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MATERIALS AND METHODS 

EXPERIMENTAL PROCEDURES 

Slice preparation and octuple recording 

Thick transverse hippocampal slices (400 µm) were cut from left or right brain 

hemispheres of 15- to 31-day-old Wistar rats of either sex using a VT 1200 

vibratome. Animals were kept in an oxygenated chamber for 30 min, lightly 

anaesthetized with isoflurane (0.4% (v / v) added to the chamber volume at a flow 

rate of 2–3 ml min-1), and subsequently sacrificed by decapitation. Experiments 

were performed in strict accordance with institutional, national, and European 

guidelines for animal experimentation and were approved by the 

Bundesministerium für Wissenschaft, Forschung und Wirtschaft (A. Haslinger, 

Vienna). Hemispheres were mounted with “magic cut” angles of  close to 0 and 

 close to –5° (48), and were oriented such that the cutting blade advanced from 

basal to apical dendrites of CA3b pyramidal neurons. Parasagittal and frontal slice 

orientations were also tested, but resulted in reduced slice quality.  

 Patch pipettes were pulled from thick-walled borosilicate glass tubing (2 mm 

outer diameter, 0.5 mm wall thickness); when filled with intracellular solution, the 

resistance was 1.6–5 M. Pipettes were positioned manually with eight LN mini 

25 micromanipulators under visual control provided by infrared differential 

interference contrast (IR-DIC) videomicroscopy. Targeted cell bodies were located 

~20–100 µm from the surface of the slice. CA3 pyramidal neurons were identified 

on the basis of morphological appearance in the videoimage and the action 

potential phenotype upon sustained current injection, with average firing 

frequencies of < 20 Hz during 1-s current pulses. Neurons with resting potentials 

more positive than –60 mV were discarded. The recording temperature was either 

~22°C (range: 19–24°C, room temperature), or ~34°C (33–36°C, near-

physiological temperature), as indicated. All recorded neurons were located in the 

CA3b subfield, a subregion with extensive recurrent collaterals (35, 36).  

 Electrical signals were recorded using either four Multiclamp 700B 

amplifiers or a combination of two Multiclamp 700B and four Axopatch 200B 
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amplifiers. Signals were low-pass filtered with built-in Bessel filters at 5 or 6 kHz 

and digitized at 20 kHz with a CED 1401 power3 AD/DA converter connected to a 

personal computer. Pulse generation and data acquisition were performed using 

Signal 6.0 and custom-made stimulation–acquisition protocols. The presynaptic 

neuron was held in the current-clamp mode and stimulated with a repetition interval 

of 10–20 s, unless differently specified. Action potentials were elicited by brief 

current pulses (duration 2–5 ms, amplitude 1–2 nA). The postsynaptic cells were 

held in either current- or voltage-clamp mode. For current-clamp recording, pipette 

capacitance and series resistance were compensated, and compensation was 

readjusted during the experiment when necessary. For voltage-clamp recording, 

series resistance was not compensated, but carefully monitored using 2-mV 

hyperpolarizing pulses following the evoked EPSC. For analysis of EPSC kinetics, 

series resistance was ≤ 10 M (7.3 ± 0.3 M). For multiple probability binomial 

analysis, series resistance was ≤ 15 M and was constant within ≤ 20% of its initial 

value (see table S2).  

 To test for chemical synaptic connectivity, a presynaptic neuron under 

current-clamp conditions was stimulated with a train of 5 or 10 current pulses 

(duration 2–5 ms, amplitude 1–2 nA, frequency 10–50 Hz), while keeping all the 

other neurons in the voltage-clamp configuration at –70 mV (Fig. 1C). In total, 15–

30 single traces were collected. A pair was judged to be monosynaptically 

connected if EPSCs were generated with a latency of < 3 ms at ~22°C and 1.6 ms 

at ~34°C, and had peak amplitudes of > 2.2–2.5 times the standard deviation of 

the preceding baseline. To test for electrical synapses, long hyperpolarizing 

current pulses (duration 250 ms, amplitude –50 pA) were applied to one neuron, 

and potential responses (outward currents) were examined in all other neurons. 

With this stimulation paradigm, electrical coupling could be unequivocally 

distinguished from capacitive coupling artifacts. In total, 15,930 pairs of neurons 

were tested for both chemical and electrical connectivity.  
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Labeling of pre- and postsynaptic neurons   

Pre- and postsynaptic neurons were filled with biocytin (0.2%) during recording for 

> 1 hour. To restrict labeling to synaptically connected neurons, uncoupled cells 

were rapidly subjected to a nucleated patch “delabeling” procedure, by gently 

retracting the recording pipette while applying negative pressure (50–150 mbar; 

fig. S1). This minimized labeling of the perisomatic region of the unconnected cells, 

and completely prevented labeling of their subcellular processes (dendrites and 

axons).  

After filling of pre- and postsynaptic neurons, pipettes were withdrawn from 

their somata, typically resulting in the formation of outside-out patches at the 

pipette tips. Slices were then fixed for 12–24 hours at 4°C in a 0.1 M phosphate 

buffer (PB) solution containing 2.5% paraformaldehyde (PFA), 1.25% 

glutaraldehyde (GA) and 15% (v/v) saturated picric acid solution. After fixation, 

slices were treated with hydrogen peroxide (1%, 10 min) to block endogenous 

peroxidases, and rinsed in PB several times. Membranes were permeabilized with 

2% Triton X-100 in PB for 1 h. Slices were then transferred to a phosphate-buffered 

solution containing 1% avidin-biotinylated horseradish peroxidase complex (ABC) 

and 1% Triton X-100 for ~12 hr. Excess ABC was removed by several rinses in PB 

and the slices were developed with 0.036% 3,3'-diaminobenzidine 

tetrahydrochloride (DAB), 0.01% hydrogen peroxide, and a 0.006% NiCl2 / 0.008% 

CoCl2 mixture for intensification. Finally, slices were embedded in Mowiol.  

