (KF) [6, 7]:
a(t) = a(t-1) + w(t)
w(t) = N(0,W(t))

(KF1): RLS [2,5,6];
(KF2): [7],
(KF3): W(t)=UC*trace(A(t-1))/p,
(KF4): W(t)=UC*I,
(KF5): W(t)=UC²*I,

Q(t) = Y(t-1)T * A(t-1)*Y(t-1) + V(t)
k(t) = A(t-1) * Y(t-1) / Q(t)
â(t) = â(t-1) + k(t)T * e(t)
A(t) = A(t-1) - k(t)*Y(t-1)T*A(t-1) + W(t)

RLS = KF1 (special form of KF) [2, 5]
V(t) = 1/(1-UC)
W(t) = UC*A(t-1)

The various AAR estimation algorithms differ in how k(t) is
calculated.

The mean squared error (MSE) is used to measure how well
the AAR estimates describe the observed process y.
Normalizing the MSE by the variance of the signal (MSY),
gives a relative error variance REV, being a criterion for the
goodness-of-fit.

0 < REV = MSE/MSY ≤ 1 (3)

Note, that y(t) at time t is used firstly for calculating e(t);
especially y(t) was not used for estimating any âi(t).
Therefore, e(t) is uncorrelated to all previous samples y(t-i)
i>1. Thus, the REV criterion is an objective measure for the
goodness-of-fit.

III. RESULTS

Fig.1 shows how the REV depends on UC for the various
algorithms. In all cases, one single minimum value can be
identified. The curves are different for the different
algorithms. The lowest values across all algorithms were
observed for  Kalman filtering.

Figure 2 displays relative error variance depending on the
model order and the update coefficient. Again, REV(p,UC) is
quite smooth, especially one global minmum can be observed.
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At p=9 and UC=2-8 a minimum with a value of REVmin =
0.0572 can be identified.

Figure 1: Comparison of  AAR estimation algorithms. REV
of different algorithms depending on the update coefficient UC.
The model order  was p=10. All algorithms were applied to
a non-stationary EEG of 1000s length and sampled with
100Hz. A model order of p=10 was used. The update
coefficient UC was varied between 10-k k=1..10 and 2-k,
k=1..30. The lowest error rate is reached with Kalman
filtering (KF2 and KF3 with UC=2e-3, KF4 and UC=4e-
6). (See also [6])

Figure 2: REV(p,UC) depending on model order p and update
coefficient UC. The algorithm KF5 was applied to EEG
with varying spectrum [2], sampled with 128Hz of a
length of 407.5s, derived from electrode position C3
during repetitive imaginary left and right hand
movement. The model order was varied from 2 to 30.

Generally, it can be observed that the optimal update
coefficient decreases with increasing model order. This might
have also some theoretical importance. Intuitively, it is clear
that a larger number of parameters require a larger observation
time, and consequently a smaller update coefficient. However,
it can be also related to the principle of uncertainty between
time and frequency domain. [9].

IV. SUMMARY

The smaller the REV is, the smaller is the residual. Generally,
the aim is that most of the signal is explained by the model.
Hence, it is the aim to reduce the REV as much as possible;
the smallest REV provides the optimal setting.

It is suggested, that the REV is used as criterion for
determining free parameters. The advantage of the REV
criterion compared to other model order selection criterion
(e.g. [8]) is that no penalty term is needed and it is suitable for
non-stationary models.
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An adaptive autoregressive (AAR) model addresses the problem of non-stationary spectral analysis. Adaptively estimated autoregressive 
parameters are useful in many applications, examples are the on-line spectral analysis of  heart rate variability (Binachi et al. 1997), as well as 
EEG-based brain computer interfacing (Pfurtscheller et al 1998). Many different estimation algorithms are available LMS (Akay 1994, Schack 
1993) RLS (Patomaki et al. 1997, Haykin, 1996), and Kalman filtering  (Haykin, 1996, Jazwinski, 1969),  recursive AR algorithm (Akay, 1994, 
Bianchi et al. 1997); Furthermore, information criteria like AIC, etc. (Akaike, 1974) are applicable only to stationary AR model.  
 
All AAR estimation algorithms calculate the one-step prediction error (i.e. residual part of the signal not explained by the AAR model 
parameters). The mean squared error (MSE) can be used to measure how well the AAR estimates describe the observed process y. Normalizing 
the MSE by the variance of the signal (MSY), gives a relative error variance REV, being a criterion for the goodness-of-fit.  
 

0 < REV = MSE/MSY ?  1 
 
The one-step prediction error e(t) is uncorrelated to all previous samples y(t-i) i>1. Thus, the REV criterion is an objective measure for the 
goodness-of-fit. The REV can be used to determine the model order, the update coefficient or any other free parameters. The advantage of the 
REV criterion compared to other model order selection criteria is that no penalty term is needed and it is suitable for non-stationary models.  
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