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ABSTRACT Spontaneous postsynaptic currents (PSCs) provide key information about the mechanisms of synaptic transmis-
sion and the activity modes of neuronal networks. However, detecting spontaneous PSCs in vitro and in vivo has been chal-
lenging, because of the small amplitude, the variable kinetics, and the undefined time of generation of these events. Here,
we describe a, to our knowledge, new method for detecting spontaneous synaptic events by deconvolution, using a template
that approximates the average time course of spontaneous PSCs. A recorded PSC trace is deconvolved from the template,
resulting in a series of delta-like functions. The maxima of these delta-like events are reliably detected, revealing the precise
onset times of the spontaneous PSCs. Among all detection methods, the deconvolution-based method has a unique temporal
resolution, allowing the detection of individual events in high-frequency bursts. Furthermore, the deconvolution-based method
has a high amplitude resolution, because deconvolution can substantially increase the signal/noise ratio. When tested against
previously published methods using experimental data, the deconvolution-based method was superior for spontaneous PSCs
recorded in vivo. Using the high-resolution deconvolution-based detection algorithm, we show that the frequency of sponta-
neous excitatory postsynaptic currents in dentate gyrus granule cells is 4.5 times higher in vivo than in vitro.
INTRODUCTION
Quantitative analysis of postsynaptic currents (PSCs) in
neurons is of critical importance to our understanding of
the function of central synapses. In brain slice preparations
in vitro, transmitter release not only occurs in a tightly regu-
lated manner following presynaptic spikes, but also sponta-
neously in the absence of presynaptic action potentials
(APs, Katz (1)). Although the functional significance of
spontaneous transmitter release is unclear, it provides key
information about various mechanistic aspects of transmis-
sion, such as quantal size, release probability, and changes
in any of these parameters (2,3). Similarly, in neuronal
networks in vivo, synaptic activity is not only generated in
response to behavioral stimuli (4), but also in an apparently
random manner during dynamic network activity (5,6).
Analysis of spontaneous synaptic events in vivo may
provide important clues regarding the processes underlying
rhythmic network activity, such as network oscillations
(5,6). For the quantitative analysis of both spontaneous
activity in vitro and in vivo, powerful detection algorithms
with high temporal resolution are required.

Several methods for the detection of spontaneous PSCs
were previously proposed. The simplest detection method
uses amplitude threshold algorithms, in which the threshold
is either fixed at an absolute level or shifted in parallel to
a sliding baseline (7). As these algorithms exclusively use
information about the amplitude of synaptic events, their
performance is low, especially for events generated in distal
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dendrites, which are attenuated substantially (7). Alternative
detection methods are based on first-derivative algorithms
(8). These algorithms have a high temporal resolution, but
typically show a high false event rate. False positive (FP)
events will be produced by baseline noise, amplified by
the derivative method, whereas false negative (FN) events
will be produced by slowly rising PSCs escaping detection.
Miniature PSCs in central neurons are generated at synapses
distributed over the entire dendritic tree (9). Therefore,
PSCs will suffer from attenuation and filtering, and only
the perisomatically generated subset of events may rise
rapidly and become detectable. Thus, the performance of
both methods is substantially below that of a by eye/manual
analysis of an experienced investigator, in which a priori
knowledge about the time course of PSCs allows to distin-
guish real events from experimental artifacts.

To incorporate information about the kinetics of PSCs,
template fit algorithms have been proposed by Jonas et al.
(10), Abdul-Ghani et al. (11), and Clements and Bekkers
(12). These methods correlate the experimental trace with
a previously specified template sample point by sample
point, detecting events as the correlation coefficient or the
signal/noise ratio (SNR) exceeds a critical value (10–12).
These algorithms show a low false event rate, but have a
temporal resolution limited by the duration of the template.
Thus, whereas these methods work well for events gener-
ated at low frequency, superimposed events are difficult
to analyze. This limitation is particularly relevant in vivo,
where synaptic events are generated in high-frequency
bursts (6,13). In such a scenario, for any given event both
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preceding (contributing to the baseline) and following
events (contributing to the decay phase) will markedly
degrade the correlation with the template. Another disad-
vantage of template fit algorithms is that the SNR depends
on the template length, and the detection threshold is there-
fore difficult to specify (10–12).

To overcome these limitations, we developed what we
believe to be a new method for detecting miniature and
spontaneous PSCs. Unlike other algorithms published to
date, the technique is based on deconvolution (14–17).
The basic principle is that deconvolution converts a train
of PSCs into a series of delta-like functions, the maxima
of which can be precisely measured. We used the deconvo-
lution-based detection technique to test the hypothesis that
the frequency of excitatory synaptic events is higher under
in vivo than in vitro conditions, as often assumed, but never
shown by rigorous comparison.
MATERIALS AND METHODS

A deconvolution-based method for detection of
spontaneous synaptic currents

To detect spontaneous PSCs in vitro and in vivo, we implemented a decon-

volution-based method. Although deconvolution-based algorithms were

previously applied to various scientific problems (calculation of the time

course of release (15–17) 1995 - 2005; calculation of the time course of

postsynaptic conductances from potentials (18) 2008; measurement of

unbinding rates of competitive antagonists (19), 2001), this work describes,

to our knowledge, the first application to spontaneous PSC detection. Like

the template fit method (10–12), the deconvolution-based method exploits

prior information about the time course of individual synaptic events.

However, in comparison to other methods, the deconvolution-based method

has a markedly higher temporal resolution.