  

Solutions 

For dissection and maintenance of slices, a sucrose-containing solution composed 

of 87 mM NaCl, 25 mM NaHCO3, 10 mM glucose, 75 mM sucrose, 2.5 mM KCl, 

1.25 mM NaH2PO4, 0.5 mM CaCl2, and 7 mM MgCl2 was used. During recording, 

slices were superfused with a physiological extracellular solution containing 

125 mM NaCl, 25 mM NaHCO3, 25 mM glucose, 2.5 mM KCl, 1.25 mM NaH2PO4, 

2 mM CaCl2, 1 mM MgCl2, equilibrated with 95% O2 / 5% CO2 gas mixture. The 

pipette solution contained 135 mM K-gluconate, 20 mM KCl, 0.1 mM EGTA, 2 mM 

MgCl2, 4 mM Na2ATP, 0.3 mM GTP, 10 mM HEPES, and 0.2% biocytin (pH 
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adjusted to 7.28 with KOH). In all experiments, 10 µM gabazine was added to the 

bath solution to block any contaminating disynaptic inhibitory events.  

 

ANALYSIS 

Analysis of unitary EPSPs and EPSCs 

Unitary EPSPs and EPSCs were analyzed using C-Stimfit or Python-based scripts 

(49). The rise time was measured as the time interval between the points 

corresponding to 20 and 80% of the peak amplitude. The peak of the EPSP or 

EPSC was determined as the mean or maximum within a window of 1 or 2 ms 

duration, respectively, following the presynaptic action potential. The synaptic 

latency was determined as the time interval between the peak of the presynaptic 

action potential and the onset of the subsequent EPSP or EPSC; the onset point 

was determined from the intersection of a line through the 20 and 80% points with 

the baseline. The decay phase of the EPSPs or EPSCs was fit with a 

monoexponential function using a nonlinear least-squares fit algorithm. A trace 

was classified as a failure when the peak amplitude was less than three times the 

standard deviation of the preceding baseline. To quantify the multiple-pulse ratio, 

> 20 traces (including failures) were averaged. The amplitudes of the second and 

all subsequent EPSPs or EPSCs in the train were measured in average traces, 

setting the baseline directly before the onset of each synaptic event. To determine 

the number of inputs necessary to reach the firing threshold of a postsynaptic 

neuron, resting potentials were measured immediately after the whole-cell 

configuration was reached, and action potential voltage threshold was determined 

using depolarizing current ramps. Threshold was defined as the voltage at the 

point when the slope first exceeded a value of 20 V s-1 (Fig. 4, E and F). 

 To determine the number of functional release sites of a synaptic 

connection, EPSPs or EPSCs were recorded in different extracellular Ca2+ 

concentrations. The entire unbinned data set of peak amplitudes was analyzed by 

MP-BA (multiple probability binomial analysis) using maximum-likelihood fitting 

(50). Peak amplitude data were fit by a single release model, with free parameters 

q (quantal size; range: 3–25 pA or 0.03–2.5 mV), CVq (coefficient of variation for 
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intra-site variability of q; range: 0.01–1.5), pR1 and pR2 (release probabilities in the 

two experimental conditions; range: 0.05–0.95), and different integer values of N 

(number of functional release sites; range: 1–10). One pair in which likelihood 

increased monotonically as a function of N was excluded from analysis. When the 

fit was not satisfactory, inter-site variability and variability in release probability 

were additionally tested. Unbinned data were analyzed by maximum-likelihood 

fitting.  

 

Reconstruction, localization of synaptic contacts, and cable modeling 

Neurons including soma, dendrites, and the entire axonal arborization were traced 

using a digital reconstruction system equipped with Neurolucida 9.0 reconstruction 

software (Microbrightfield), and 60 x / 1.4 numerical aperture (NA) and 100 x / 1.4 

NA oil-immersion objectives. Dendrites were identified based on the high density 

of spines. Axons were unequivocally identified by the absence of spines and the 

larger branching angles. Putative synaptic contacts between functionally 

connected neurons were identified light-microscopically as crossings of an axon 

and a dendrite in the same focal plane, and the presence of an expansion 

(representing a putative bouton) on the presynaptic side. Only pairs in which the 

dendritic tree of the postsynaptic cell appeared largely intact were included in the 

analysis.  

 To estimate the true postsynaptic conductance at recurrent CA3–CA3 

synapses, we simulated EPSCs in realistic cable models of CA3 pyramidal 

neurons. After reconstruction of dendritic and axonal morphology, Neurolucida 

data were imported into Neuron 7.3 (52). The spatial discretization was set 

according to the “d_lambda” rule with d < 0.1 100 Hz. To ensure proper positioning 

of synapses, the spatial resolution for dendritic segments containing putative 

contacts was increased > 2 times. The integration time step was fixed to 10 µs.  

 The synapse was modeled as an AMPAR-mediated biexponential 

conductance. Latency, rise time constant, peak amplitude, and decay time 

constant were varied until the best fit to the measured EPSC was obtained (rise 

time constant range: 0.01–3 ms; peak amplitude range: 0.1–10 nS; decay time 
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constant range: 2–15 ms). Specific membrane capacitance was assumed as 

1 µF cm-2, specific membrane resistance as 164 k cm2, and intracellular 

resistivity as 194  cm (53–55). The experimental value of series resistance for 

each experiment (≤ 10 M) was realistically incorporated into the model. 

 

Analysis of axon preservation in virtual slices 

To assess the effects of slice preparation on connectivity, we performed a “virtual 

slicing” simulation, using previous reconstructions of three in vivo labeled CA3 

pyramidal neurons (cells 51, 60a, and D256 imported from ModelDB; 35, 51, 56) 

(fig. S3). Neurons were shifted such that their somata were located in the center 

of the hippocampal formation (coordinates: x = 5600, y = 4200, and z = 2750 µm; 

56). Furthermore, cells were rotated so that dendritic sum vectors for apical and 

inverted basal dendrites were perpendicular to stratum pyramidale–stratum 

radiatum and stratum oriens boundaries.  

To quantify the proportion of axons contained in a virtual slice section, 

sections of different orientation were simulated. Slice thickness was 400 µm, and 

the soma was located in the center of the section, unless differently specified. For 

each section, the cumulative length of preserved axon segments and the volume 

of the CA3 pyramidal neuron layer were computed. To determine whether an axon 

segment was located inside or outside the virtual slice section, Euclidian distance 

of the segment from the surface plane was calculated as  . , where  = (xi, yi, zi), 

xi, yi, and zi represent axon segment coordinates, and  is a normal unit vector 

perpendicular to the surface. This analysis revealed that the cumulative length of 

the axon contained in the virtual slice section was substantially reduced in 

comparison to the in vivo situation (fig. S3D). However, the volume of the CA3 

pyramidal neuron layer contained in the section was reduced in parallel (fig. S3E), 

consistent with the idea that the average connectivity in the slice was relatively 

unchanged.  

To quantify the axon connection factor in a given virtual slice section, i.e. 

the fraction of axon segments connected to the soma over the sum of all segments, 

axon segments inside a section were labeled as 1, and segments outside the 
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section as 0. For each axon segment, recursive backtracing to the soma was 

performed, and connectivity was computed as the product of all labels along the 

path. To mimic the experimental configuration, connectivity analysis was restricted 

to a 600-µm radius around the soma. The calculated axonal connection factor was 

~40% for 400-µm-thick sections (fig. S3F), and decreased substantially as the 

thickness of the sections was reduced or the soma was shifted from the center to 

the surface of the section (fig. S3G). Thus, thick slices and deep recordings, as 

used in our experiments, better maintained connectivity. Based on these results, 

total connectivity was predicted as fraction of preserved axon length / fraction of 

preserved pyramidal cell volume x axon connection factor. This analysis suggested 

that transverse slices showed the largest mean value and the smallest variability 

of total connectivity (fig. S3H).  

 

Statistics 

Values are given as mean ± standard error of the mean (SEM). Box plots show the 

lower quartile (Q1), the median (horizontal black line) and the upper quartile (Q3). 

Thus, the interquartile range (IQR = Q3–Q1) is represented as the height of the 

box. Whiskers extend to the most extreme data point that is no more than 1.5 x 

IQR from the edge of the box (Tukey style). Significance of differences was 

assessed by two-tailed Mann-Whitney test at the significance level (P) indicated 

(57). Membrane potentials reported in the text were not corrected for junction 

potentials. 

 To test whether reciprocal, convergence, divergence, and disynaptic chain 

motifs occurred significantly more frequently than expected by chance, we 

simulated the entire set of recording configurations (72 octuples, 66 septuples, 118 

sextuples, 120 quintuples, 135 quadruples, 96 triples, and 495 double recordings) 

10,000 times, assuming random connectivity (58). The connection probability was 

set to the experimentally determined average value of 0.92%. Statistical P values 

were calculated as the number of simulated configurations in which the motif 

number was equal to or larger than the empirical number, divided by the number 

of simulations (10,000).  
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MODELING 

Basic structure of the CA3 network model  

Simulations of pattern completion in autoassociative memory network models 

were performed following previous work (9, 11, 14, 59) (table S3). The hallmark 

properties of the network were: usage of binary neurons, recurrent excitatory 

connectivity, clipped Hebbian plasticity, global threshold, linear global inhibition 

(proportional to total network activity), and iterative recall (Fig. 5A). Computations 

were run in three steps: (1) definition of connectivity matrix W, (2) storage of 

random patterns via synaptic plasticity (resulting in a synaptic weight matrix J), and 

(3) simulation of iterative recall triggered by degraded patterns. 

 As finite-size effects are likely to be important (60), we modeled the network 

in realistic size. The total number of excitatory neurons n was 330,000, 

representing the CA3 pyramidal cell network of one hemisphere.  In a subset of 

simulations, models of double size (with 2 x 330,000 = 660,000 neurons) were 

implemented, to represent the activity of left and right hippocampus with 

contralateral connectivity (fig. S11, A and B). Furthermore, models of one third of 

original size (110,000 neurons) were tested, to evaluate pattern completion in an 

isolated CA3b region (fig. S11, C and D). 

To define the connectivity matrix W of size n x n, neurons were connected 

according to three different connectivity rules. First, neurons were connected 

randomly (58), assuming a uniform connection probability (p) and exclusion of 

autapses. Second, reciprocal, convergence, divergence, and disynaptic chain 

motifs were included. To achieve this, we used a SONET algorithm (34), setting 

recip, conv, div, and chain to values > 0, where  describes the enrichment of a 

given motif above the random level. Finally, in a subset of simulations, connectivity 

was restricted to two thirds of the network by eliminating connections from the 

matrix W, to account for the limited extent of CA3 pyramidal neuron axons along 

the septo-temporal axis (35, 36) (fig. S10).  
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Storage in the network model  

To simulate storage of information, random activity patterns were applied to the 

network. Patterns were vectors of binary numbers of length n, in which 0 

represented inactivity and 1 action potential firing. The total average activity level 

f was assumed as 0.001 (see Refs 13, 14, 58), consistent with sparse firing of CA3 

pyramidal neurons in vivo in non-sharp wave ripple periods during < 10-ms time 

intervals (61). Thus, for a 330,000 neuron network, a pattern vector contained on 

average 330 values of 1 and 329,670 values of 0. Before storage, the network was 

initialized by setting all elements of synaptic weight matrix J to 0.  