The basic principle of the method of detection of spontaneous PSCs is

that we describe the recorded trace as the convolution of time course of
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transmitter release and quantal conductance. More formally, the recorded

signal can be described by the convolution integral

hðtÞ ¼
Z t

0

fðt� t0Þgðt0Þdt0; (1)

where f(t) is the release function and g(t) is the quantal conductance. For

each release event, f(t) is given by the Dirac delta function
fðtÞ ¼ dðt� t0Þ ¼
�
N for t ¼ t0
0 for t s t0

; (2)

where t0 is the time point of the release event.

Furthermore, the time course of the quantal conductance is represented as

a multiexponential function
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8<
:
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for t > 0
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;

(3)

where t1 is the rise time constant, t2 is the decay time constant (t2 > t1), A

is the peak amplitude, and A0 is a normalization factor:

A0 ¼ t2
t1

t1
t1�t2 :

Under these conditions, f(t) can be obtained by deconvolution, provided

that g(t) is accurately specified.
In the practical implementation, the method of detection of spontaneous

PSCs was composed of four steps (Fig. 1 A). First, a multiexponential

template was generated, based on the time course of spontaneous synaptic

events. These events are selected manually or automatically by any avail-

able detection method, averaged, and fitted with standard analysis software

for electrophysiology to reveal the time course of the template. Although

a sum of two exponentials was used in this study, other template functions

can be arbitrarily used.
FIGURE 1 A deconvolution-based algorithm for

detection of EPSCs can markedly increase the

SNR. (A) Individual steps of the deconvolution

procedure. (B) Testing the power of the method

using simulated EPSCs with a different time

course. EPSCs were simulated by the sum of two

exponentials (Eq. 3), with both time constants

scaled randomly. Fastest and slowest events are

depicted in black (continuous and dashed, respec-

tively), other events in red. (C and D) Characteris-

tics of different forms of noise added to the data

(white noise in C, filtered noise of matched

variance in D). Left panel shows power spectrum,

right panel shows all-point histogram of the decon-

volved signal. Green arrows indicate the SNR of

the original simulated data. (E and F) Detection

of PSCs by deconvolution. Upper traces, idealized

EPSC waveforms. Center traces, EPSC waveforms

after addition of noise. Bottom traces, correspond-

ing deconvolved signals. Red dots indicate local

maxima corresponding to detected events (also

included in all-point histograms in C and D).
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Second, 1- to 5-min long experimental traces were deconvolved from the

template PSCs, using discrete Fourier transformation-based deconvolution

algorithms of Mathematica 8.0.1 (ListDeconvolve) and Igor Pro 6.22

(Deconvolution; Scripts S1 and S2 in the Supporting Material). In theory,

if amplitude and kinetics of PSCs are uniform and the template accurately

fits the experimental PSCs, the resulting deconvolution trace will be a series

of delta functions. In reality, both amplitudes and PSC kinetics are variable.

Thus, deconvolution will result in a series of delta-like functions with vari-

able amplitude and time course. Before analysis, the deconvolution trace

was passed through a low-pass filter as required.

Third, a detection threshold (q) was defined. Although q is the only free

parameter in the analysis, its value critically determines the number of FP

events and FN events. Thus, the selection of q is a tradeoff between the two

types of errors. Increase of q decreases the FP events, but at the same time

increases the FN events. Conversely, decrease of q increases FP events, but

decreases FN events. To appropriately set the value of q, an all-point histo-

gram of the deconvolved trace was generated. Because of the rapid time

course of the delta-like events, the histogram is mainly contributed by base-

line noise. To allow a precise estimate of the type 1 error, corresponding to

FP events, the entire distribution, or the left portion, was fitted with

a Gaussian function with mean near 0 and standard deviation s. Typically,

q was set to a value 4 to 4.5 times the standard deviation s of the Gaussian

function, corresponding to a proportion of FP sample points of 0.0032–

0.00034%. For a sample rate of 10 kHz, this corresponds to a FP event

rate of 0.32–0.034 s�1.

Fourth, the deconvolution trace was scanned for local maxima, which

are defined as sample points fulfilling the criterion yi�1 < yi > yiþ1 or

yi�2 < yi�1 < yi > yiþ1> yiþ2 with yi > q. These local maxima corre-

sponded to detected PSCs and additionally defined their onset times. All

analysis steps were performed usingMathematica or Igor Pro running under

Windows. Deconvolution-based detection of miniature and spontaneous

PSCs was computationally efficient. For example, automatic analysis of

a 60-s recording epoch sampled at 10 kHz took 13 s computation time on

a 2.67 GHz Intel i7 PC, compared to 24.5 and 15.5 s for derivative and

template fit, respectively.

After event detection in the deconvolved trace, the corresponding PSCs

were further analyzed in the originally recorded trace. 20–80% rise time,

peak amplitude, and decay time constant were determined as described

previously (20). Alternatively, the experimental trace was backfitted with

a sum of individual PSC waveforms, the total number and timing of which

was constrained by the maxima of the deconvolution trace above threshold.
Simulation of excitatory postsynaptic currents
(EPSCs)