 An increasing number (m) of random binary patterns was then loaded into 

the network. Synaptic plasticity was implemented using a clipped Hebbian rule (8, 

60). When both pre- and postsynaptic neurons were simultaneously active during 

a pattern, synaptic weights were updated to 1; otherwise weights were unchanged. 

The use of this rule was justified by experimental data, demonstrating both 

requirement for simultaneous pre- and postsynaptic activity and saturation of the 

extent of LTP at recurrent CA3–CA3 synapses (33). Mathematically, the synaptic 

weight matrix J was computed as the sum of the outer products of the pattern 

vectors, clipped at a maximal value of 1.   

 

Recall in the network model  

To simulate iterative recall, a subset (100) of the activity patterns originally applied 

in the storage phase was re-applied to the network. Patterns applied during recall 

were degraded in comparison to the original ones applied during storage. The 

proportion of validly firing neurons (bvalid) was 0.5 and the proportion of spuriously 

firing neurons (bspurious) was 0.001, corresponding to a correlation between original 

and degraded patterns of 0.71. We then simulated the ability of the network to 

iteratively recall the original patterns (14, 62). Neuronal activity was computed over 

10 or 50 recall cycles (62). For each recall cycle, the total input to the ith neuron at 

time t was calculated as  
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1
	 	 	 	 ,											 Eq. 1  

 

where W denotes the connectivity matrix, J  represents synaptic weight matrix, P 

is a matrix incorporating synaptic variability, and X(t) is the network activity vector 

at time t (59). W, J, and P were multiplied in an element-wise manner. The matrix 

P was introduced to take into account the stochastic nature of transmitter release 

(i.e. synaptic amplitude fluctuations from trial to trial, including failures) (14). 

Random numbers had a mean value Iµ, a standard deviation I, and a coefficient 

of variation CV = I/ Iµ. In the default parameter set, Iµ was set to 1, and CV was 

set to 0 or 1.  

 During iterative recall, a neuron was assumed to fire action potentials at 

time t + 1 if the condition 

 

	
1
	 	 																								 Eq. 2  

 

was met, where S(t) =  is the total activity, g1 is the proportionality factor 

of inhibition, and g0 is firing threshold (59). g1 was varied between 0 and 0.05. In 

the default parameter setting, g0 was assumed as 7 10-6, corresponding to three 

excitatory synaptic inputs. To explore the parameter space, parameters of the 

model were varied over a wide range in comparison to the default values (table 

S3, right column).  

  

Analysis of pattern correlation and capacity 

To quantify the accuracy of recall of a given pattern, pattern correlation (r) between 

original and recalled patterns was computed as the correlation coefficient between 

the corresponding vectors (57, 59). Pattern correlation was quantified for the 8th 

recall cycle, since steady-state conditions were nearly reached for this cycle (62; 

Fig. 5A).  Pattern correlation r was then plotted against the pattern load m and the 
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proportionality factor of inhibition g1. These 3-dimensional r–m–g1 plots (e.g. Fig. 

5) provided information about capacity, robustness of recall, and maximal 

correlation.  

 Capacity (in number of patterns) was quantified as the maximum of the 

product function of pattern correlation (r)  and  pattern load (m). This definition was 

chosen to take into account both the number of patterns that can be stored and 

accurately recalled and the recall accuracy of these patterns. Robustness of 

pattern completion was quantified as the area enclosed by the 50% contour line in 

the r–m–g1 plots. Information capacity (in bit synapse-1) was calculated as  

	 log 1 log 1
	 	

,															 Eq. 3  

 
where Npatterns is capacity, f is activity level, n is the number of neurons, and p is 

connection probability (e.g. 60).  

 Simulations of random connectivity matrices, storage, and iterative recall 

were implemented in C or C++, and run on x86_64-based shared memory systems 

(Supermicro or SGI Altix UV 1000 systems) using GNU/Linux (Debian, SLES), the 

GNU C compiler (GCC, 4.3.4, 4.9.2), and the GNU scientific library (GSL, 1.11, 

1.16). Simulations were run with up to 20 different seeds. Connectivity matrices 

containing disynaptic connectivity motifs were generated using the SONET 

simulation program package (34) after minor modifications. Changes included 

improvement in memory management, storage of matrices in sparse format, and 

adaptation to a 64-bit computation platform. Computer source code will be 

provided upon request.  
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Fig. S1. Selective labeling of synaptically connected cells in octuples.  

 

(A) A four-step procedure to achieve selective labeling of connected neurons. (1) 
Tight seal cell-attached configurations were obtained in all eight neurons. (2) The 
transition into the whole-cell configuration was made nearly simultaneously in all 
cells. (3) All pairs of cells were tested for possible connections. (4) Nucleated 
patches were isolated from the non-connected cells to avoid further loading with 
biocytin. The whole-cell configuration was maintained only in the synaptically 
connected cells, resulting in selective labeling of pre- and postsynaptic neuron.  
(B) Destaining by nucleated patch formation. Identification of synaptically 
connected cells (cells 6 and 7) and formation of nucleated patches in unconnected 
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cells (cells 1–5) in a septuple recording configuration. Note that pipette location 
and angle allowed unequivocal assignment of the cells.  
(C) Biocytin labeling after destaining procedure shown in (B). Intense labeling 
allowed full digital reconstruction of postsynaptic cell (cell 6, cyan) and presynaptic 
cell including axon (cell 7, magenta). In contrast, perisomatic labeling was faint or 
absent in the non-connected cells (red ellipses). Large inset shows single traces 
from a synaptic connection between cell 7 (magenta) and cell 6 (cyan), showing a 
functional connection. Small inset illustrates perisomatic areas of cell 1 
(unconnected, faint labeling) and cell 7 (connected, intense labeling). 
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Fig. S2. Chemical versus electrical coupling between CA3 pyramidal 

neurons.  

 

(A to D) Chemical synaptic transmission.  
(A) Unitary EPSCs at CA3–CA3 synapses under control conditions (black trace) 
and in the presence of 10 µM CNQX (red trace; postsynaptic membrane potential 
–70 mV).  
(B) Corresponding plot of unitary EPSC peak amplitude against experimental time 
during application of 10 µM CNQX (gray area). Note that CNQX completely 
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blocked unitary EPSCs, indicating that transmission was chemical in nature and 
mediated by AMPA-type glutamate receptors.  
(C and D) Unitary EPSCs in control conditions (C) and in Mg2+-free extracellular 
solution (D). EPSC amplitude increases in the absence of Mg2+, suggesting a 
contribution of NMDA-type glutamate receptors to the synaptic current.  
Chemical transmission was found in 146 out of 15,930 tested pairs.  
(E to I) Electrical synaptic transmission.  
(E) Infrared differential interference contrast image of two CA3 neurons electrically 
connected, presumably via a gap junction. Blue and red areas represent the 2D 
projections of the two cell bodies.  
(F and G) Postsynaptic voltage changes in response to a single action potential 
(F; 5 consecutive traces) and a train of 10 action potentials (G). Note that the 
postsynaptic response shows almost constant amplitude in consecutive trials, as 
characteristic for electrical synaptic transmission.  
(H and I) Current changes in a CA3 pyramidal neuron evoked in response to a long 
hyperpolarizing current pulse (50 pA, 250 ms) applied to the other cell. Current 
injection was made either in the blue cell (H) or the red cell (I). All traces were 
taken from the same CA3–CA3 pair (in a slice from a 16-day-old rat). 
Evidence for electrical coupling was found in one out of 15,930 tested pairs (63).  
 



 
 

21 
 

Fig. S3. Connectivity in transverse, parasagittal, and frontal slices.  

 

(A and B) “Virtual slicing” procedure. Surface graphics of the dentate gyrus and 
the CA3 and CA1 regions of the hippocampus (somatic and dendritic layers; (A)) 
and the CA3 and CA1 pyramidal neuron layer (B), superimposed with a 400-µm 
slice close to the transverse plane ( = 0;  = –5°) (48, 56).  
(C) Axonal arborization of a fully reconstructed CA3b pyramidal neuron (cell 51) 
(56). View from anterior direction. Blue and red, axon segments contained in a 
simulated 400-µm thick transverse slice (red, within a 600-µm radius from the 
soma; blue, outside a 600-µm radius). Black, axon segments outside the simulated 
slice. Green sphere represents cell body.  
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(D and E) Summary bar graph of cumulative axon length (D), and corresponding 
volume of the CA3 pyramidal neuron layer (E). Total, value for the intact brain; 
transverse, parasagittal, and frontal, values for simulated 400-µm sections of 
different orientations. Data were obtained from three different CA3 pyramidal 
neurons (cell 51, D256, and 60a) (56). Note that slicing decreased both the 
cumulative axon length and the CA3 pyramidal cell layer volume, so that the ratio 
was relatively unaltered by the slicing procedure. 
(F and G) Axon connection factor, i.e. fraction of axon segments connected to the 
soma over total number of axon segments, for 400-µm slices with soma in the 
center (F) and for different slice thicknesses and depth fractions (0 = surface, 0.5 
= center of the slice; average data from three cells and orientations; G). Note that 
axons crossing the surface of the virtual slice section were disconnected from the 
soma, so that the axon connection factor was significantly below 100%. Only axon 
segments within a 600-µm radius from the soma were considered.  
(H) Total connectivity, obtained as fraction of preserved axon / fraction of 
preserved pyramidal cell volume x axon connection factor for 400-µm slices with 
soma in the center. Red dashed line indicates 100% predicted connectivity. Note 
that transverse slices showed high connectivity and relatively small variability (at 
least for the three analyzed cells; left bar), whereas connectivity was more variable 
in parasagittal slices (middle bar) and smaller in frontal slices (right bar).   
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Fig. S4. Detailed properties of macroconnectivity in the CA3 pyramidal cell 

network.  

 

(A and B) Distance dependence of unitary EPSP (A) and EPSC peak amplitude 
(B). Red lines represent the result from linear regression; P = 0.74 and 0.13, 
respectively.  
(C) Average connectivity for slices from young (P15–18) and older (P19–31) rats 
(P = 0.372). Open circles represent data for each 1-day age interval.  
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(D) Number of connectivity motifs in both age groups. Bar graphs show the number 
of a given motif in the experimental sample (open bars) and the predicted number 
in a network with random connectivity (filled bars).  
(E) Properties of EPSCs from synaptic connections found in isolation (white boxes) 
and from synaptic connections embedded in disynaptic motifs (i.e. reciprocal, 
convergence, divergence, and chain motifs; gray boxes). Graphs show EPSC peak 
amplitude (P < 0.001), proportion of failures (P = 0.002), EPSC potency (i.e. 
amplitude of successes; P = 0.016), synaptic latency (P = 0.063), EPSC 20–80% 
rise time (P = 0.060), and EPSC decay time constant (monoexponential fitting; P 
= 0.251). Note that some of the unidirectional connections may belong to 
connectivity motifs that were not recorded during the experiment.  
In box plots, horizontal lines represent median, boxes quartiles, whiskers most 
extreme data points ≤ 1.5 interquartile range from box edges, and single points 
data from individual experiments. Asterisks indicate P < 0.05.  
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Fig. S5. Minimal depletion and rapid pool refilling during repetitive 

stimulation.  