EPSCs were simulated in two different ways. First, EPSCs were randomly

generated as multiexponential waveforms according to Eq. 3. Interevent

interval (IEI) values were randomly chosen according to an exponential

distribution (event rate 10 s�1), whereas kinetics of EPSCs were random-

ized by multiplying rise and decay time constant of the default waveform

(t1 ¼ 0.4 ms, t2 ¼ 5 ms) with a normally distributed random factor

(mean one, standard deviation 0.3). Alternatively, EPSCs were simulated

using a detailed passive cable model. A previously published cable model

was used, based on reconstruction of soma, dendrites, and axon of a bio-

cytin-labeled rat dentate gyrus granule cell (21,22). Spine correction was

performed by scaling length and diameter of dendritic segments appropri-

ately. Rm, Cm, and Ri were chosen as 30,000 U cm2, 0.9 mF cm�2, and

150 U cm; values were similar to those reported for dentate gyrus granule

cells in mice (9). Synapses were placed on dendrites with random locations

and activated with random onset times. Locations were set based on equally

distributed random numbers, whereas onset times were chosen using

exponentially distributed IEI values (event rate 10 s�1). The postsynaptic

conductance was computed as the sum of two exponential functions, one

for rise and one for decay, with a rise time constant of 0.2 ms, a decay

time constant of 2.5 ms, and a reversal potential of –5 mV (23). The synaptic
peak conductance was 1 nS. Modeling was performed using NEURON 7.1

(24). For all simulations, the fixed time step integration method was used;

the time step was set to 10 ms. Voltage-clamp recordings of PSCs were simu-

lated using a SEClamp with a series resistance Rs of 5 MU.

To determine the effects of noise, fluctuations with three different spec-

tral characteristics were simulated (25). First, white noise was generated

using normally distributed random numbers. Second, filtered noise was

generated by passing white noise through a Gaussian filter. Finally, mixed

noise with a white noise component and a 1/f component (each with 50%

contribution to the total variance) was simulated using a previously

described procedure (26). In all cases, the amplitude of the noise was scaled

appropriately to give an SNR of 5. Finally, noise was added to the simulated

PSCs. Random numbers were obtained with the RandomReal and Random-

Integer random number generator procedures of Mathematica.
Recording of EPSCs in vitro

Whole-cell patch-clamp recording of spontaneous and miniature EPSC

from dentate gyrus granule cells was performed in hippocampal slices

obtained from 19- to 21-day-old Wistar rats of either sex (27–29). Animals

were decapitated and transverse slices were cut with a vibratome (VT 1200,

Leica). For storage of slices, a solution containing 87 mM NaCl, 25 mM

NaHCO3, 75 mM sucrose, 10 mM D-glucose, 2.5 mM KCl, 1.25 mM

NaH2PO4, 0.5 mM CaCl2, and 7 mMMgCl2 was used. For the experiments,

slices were superfused with physiological saline containing 125 mM NaCl,

25 mM NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4, 2 mM CaCl2, 1 mM

MgCl2, and 25 mM D-glucose, equilibrated with 95% O2/5% CO2 gas

mixture. Patch pipettes were pulled from borosilicate glass tubing (2 mm

outer diameter, 1 mm inner diameter, Hilgenberg). When filled with intra-

cellular solution, the pipette resistance was 2–3 MU. The internal solution

used for in vitro recordings contained: 110 mM KCl, 35 mM Kgluconate,

10 mM EGTA, 2 mM MgCl2, 2 mM Na2ATP, and 10 mM HEPES

(pH adjusted to 7.3 with KOH). The series resistance ranged from 7 to

10 MU. Series resistance was not compensated, but regularly monitored

during experiments. Cells with >15% change were discarded. EPSCs

were recorded using an Axopatch 200A amplifier (Molecular Devices),

low-pass filtered at 5 kHz (Bessel filter), and sampled at 10 kHz using

a CED power laboratory interface (Cambridge Electronic Design). The

holding potential was set to –80 mV (no correction for junction potentials).

Spontaneous EPSCs were recorded in pharmacological isolation in the

presence of 10 mM bicuculline methiodide in the bath solution. Miniature

EPSCs were measured in the presence of 1 mM tetrodotoxin (TTX) and

10 mM bicuculline methiodide. The recording temperature was 22–24�C
or 32–34�C in a subset of experiments (as indicated).
Recording of EPSCs in vivo

Whole-cell patch-clamp recording of EPSCs in vivo from dentate gyrus

granule cells was performed in 27- to 29-day-old Wistar rats of either sex

(30). Experiments were made in strict accordance with national and

European guidelines for animal experiments. Experimental protocols

were approved by the Bundesministerium für Wissenschaft und Forschung

(BMWF-66.018/0008-II/3b/2010). Animals were anesthetized using a

combination of medetomidine (Dormitor; Roche, 300 mg/kg), midazolam

(Dormicum, Roche, 8 mg/kg), and fentanyl (Janssen-Cilag, 10 mg/kg),

applied intraperitoneally. After anesthetization, animals were fixed in a

stereotaxic frame and a craniotomy with a diameter of ~2 mm was made.

Patch pipettes were pulled from borosilicate glass tubing (1 mm outer

diameter, 0.5 mm inner diameter; Hilgenberg). Patch pipettes were gently

inserted into the brain, targeting the dentate gyrus granule cell layer (ante-

roposterior –3.5 to –5.0 mm, lateral 2.5 to 3.0 mm, and dorsoventral –2.9 to

–3.2 mm from bregma). Positive pressure between 500 and 900 mbar was

applied to the pipette interior while traversing the neocortex and the corpus

callosum, until ~200 mm before reaching the target zone. Pressure was then

gradually reduced to ~20 mbar and a patch-clamp recording was obtained
Biophysical Journal 103(7) 1429–1439
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~2 min later. Patch pipettes used for patch-clamp recording had tip resis-

tances of 5–7 MU. The access resistance was 48 5 2 MU (n ¼ 10, range:

37–58 MU). Pipettes were tip-filled with a solution containing 120 mM

K-methanesulfonate, 20 mM KCl, 10 mM EGTA, 2 mM MgCl2, 2 mM

Na2ATP, 10 mM HEPES, 5 mM QX-314 (pH adjusted to 7.3 with KOH),

and 3 mg/ml biocytin and backfilled with a similar solution in which the

K-methanesulfonate was replaced by Cs-methanesulfonate. A reference

electrode (Ag/AgCl) was placed on the skull close to the craniotomy

(~1 mm separation distance). EPSCs were recorded with an EPC-10 ampli-

fier using Patchmaster software (version 2.32), low-pass filtered at 10 kHz

(Bessel filter) and sampled at 20 kHz. The holding potential was set to

–70 mV (no correction for junction potentials). Under our recording condi-

tions, the measured brain temperature was 33–35�C while the body temper-

ature was kept at ~37�C. Recordings were taken at least 10 min after the

whole-cell configuration was obtained, allowing sufficient time for clear-

ance of Kþ that may have accumulated during the patch-clamp procedure.
Validation of deconvolution-based detection

To test the power of detection, the deconvolution-based method was

compared against previously published PSC detection methods, 1995:

a first-derivative method (8), 1994, and a template fit algorithm (10–12),

1993 - 1997. For the derivative method, event detection was optimized

by pre-processing the traces with a Gaussian low-pass filter at 100 Hz

(12). For the template fit algorithm, the duration of the template was varied

between 6.25 and 50 ms, because this parameter is a key determinant of

sensitivity and specificity (12).

Comparison of the different methods was performed as follows. First,

a list of temporal tags was generated by expert scoring of experimental data.

Second, the list of manually generated tags was converted into a binary

scoring trace (see Fig. 7 A), with a sampling rate identical to that of the orig-

inal trace. A temporal window of 2.4 ms (5 1.2 ms) was defined symmet-

rically around each tag. The score was set to one for all data points within

the window and to zero otherwise.

Third, the cross correlation between the scoring trace and a given detec-

tion method output (i.e., detector trace) was computed and the time lag of

the cross-correlation peak was measured. As different methods produced

different time lags, the lag was subtracted before final comparison.

Finally, a threshold was applied to the detector traces and the result was

compared sample point by sample point to the scoring trace. For each

threshold value, a sample-based confusion matrix containing the number

of true positive (TP), true negative (TN), FP, and FN sample points was

computed. Furthermore, the true positive rate (TPR ¼ TP/(TP þ FN)), the

true negative rate (TNR¼ TN/(FP þ TN)), the false positive rate (FPR ¼
FP/(FP þ TN)), and the false negative rate (FNR ¼ FN/(TP þ FN)) were

calculated. Subsequently, TPR was plotted against FPR, leading to the

receiver operator characteristics (ROC) curves (31) for each method. The

performance of each method was then quantified as the integral (i.e.,

area) under the corresponding ROC curve (AUCROC). A value of 0.5 corre-

sponds to random detection, whereas a value of 1 implies perfect detection.

The AUCROC is related to the SNR as follows (32):

SNR ¼ 2 erf�1ðð2AUCROCÞ � 1Þ

¼
�

0; for AUCROC ¼ 0:5
> 0; for AUCROC > 0:5

; (4)

where the erf�1 is the inverse of the Gaussian error function. Eq. 4 implies

that the larger the AUCROC, the higher the SNR.
Statistical analysis

Values are given as mean 5 SE. Error bars in figures also indicate the

mean 5 SE. Significance of differences was assessed by a two-sided non-

parametricWilcoxon signed-rank test at the significance level (P) indicated.
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RESULTS

Methods for detection of spontaneous synaptic events are
substantially more powerful if information about the time
course of the spontaneous events is incorporated, as ex-
ploited by template fit algorithms (10–12). However,
a serious limitation of these methods is the low temporal
resolution, which is particularly relevant for the analysis
of synaptic currents in vivo (6,33). To overcome this limita-
tion, we considered alternative ways of how information
about the time course of the synaptic events may be incor-
porated. We reasoned that deconvolution (14–16) could be
used to transform sequences of PSCs into series of delta-
like functions, which would be simple to analyze (Fig. 1 A).
Validation of the deconvolution-based detection
method using simulated data

We first tested the deconvolution-based detection technique
on simulated data (Fig. 1). EPSCs were generated at random
time points and with random kinetics, with IEI chosen ac-
cording to an exponential distribution. Kinetics of miniature
PSCs were randomized by multiplying a rise and decay time
constant of a multiexponential waveform with a normally
distributed random factor (mean one, standard deviation
0.3; Fig. 1 B). In this set of temporally scaled EPSCs, the
ratio of maximal/ minimal value of the kinetic shape factor
was 4.8. Simulated EPSCs with unitary peak amplitude
were then superimposed with white noise or filtered noise
(Fig. 1, C and D). The noise had a standard deviation of
0.2, leading to an SNR of 5.

Testing of the deconvolution-basedmethod on these simu-
lated EPSC data revealed a high sensitivity and specificity
under the chosen conditions. Remarkably, deconvolution
increased the SNR of the delta-like events in the deconvolu-
tion trace in comparison to that of the original EPSC trace
(Fig. 1, C–F). For EPSCs generated by temporal scaling,
the SNR increased from 5 to 11.8 for white noise and 56.0
for filtered noise. Thus, depending on both the shape of the
EPSCs and the temporal structure of the noise, deconvolu-
tion can substantially increase the SNR. The percentage of
TP events was 98% and 99%, the percentage of FP events
was 1% and 2%, and the percentage of FN events was 2%
and 1%, respectively. Thus, the deconvolution-based detec-
tion technique had a high sensitivity and specificity.