 

(A) Unitary EPSCs during train stimulation at 20 Hz at ~22°C. Top trace, 
presynaptic action potentials; bottom trace, average EPSC.  
(B) Plot of EPSCn / EPSC1, plotted against the number n of the stimulus. Red curve 
represents the results of curve fitting with a single exponential function with an 
offset. Mean values from 10 pairs at ~22°C. 
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(C and D) Similar data as shown in (A and B), but at near-physiological 
temperature (~34°C). Mean values from 9 pairs. Dashed lines in (B and D) indicate 
an EPSCn / EPSC1 ratio of 1.  
(E) Summary bar graph of results at ~22°C and ~34°C. Note moderate depression 
at ~22°C versus slight facilitation at ~34°C. 
(F) Cumulative plot of EPSC peak amplitude against stimulus number (at ~22°C). 
Amplitude was normalized to that of the first stimulus. The last 5 data points were 
analyzed by linear regression. The offset was 1.71, and the slope was 1.21 
stimulus-1. For a number of functional release of 3.2 and a release probability of 
0.37, this corresponds to a refilling rate of 1.43 vesicles stimulus-1.  
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Fig. S6. Storage and recall of patterns in a real-size CA3 network model.  

 

Storage was performed with a single test pattern with activity in the first 330 
neurons and a variable number of subsequent random patterns. Recall was 
examined with the first pattern. Average activity level (f) was 0.001, similar to 
activity level in the first pattern (330 / 330,000). (A) Storage and recall of a single 
pattern in the network model. Left, elementwise product of connectivity matrix and 
synaptic weight matrix (W J) after storage of the first pattern; each black point 
represents a potentiated synapse in the matrix. Right, raster plot of neuron firing 
in the recall phase. Each red circle represents activity of a single neuron in the 
network. Recall was triggered with a degraded test pattern (bvalid = 0.5, bspurious = 
0.001; correlation between original pattern and test pattern 0.71; see materials and 
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methods). Note the almost perfect recall of the original pattern (pattern correlation 
between retrieved pattern and test pattern at 8th recall cycle 0.97, number on top).  
(B) Similar to (A), but after storage of 50,000 patterns in the network (pattern load 
m = 1 + 49,999). Note the accurate recall of the original pattern (pattern correlation 
between retrieved pattern and test pattern at 8th recall cycle 0.89).  
(C) Similar to (A), but after storage of 83,000 patterns in the network (pattern load 
m = 1 + 82,999). Note that the recall performance decreased, due to both lack of 
valid firings and generation of spurious firings (pattern correlation between 
retrieved pattern and test pattern at 8th recall cycle 0.0006).  
Total number of neurons in the network 330,000; only subsets of neurons (1,000 
in left panels; 10,000 in right panels) are shown for clarity (see inset in (A), left). 
Connection probability p = 3%; random connectivity. Raster plots in (B) and (C) 
correspond to the plots of pattern correlation versus recall cycle shown in Fig. 5A.  
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Fig. S7. Dependence of pattern completion on total activity level.  

3D plots of pattern correlation versus pattern load (m) and inhibition factor (g1) for 
connection probability p = 3% and different total activity levels f.  
(A) f = 0.001 (standard parameter value).  
(B) f = 0.0005.  
(C) f = 0.00075.  
(D) f = 0.005.  
Random connectivity in all cases. Capacity (C) numbers indicate the maximum of 
m x r. Note that maximal capacity was obtained for an activity level f = 0.00075. 
For smaller activity levels, pattern completion failed because synaptic activity was 
below the activation threshold. For larger activity levels, capacity also decreased, 
consistent with previous theoretical studies (13, 64, 65).  
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Fig. S8. Relative importance of reciprocity, convergence, divergence, and 

chain motifs for pattern completion.  

 

(A) Effects of selective incorporation of individual connectivity motifs. 3D plots of 
pattern correlation versus pattern load (m) and inhibition factor (g1) for connection 
probability p = 1% and recip = 5, conv = 0, div = 0, and chain = 0 (left), recip = 0, 
conv = 5, div = 0, and chain = 0 (center), and recip = 0, conv = 0, div = 5, and chain 
= 0 (right). The network models were unable to generate pattern completion. For 
recip = conv = div = chain = 5, see Fig. 5C, center. Note that recip = conv = div = 
0 and chain = 5 could not be tested, because this case does not give real solutions 
for the decomposition of the covariance matrix in the SONET algorithm (34). 
(B) Effects of global reduction of connectivity motifs. 3D plot of pattern correlation 
versus pattern load (m) and inhibition factor (g1) for connection probability p = 1% 
and recip = conv = div = chain = 3 (left), recip = conv = div = chain = 2 (center), and 
recip = conv = div = chain = 1 (right). Note that the performance of the pattern 
completion network gradually declined.  
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Fig. S9. Effects of motifs for different connection probability values.  

 
Effects of connectivity motifs for different connectivity p = 3% and recip = 9; conv 
= div = chain = 4 (left), p = 1.5% and recip = 8; conv = div = chain = 5 (center), and 
p = 1% and recip = conv = div = chain = 5 (right). Note that the same  values 
could not be tested, because these cases do not give real solutions for the 
decomposition of the covariance matrix in the SONET algorithm (34). For 
comparison with networks without motifs, see Fig. 5B.  
 



 
 

32 
 

Fig. S10. Sparsely connected real-size network models with limited axon 

projection produce pattern completion.  