To test the detection performance under more realistic
conditions, we simulated EPSCs in the presence of mixed
noise, containing both a white noise component and a 1/f
component (Fig. 2, A–C). As with the simple forms of noise,
the deconvolution-based detection method increased the
SNR, from 5 to 6.9 under the present conditions (Fig. 2, A
and B). The percentage of TP events was 98%, the
percentage of FP events was 2%, and the percentage of
FN events was 2%. To further test the detection performance
under conditions of more realistic PSC time courses, we



FIGURE 2 Deconvolution-based detection algorithm for mixed noise

and EPSCs generated in detailed cable models. (A) Frequency characteris-

tics of mixed noise (white noise and 1/f component, each with 50% contri-

bution to the total variance). (B) All-point histogram of the deconvolved

signal. Green arrows indicate the SNR of the original simulated data. (C)

Detection of EPSCs by deconvolution. Upper traces, idealized EPSC wave-

forms. Center traces, EPSC waveforms after addition of mixed noise.

Bottom traces, corresponding deconvolved signals. Red dots indicate local

maxima corresponding to detected events (also included in all-point histo-

gram in B). (D–F) Simulations of EPSCs generated in a detailed cable

model of a granule cell. Mixed noise was added to the simulated data as

in A–C. Inset in D shows the cable model used for simulation (21,22). Indi-

vidual events are reliably detected even in high-frequency trains (F).

FIGURE 3 Detection of miniature EPSCs in vitro. (A) Continuous trace

of miniature EPSCs in a dentate gyrus granule cell in a slice. Bath solution

contained 1 mM TTX. Bar represents the region of the trace shown at

expanded timescale in E. (B) Corresponding result of deconvolution,

band-pass filtered at 0.1 to 100 Hz (blue trace). Red dots, peaks of the de-

convolution function, corresponding to detected events. Green horizontal

line: detection threshold. (C) All-point histogram of a 5-min deconvolved

trace (blue bars). Data were fitted with a Gaussian function (red trace).

The threshold q was set to four times the standard deviation of the Gaussian

(vertical green line). (D) 1252 detected EPSCs during 5 min of continuous

recording, horizontally aligned to the peak of the deconvolution function

and superimposed. Red trace indicates the average EPSC. (E) Backfitting

of the experimental trace. Black dots show sample points, red curves repre-

sent the results of fitting. Red dots, peaks of the deconvolution function,

corresponding to onset times of detected events.
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simulated EPSCs in a detailed cable model of a dentate
gyrus granule cell (Fig. 2, D–F). Synapses were activated
at random locations and at random time points, normalized
to the same peak amplitude, and superimposed with mixed
noise to give an SNR of 5. As in the simulation with tempo-
rally scaled EPSCs, the deconvolution-based detection
method increased the SNR from 5 to 6.8 in the detailed
cable model (Fig. 2, D and E). The percentage of TP events
was 75%, the percentage of FP events was 9%, and the
percentage of FN events was 25%. A major advantage of
the deconvolution technique over alternative techniques,
such as template fit (10–12), was the high temporal resolu-
tion. Pairs of EPSCs generated randomly at short time inter-
vals were reliably detected (Fig. 2 F). Thus, for a wide range
of noise spectral characteristics and PSC time courses, the
deconvolution-based method detected the underlying events
with high reliability and high temporal resolution.
Detection of miniature EPSCs recorded in vitro

Next, we used the deconvolution-based technique for the
detection of miniature EPSCs in vitro (Fig. 3). Whole-cell
recordings were made from dentate gyrus granule cells in
hippocampal slices in the presence of TTX to block presyn-
aptic action potential generation. Under our experimental
conditions, the baseline noise was 2.76 5 0.07 pA (5 kHz
bandwidth; 10 cells). Similar to the simulated data, decon-
volution converted a train of miniature EPSCs into a series
of delta-like pulses (Fig. 3, A and B). To adequately set the
detection threshold, an all-point histogram of the deconvo-
lution trace was constructed and fitted with a Gaussian
function (Fig. 3 C). The detection threshold (q) was then
set to four times the standard deviation of the normal
distribution. Using these settings, 970 5 100 events were
detected in a 5-min recording period in a sample of 10
hippocampal granule cells.

Next, the kinetic properties of the detected events were
quantitatively analyzed (Fig. 4). For the cell depicted in
Fig. 3, the mean 20–80% rise time was 1.75 5 0.02 ms,
the mean decay time constant was 4.2 5 0.06 ms, and the
Biophysical Journal 103(7) 1429–1439



FIGURE 4 Quantitative analysis of miniature

EPSCs in vitro. (A) Peak amplitude of miniature

EPSCs. (B) 20–80% rise time. (C) Decay time

constant. (D–F) Summary for mean peak ampli-

tude, 20–80% rise time, and decay time constant

in 10 cells. (G–H) IEI histogram and cumulative

distribution (red trace: double exponential fitting).

(I–K) Time constants of the fast (IEI-t1; I) and the

slow (IEI-t2; J) component in the IEI distribution,

as well as the amplitude contribution of the two

components (K). Histograms (A–C and G–H) are

taken from a single representative experiment;

same cell as illustrated in Fig. 3.
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mean peak amplitude was 8.0 5 0.21 pA (Fig. 4, A–C). In
the total sample of 10 recorded granule cells, the mean rise
time was 1.815 0.03 ms, the mean decay time constant was
4.1 5 0.2 ms, and the mean peak amplitude was 7.6 5
0.3 pA (Fig. 4, D–F; 10 cells). The distributions of peak
amplitudes and IEIs showed that EPSCs with small ampli-
tude or bursts of EPSCs generated with short IEI were reli-
ably detected (Fig. 4, A and G).