 

(A and B) 3D plots of pattern correlation versus pattern load (m) and inhibition 
factor (g1) for networks in which axon arborization is confined to 2 / 3 of the 
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longitudinal axis. Connection probability p = 3% and random connectivity (A), 
connection probability 1% with recip = conv = div = chain = 5 (B).  
(C and D) Similar analysis, but for circular arrangement of neurons and 
connectivity. For a connection probability of 1% and random connectivity, recall 
was not possible, neither in the linear nor in the circular case (capacity 0; not 
illustrated).  
Schemes on top illustrate restricted connectivity (left) and corresponding 
connectivity matrices (right; yellow = possible connectivity; blue = no connectivity). 
Note that the basic properties of the network were similar to those of the network 
with unlimited axonal projection (Fig. 5, B and C). 
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Fig. S11. Sparsely connected network models of double and one-third size 

exhibit pattern completion.  

 

(A and B) Pattern completion in a double-size network model. 3D plots of pattern 
correlation versus pattern load (m) and inhibition factor (g1) for connection 
probability p = 3% with random connectivity (A), and 1% with structured 
connectivity (recip = conv = div = chain = 5; B). In both simulations, the network 
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size was 2 x 330,000 = 660,000 neurons to represent two extensively 
interconnected hippocampal CA3 networks (scheme on top).  
(C and D) Pattern completion in a one-third size network model. 3D plots of pattern 
correlation versus pattern load (m) and inhibition factor (g1) for connection 
probability p = 3% with random connectivity (C), and 1% with structured 
connectivity (recip = conv = div = chain = 5; D). In both simulations, the network 
size was 1 / 3 x 330,000 = 110,000 neurons to depict the isolated CA3b subregion, 
from which the experimental data were obtained (scheme on top). Note that pattern 
completion was markedly impaired in the isolated CA3b subnetwork.   
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Table S1. Functional properties of unitary EPSPs and EPSCs at recurrent 

CA3–CA3 synapses.  

Parameter Value (~22°C) Value (~34°C) 

Resting membrane 

potential 

68.2 ± 1.0 mV 

(n = 33) 

 

Action potential 

threshold 

36.1 ± 1.6 mV 

(n = 33) 

 

EPSP peak amplitude 0.56 ± 0.01 mV 

(n = 40) 

0.27 ± 0.1 mV 

(n = 5)  

EPSP latency 2.3 ± 0.1 ms 1.2 ± 0.1 ms 

EPSP 20–80% rise time 4.0 ± 0.2 ms 2.3 ± 0.4 ms 

EPSP decay time 

constant  

80.1 ± 6.2 ms 54.4 ± 6.8 ms  

Failures 37 ± 3% 55 ± 11% 

EPSP2 / EPSP1 0.84 ± 0.07  

(n = 10) 

1.15 ± 0.22  

(n = 9) 

EPSP10 / EPSP1 0.52 ± 0.07  

(n = 10) 

1.25 ± 0.23  

(n = 9) 

EPSC peak amplitude 17.3 ± 2.0 pA 

(n = 39) 

14.4 ± 2.6 pA 

(n = 14) 

EPSC latency 2.2 ± 0.1 ms 1.1 ± 0.1 ms 

EPSC 20–80% rise time 1.1 ± 0.1 ms 1.1 ± 0.1 ms 

EPSC decay time 

constant 

9.5 ± 0.6 ms 8.7 ± 1.2 ms 

Failures 40 ± 4% 43 ± 5% 

EPSC2 / EPSC1 0.84 ± 0.07 

(n = 10) 

1.15 ± 0.22 

(n = 9) 

EPSC10 / EPSC1 0.52 ± 0.07 

(n = 10)  

1.25 ± 0.23 

(n = 9) 

 



 
 

37 
 

Table S2. Multiple probability binomial analysis reveals a small number of 

functional release sites at recurrent CA3–CA3 synapses.  

 q N pR  

2 mM 

[Ca2+]o 

pR  

1 mM 

[Ca2+]o 

pR  

4 mM 

[Ca2+] o 

CVq Number of 

connections

EPSCs  4.41 ± 

1.07 pA  

2.75 ± 

0.25 

 

0.37 ± 

0.04 

 

0.18 ± 

0.14 

 

0.52 ± 

0.07 

0.79 ± 

0.10 

4  

EPSPs  0.48 ± 

0.09 

mV  

3.33 ± 

0.41 

0.69 ±  

0.10 

12 
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Table S3. Parameters of the network model of pattern completion.  

Param

eter 

Explanation  Default 

value(s)  

Alternative values or 

range (if indicated) 

n  Number of neurons  330,000  165,000, 660,000 

p  Connection probability  3, 1.5, or 1% 6%  

f Total activity level in pattern 1 0.001  0.0005, 0.00075, 

0.002, 0.005 

g0 Firing threshold  7 10-6  1 10-6, 10 10-6  

g1 Inhibition factor  0 – 0.05  

m  Pattern load (number of patterns 

applied in storage phase)  

0 – 150,000 up to 580,000 in the 

largest networks 

CV Coefficient of variation of trial-to-

trial fluctuations in synaptic events 

in recall phase  

0 or 1 0.577, 0.707 

bvalid Proportion of valid firings in initial 

phase of recall (bvalid = 1  identity 

to initial pattern) 

0.5 0.75, 1 

bspurious Proportion of spurious firings in 

initial phase of recall (bspurious = 0  

no spurious firing) 

0.001 0.0005, 0 

recip Abundance of reciprocal motifs in 

comparison to random network (= 

0: random connectivity) 

0 or 5  1, 2, 3  

conv Abundance of convergence motifs  0 or 5 1, 2, 3 

div Abundance of divergence motifs 0 or 5 1, 2, 3 

chain Abundance of disynaptic chains  0 or 5 1, 2, 3 

 

 1 Also referred to as fraction of active neurons or coding level (e.g. 39, 60).  
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Table S4. Capacity of network models with different parameter settings.  