It is generally assumed that miniature EPSCs are gener-
ated by a homogenous Poisson process, leading to a single
exponential distribution of IEIs. Interestingly, the adequate
description of our experimental IEI distribution in vitro
required two exponential components (Fig. 4, G–K). For
the cell illustrated in Figs. 3 and 4, A–C, the first time
constant in the IEI distribution was 14.0 5 0.7 ms (12.7%
amplitude contribution), whereas the second time constant
had a value of 272.0 5 0.5 ms (87.2%; Fig. 4 H). On
average, the first time constant was 167.9 5 77.7 ms
(39.4%), whereas the second time constant had a value of
398.3 5 28.1 ms (71.7%; 10 cells; Fig. 4, I–K). Thus, the
deconvolution-based detection technique revealed a short
component of IEIs of miniature EPSCs in vitro, inconsistent
with a homogenous Poisson process underlying miniature
release. This short IEI component was not detected by the
template fit method with 10 or 50 ms template duration
(Fig. S1, A–C).
Detection of spontaneous EPSCs recorded
in vivo

Next, we wanted to explore whether the deconvolution-
based method was able to reliably detect spontaneous
EPSCs in vivo, where the recording conditions are less
Biophysical Journal 103(7) 1429–1439
favorable (Fig. 5). Whole-cell patch-clamp recordings
were made from dentate gyrus granule cells in anesthetized
rats (see Materials and Methods). Under these experimental
conditions, the baseline noise was 3.9 5 0.9 pA (5 kHz
bandwidth; 10 cells), slightly higher than in the in vitro
recordings. For a similar detection threshold setting
(threshold was set to 4.3 times the standard deviation of
the normal distribution), 1086 5 99 events were detected
in a 1-min recording period in a sample of 10 granule cells.
Despite the slightly larger noise and the higher EPSC
frequency, individual events were reliably detected by de-
convolution-based techniques (Fig. 5, A and B).

Quantitative analysis revealed that the properties of
EPSCs in hippocampal granule cells in vivo were similar
to those in vitro. For the cell depicted in Fig. 5, the mean
20–80% rise time was 1.8 5 0.02 ms, the mean decay
time constant was 5.6 5 0.1 ms, and the mean peak ampli-
tude was 9.8 5 0.2 pA (Fig. 6, A–C). On average, the mean
rise time was 2.2 5 0.07 ms, the mean decay time constant
was 5.45 0.3 ms, and the mean peak amplitude was 8.25
0.6 pA (Fig. 6, D–F; 10 cells). As observed under in vitro
conditions, the adequate description of our experimental
IEI distribution required two exponential components
(Fig. 6, G–K). For the cell depicted in Figs. 5 and 6, A–C,
the first time constant was 20.2 5 0.3 ms (75% amplitude
contribution) and the second time constant was 163.5 5
2.8 ms (25%; Fig. 6 H). On average (10 cells), the first
time constant was 18.8 5 2.7 ms (68.4%), whereas the
second time constant was 158.2 5 27.1 ms (31.6%;
Fig. 6, I–K). Thus, the deconvolution-based detection tech-
nique revealed a short component of the IEI of spontaneous
EPSCs in vivo. This short IEI component was severely
underestimated by the template fit method with 10 ms



FIGURE 5 Detection of spontaneous EPSCs in vivo. (A) Continuous

trace of spontaneous EPSCs recorded from a dentate gyrus granule cell

in an anesthetized animal. Bar represents the region of the trace shown at

expanded timescale in E. (B) Corresponding result of deconvolution,

band-pass filtered at 0.1 to 100 Hz (blue trace). Red dots, peaks of the de-

convolution function, corresponding to detected events. Green horizontal

line: detection threshold. (C) All-point histogram of a 1-min deconvolved

trace (blue bars). Data were fitted with a Gaussian function (red trace).

The threshold q was set to 4.3 times the standard deviation of the Gaussian

(vertical green line). (D) 1053 detected EPSCs during 1 min of continuous

recording, horizontally aligned to the peak of the deconvolution function

and superimposed. Red trace indicates the average EPSC. (E) Backfitting

of the experimental trace. Black dots show sample points, red curve repre-

sents the results of fitting. Red dots, peaks of the deconvolution function,

corresponding to onset times of detected events. Arrowheads indicate two

events, which were undetected at the specified threshold, but recovered

by lowering the threshold to 3.5 and 2.3 SD (open and solid arrowhead,

respectively).
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template duration and remained entirely undetected with
50 ms template duration (Fig. S1, D–F).
Comparison of different detection methods