Number of 
neurons 

(n) 

Con-
necti-
vity 
(p) 

Activity 
(f) 

Thres-
hold 
(g0) 

CV Initial 
pattern 

correlation  
r 

(bvalid, 
bspurious) 

Abun-
dance of 
motifs 

() 

Capa-
city 

(m x r) 1 

Infor-
mation 

capacity 
(bits 

synapse-1) 

c 
2 rmax

3 Retrie-
val 

area 4 

Fig.

330,000 3% 0.001 7 10-6 0 0.707 
(0.5, 0.001) 

All  = 0 45,007 0.0519 0.136 0.999 0.0519 5B left, 
S7A 

165,000 3% 0.001 7 10-6 0 0.707 All  = 0 8,964 0.0207 0.054 0.974 0.0207  

165,000 6% 0.001 7 10-6 0 0.707 All  = 0 33,856 0.0390 0.205 1.0 0.0390  

660,000 3% 0.001 7 10-6 0 0.707 All  = 0 131,098 0.0755 0.199 1.0 0.0755  

660,000 1.5% 0.001 7 10-6 0 0.707 All  = 0 34,682 0.0400 0.053 0.971 0.0400  

330,000 3% 0.0005 7 10-6 0 0.707 All  = 0 - - - - - S7B 

330,000 3% 0.00075 7 10-6 0 0.707 All  = 0 45,720 0.0410 0.139 0.994 0.0254 S7C 

330,000 3% 0.005 7 10-6 0 0.707 All  = 0 18,977 0.0871 0.058 1.0 0.0871 S7D 

330,000 3% 0.001 7 10-6 0 r = 0.816 
(0.75,0.0005

) 

All  = 0 65,498 0.0755 0.198 0.999 0.0755  

330,000 3% 0.001 7 10-6 0 r = 1
(1, 0), i.e. 
original 
pattern 

All  = 0 70,314 0.0810 0.213 0.998 0.0810 Foot 
notes  
5, 6 

330,000 3% 0.001 1 10-6 0 0.707 All  = 0 14,004 0.0161 0.042 1.0 0.0161  

330,000 3% 0.001 10 10-6 0 0.707 All  = 0 45,614 0.0526 0.138 0.995 0.0526  

330,000 6% 0.001 7 10-6 0 0.707 All  = 0 33,856 0.0195 0.103 1.0 0.0195  

330,000 1.5% 0.001 7 10-6 0 0.707 All  = 0 - - - - - 5B 
center 

330,000 1% 0.001 7 10-6 0 0.707 All  = 0 - - - - - 5B right 

330,000 1% 0.001 7 10-6 0 0.707 All  = 5 3,582 0.0124 0.012 0.536 0.1108 5C 
center 
S9C 
right 

330,000 1% 0.001 7 10-6 0 0.707 All  = 3 4,544 0.0157 0.005 0.564 0.0692 S8B left 

330,000 1% 0.001 7 10-6 0 0.707 All  = 2 2,985 0.0103 0.009 0.553 0.0384 S8B 
center 

330,000 1% 0.001 7 10-6 0 0.707 All  = 1 - - -  - - S8B 
right 

330,000 1.5% 0.001 7 10-6 0 0.707 recip = 8; 
conv = 
div = 

chain = 5 

8,374 0.0193 0.025 0.685 0.0193 S9 
center 

330,000 3% 0.001 7 10-6 0 0.707 recip = 9; 
conv = 
div = 

chain = 4 

9,373 0.0108 0.028 0.764 0.0108 S9 left 

330,000 3% 0.001 7 10-6 1.0 0.707 All  = 0 7,037 0.0081 0.021 0.986 0.0081 5D 
center 

330,000 3% 0.001 7 10-6 0.707 0.707 All  = 0 15,095 0.0174 0.046 0.994 0.0174  

330,000 3% 0.001 7 10-6 0.577 0.707 All  = 0 21,618 0.0249 0.066 0.997 0.0249 5D left 
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Left seven columns indicate parameters of the model. Right six columns indicate 

measured quantities and reference to Figures as applicable. First row indicates 

standard parameter values (red). Other rows indicate alterations of parameters 

(black on green background).   

 

1 Capacity was measured as the maximum of m x r, where m is pattern load and 

r is pattern correlation. 

 

2 c was quantified as capacity divided by the number of cells.  

 

3 rmax represents maximal pattern correlation during retrieval.  

 

4 Retrieval area is the area enclosed by the half-maximal pattern correlation (rmax 

/ 2) contour line in r–m–g1 plots.  

 

5 For a network with n = 330,000; p = 0.03; bvalid = 1, bspurious = 0, i.e. retrieval with 

original pattern, the information capacity was calculated as 0.08 bits per synapse. 

This was lower than the information capacity of the Willshaw model with binary 

learning rule for an autoassociative task (ln 2 / 4 = 0.17 bits synapse-1) (66) or the 

Hopfield model with additive learning rule (1 / (8 ln 2) = 0.18 bits synapse-1) (64). 

However, in our model, (1) capacity was calculated from the product m x r, giving 

lower values, and (2) the number of active neurons per pattern was not constant, 

but varied statistically between patterns (which reduces capacity; 67), (3) finite-

size models generally show smaller capacity than infinite-size models (60).  

 

6 For a network with n = 330,000; p = 0.03; bvalid = 1, bspurious = 0, i.e. retrieval with 

original pattern, c, the pattern-to-neuron ratio, was calculated 0.213. This was 

higher than the value of a Hopfield model (11, 13), but below the theoretical bound 

obtained with the Gardner approach (c = 2, 68). Thus, networks based on 

biological constraints may operate below the theoretical limit. 

 