Our results suggest that the deconvolution-based detection
method is very powerful when applied to simulated data
(Figs. 1 and 2). To test whether this conclusion also holds
for real experimental data, we compared the deconvolu-
tion-based method with other previously published methods
using EPSCs recorded under in vitro and in vivo conditions
(Fig. 7). First, we compared the results of the different detec-
tion methods (deconvolution, derivative, and template fit)
with those of expert scoring (see Materials and Methods;
Fig. 7 A). Next, we calculated FPR, FNR, TPR, and TNR
for a wide range of threshold values. A major complication
preventing a direct comparison of the different methods
was that FPR, FNR, TPR, and TNR were highly dependent
on threshold; FPR and TPR decreased, whereas FNR and
TNR increased as a function of threshold (Fig. 7 B). To
compare the different methods independently of the exact
setting of the detection threshold, we plotted TPR against
FPR, leading to a ROC curvewith a shape that is independent
of threshold (Materials and Methods). Finally, we calculated
the AUCROC as a measure of detection performance
(Fig. 7 D). Comparison of the deconvolution-based method
with the derivative-based method revealed that the deconvo-
lution-based method was consistently superior under both
in vitro and in vivo conditions. Comparison of the deconvo-
lution-based method with the template fit method revealed
a more complex picture. For in vitro data sets, the deconvolu-
tion method was statistically superior to the template fit
method for template durations of 6.25 and 10ms, but compa-
rable for 12.5 and 25 ms, and inferior for 50 ms. For in vivo
data sets, the deconvolution method was consistently better
than the template fit method with all template durations
tested. Thus, the deconvolution-based detection method
will be the method of choice for the analysis of in vivo data.
Frequency of spontaneous synaptic events
in vitro and in vivo

It is generally assumed that the frequency of spontaneous
synaptic events is much higher under in vivo conditions
than in the in vitro slice preparation, where a substantial
proportion of afferent inputs are cut. To test this prediction
directly, we compared the average frequency of EPSCs in
dentate gyrus granule cells in both in vitro and in vivo
conditions, using deconvolution-based detection algorithms
with similar settings. Under in vitro conditions, the average
miniature EPSC frequency was 0.9 5 0.1 Hz (10 cells;
Figs. 3 and 4). In contrast, under in vivo conditions, the
average spontaneous EPSC frequency was more than an
order of magnitude higher, 18.2 5 2.0 Hz (10 cells; Figs.
5 and 6).

The higher EPSC frequency under in vivo conditions
could be due to higher temperature, a substantial contribu-
tion of presynaptic APs, or higher connectivity. To distin-
guish between these possibilities, we tried to mimic the
in vivo situation by first increasing the temperature from
22 to 32�C and second omitting TTX from the extracellular
solution to enable the generation of presynaptic APs
(Fig. 8). Raising the temperature increased the frequency
of miniature EPSCs 1.88-fold (to 1.7 5 0.2 Hz; 8 cells).
This confirms that miniature release in dentate gyrus granule
cells is temperature dependent (34,35). In the absence of
TTX, the frequency of spontaneous EPSCs was 3.22-fold
higher at 22�C (2.85 0.2 Hz, 10 cells) and 2.35-fold larger
Biophysical Journal 103(7) 1429–1439



FIGURE 6 Quantitative analysis of EPSCs

in vivo. (A) Peak amplitude of spontaneous EPSCs.

(B) 20–80% rise time. (C) Decay time constant.

(D–F) Summary for mean peak amplitude, 20–

80% rise time, and decay time constant in 10 cells.

(G–H) IEI histogram and cumulative distribution

(red trace: double exponential fitting). (I–K) Esti-

mation of IEI-t1, IEI-t2 and their relative ampli-

tude contribution (see Fig. 4). Histograms (A–C

and G–H) are taken from a single representative

experiment; same cell as illustrated in Fig. 5.
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at 32�C (4.05 0.9 Hz, 8 cells) than in the presence of TTX.

Thus, a major portion of spontaneous EPSCs in granule cells

under in vitro conditions are driven by presynaptic APs.

However, even at near-physiological temperature and in

the absence of TTX, the mean spontaneous EPSC frequency

in vitro (4.0 5 0.9 Hz) was substantially lower than in vivo

(18.2 5 2.0 Hz). On average, the frequency in vivo was

4.5-times higher than that in vitro in the same type of

neuron. Although slight differences in experimental condi-

tions cannot be excluded, our results suggest that dentate

gyrus granule cells are exposed to a markedly stronger

excitatory synaptic activity in the intact network than in

the acute slice preparation.
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DISCUSSION

Although recording of spontaneous synaptic events is often
easier than that of evoked PSCs, the reverse is true for the
analysis of these events. In this work, we report a, to our
knowledge, new method for detecting spontaneous PSCs
based on deconvolution. This method is superior to deriva-
tive methods, because it exploits information about both
rise and decay phases of synaptic events, whereas derivative
methods only take into account information about rise.
Furthermore, deconvolution is better than template match-
ing algorithms, because its temporal resolution is not limited
(e.g., by template length) and individual superimposed
events are correctly assigned. Exploiting the high temporal
FIGURE 7 Comparison of different detection

methods using experimental data. (A) Example

trace of mEPSCs with the corresponding manual

scoring trace and the detector traces of the different

methods. Left panel from top to bottom: mEPSC

trace, expert scoring, deconvolution (DEC), first

derivative (DER), and template fit (TMP). Right

panel, cross correlation between the expert scoring

trace and the detector trace for each method. All

detector traces were normalized to 1 SD. The de-

tected events are marked with green circles in the

original data and with red crosses in the detector

traces. (B) FPR, FNR, TPR, and TNRplotted versus

normalized threshold for the different methods

and the experiments shown in Figs. 3 and 5. The

threshold was normalized by the SD of the corre-

sponding detector trace. (C) Average ROC curve

for in vitro (n ¼ 5) and in vivo data sets (n ¼ 5)

for different methods. (D) Summary bar graph of

the area under the curve for the three different detec-

tion methods applied to in vitro (top) and in vivo

(bottom) experimental data. P < 0.05 (*).



FIGURE 8 Frequency of EPSCs is higher in vivo

than in vitro under comparable conditions. (A)

Example traces of spontaneous EPSCs (sEPSC)

and miniature EPSCs (mEPSCs) recorded in vitro

in hippocampal slices at 22 and 32�C in the

absence or presence of TTX to block presynaptic

action potential activity. Detected events are indi-

cated with red dots. Traces without and with

TTX were obtained from the same cells, respec-

tively. (B) All detected events during 5 min of

recording in the experiments illustrated in A. Red

trace indicates the average EPSCs. (C) IEI cumula-

tive probability distribution of the sEPSC (black)

and mEPSC (red) shown in A and B. (D) Summary

bar graph of average EPSCs frequency in different

experimental conditions in vitro: mEPSC and

sEPSC in slices at 22 and 32�C, in presence

(n ¼ 10) or absence (n ¼ 8) of TTX. The average

frequency of EPSCs in vivo is shown on the right

for comparison (n ¼ 10). P < 0.05 (*).
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resolution of the method, we show that in hippocampal
granule cells the frequency of EPSCs is ~4.5-fold higher
in vivo than in vitro under comparable conditions.
Advantages of deconvolution-based detection

In comparison to previous methods, the deconvolution-
based detection method offers several advantages. First,
the deconvolution-based method increases the SNR. The
extent of increase depends on the kinetic properties of the
PSCs and the characteristics of noise. If the kinetics of
PSCs is uniform, the template fits precisely, and the spectral
characteristics of PSCs are well separated from that of the
baseline noise, the gain in SNR is substantial.

Second, the deconvolution-based detection method has
a high temporal resolution, allowing detection of high-
frequency bursts of events, as often occurring in vivo. If
the kinetics of PSCs is uniform, and the template fits
precisely, the temporal resolution of the deconvolution
method is unique. In contrast, for template fit methods,
the temporal resolution is limited by the total duration of
the template used for analysis (10–12).

Third, the target FP event rate can be chosen easily. Both
the baseline noise and the derived deconvolution signal are
well described by normal distributions. Thus, if the
threshold is set in units relative to the standard deviation
of the Gaussian function, the threshold value directly trans-
lates into a corresponding FP event rate. Although this tar-
geted FP event rate is only an approximation, setting the
rate is more reliable than in the other detection methods
where the distribution of points of the detector trace differs
from a normal distribution.

These theoretical advantages translate into major prac-
tical improvements. Comparison of the deconvolution-
based method with the derivative-based method revealed
that the deconvolution-based method was consistently
superior under both in vitro and in vivo conditions. Further-
more, comparison of the deconvolution-based method with
the template fit method indicated that the deconvolution-
based method was comparable under in vitro conditions,
but consistently superior for in vivo data sets (Fig. 7 D).

How is it possible that the deconvolution-based
technique can increase the SNR? Intuitively, the deconvo-
lution technique can be seen as a filter with highly specific
properties (36). It selectively passes signals with character-
istic frequencies corresponding to the rise and decay time
course of PSCs, whereas other frequencies are largely
blanked. Thus, if the template precisely fits the experi-
mental PSCs, and the spectral characteristics of signal
and noise are well separated, the result of deconvolution
is a Dirac delta function, leading to an SNR approaching
infinity.
Further applications

We used the deconvolution-based detection technique for
the analysis of miniature EPSCs in vitro and spontaneous
EPSCs in vivo. However, several additional applications
are conceivable. For example, the deconvolution-based
method will be suitable for the analysis of asynchronous
release following a single action potential or trains of APs
(17,37). Furthermore, the deconvolution-based method
will be useful for the analysis of miniature PSCs in the
presence of factors increasing release frequency, such as
hyperosmotic solution (38) or a-latrotoxin (39). Finally,
the deconvolution-based method could be used for the anal-
ysis of postsynaptic conductances underlying rhythmic
activity and network oscillations in vivo (5,6,40).
Biophysical Journal 103(7) 1429–1439
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Biological significance

The deconvolution-based detection method allowed us to
examine the IEI distribution of EPSCs recorded in dentate
gyrus granule cells in vitro and in vivo. In both conditions,
the IEI distributions were not monoexponential, but were
better described by a fast and a slow exponential compo-
nent. Thus, spontaneous exocytosis events occur in bursts.
This suggests that the generation of miniature and sponta-
neous EPSCs is not driven by a homogenous Poisson process,
but is mechanistically more complex. Bursting may be ex-
plained by positive cooperativity between fusion events of
individual synaptic vesicles. Alternatively, temporal fluctua-
tions in intracellular Ca2þ concentration in presynaptic
terminals could be responsible.

The deconvolution-based approach also allowed us to
compare the frequency of EPSCs in dentate gyrus granule
cells in the in vitro and in vivo preparations. Our results
show that the frequency of both miniature EPSCs and spon-
taneous EPSCs in vitro increases with temperature, with
a Q10 of ~1.4 (see 34,35), and that a major fraction of
spontaneous EPSCs in vitro (~60%) is dependent on presyn-
aptic APs. However, even if the experimental conditions
are assimilated, the frequency of spontaneous EPSCs is
~fivefold lower under in vitro than in vivo conditions. This
may be explained by the larger number of intact afferent
glutamatergic inputs in the in vivo than the in vitro
preparations.

Synaptic noise has substantial effects on information pro-
cessing in cortical microcircuits. Such a form of noise may
trigger APs in fluctuation driven regimes (41,42). Synaptic
noise may be of particular relevance for action potential
initiation in hippocampal granule cells, which have a highly
negative membrane potential in comparison to other cell
types. Thus, the high-frequency generation of EPSCs may
define time windows of excitability in granule cells, allow-
ing the representation of information by sparse coding in the
dentate gyrus.
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