
U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Adaptive Methods in BCI Research - An
Introductory Tutorial

Alois Schlögl, Carmen Vidaurre, and Klaus-Robert Müller

1 Introduction

1.1 Why We Need Adaptive Methods

This chapter tackles a difficult challenge: presenting signal processing material to

AQ1

non-experts. This chapter is meant to be comprehensible to people who have some
math background, including a course in linear algebra and basic statistics, but do not
specialize in mathematics, engineering, or related fields. Some formulas assume the
reader is familiar with matrices and basic matrix operations, but not more advanced
material. Furthermore, we tried to make the chapter readable even if you skip the
formulas. Nevertheless, we include some simple methods to demonstrate the basics
of adaptive data processing, then we proceed with some advanced methods that are
fundamental in adaptive signal processing, and are likely to be useful in a variety of
applications. The advanced algorithms are also online available [30]. In the second
part, these techniques are applied to some real-world BCI data.

All successful BCI systems rely on efficient real-time feedback. Hence, BCI data
processing methods must be also suitable for online and real-time processing. This
requires algorithms that can only use sample values from the past and present but not
the future. Such algorithms are sometimes also called causal algorithms. Adaptive
methods typically fulfill this requirement, while minimizing the time delay. The
data processing in BCIs consists typically of two main steps, (i) signal processing
and feature extraction, and (ii) classification or feature translation (see also Fig. 1).
This work aims to introduce adaptive methods for both steps; these are also closely
related to two types of non-stationarities - namely short-term changes related to
different mental activities (e.g. hand movement, mental arithmetic, etc.), and less
specific long term changes related to fatigue, changes in the recording conditions,
or effects of feedback training.
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Fig. 1 Scheme of a Brain–Computer Interface. The brain signals are recorded from the subject
(d) and processed for feature extraction (b). The features are classified and translated into a control
signal (a), and feedback is provided to the subject. The arrows indicate a possible variation over
time (see also the explanation in the text)
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The first type of changes (i.e. short-term changes) is addressed in the feature
extraction step (B in Fig. 1). Typically, these are changes within each trial that are
mainly due to the different mental activities for different tasks. One could also think
of short-term changes unrelated to the task, which are typically the cause for imper-
fect classification and are often difficult to distinguish from the background noise,
so these are not specifically addressed here.

The second type of non-stationarities are long-term changes caused by e.g.
a feedback training effect. More recently, adverse long-term changes (e.g. due
to fatigue, changed recording conditions) have been discussed. These non-
stationarities are addressed in the classification and feature translation step (part
a in Fig. 1).

Accordingly, we do see class-related short-term changes (due to the differ-
ent mental tasks), class-related long-term changes (due to feedback training), and
unspecific long-term changes (e.g. due to fatigue). The source of the different
non-stationarities are the probands and its brain signals as well as the recording
conditions (part d in Fig. 1) [24, 50, 51]. Specifically, feedback training can mod-
ify the subjects’ EEG patterns, and this might require an adaptation of the classifier
which might change again the feedback. The possible difficulties of such a circular
relation have been also discussed as the “man–machine learning dilemma” [5, 25].
Theoretically, a similar problem could also occur for short-term changes. These
issues will be briefly discussed at the end of this chapter.

Segmentation-type approaches are often used to address non-stationarities. For
example, features were extracted from short data segments (FFT-based Bandpower
[23, 25, 27], AR-based spectra in [18], slow cortical potentials by [2], or CSP
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combined with Bandpower [4, 6, 7, 16]). Also classifiers were obtained and
retrained from specific sessions (e.g. [4, 25]) or runs. A good overview on various
methods is provided in chapter “Digital signal Processing and Machine Learning”
in this volume [17].

Segmentation methods may cause sudden changes from one segment to the next
one. Adaptive methods avoid such sudden changes, but are continuously updated
to the new situation. Therefore, they have the potential to react faster, and have a
smaller deviation from the true system state. A sliding window approach (segmen-
tation combined with overlapping segments) can also provide a similar advantage,
however, we will demonstrate that this comes with increased computational costs.

In the following pages, some basic adaptive techniques are first presented and
discussed, then some more advanced techniques are introduced. Typically, the sta-
tionary method is provided first, and then the adaptive estimator is introduced. Later,
a few techniques are applied to adaptive feature extraction and adaptive classifi-
cation methods in BCI research, providing a comparison between a few adaptive
feature extraction and classification methods.

A short note about the notation: first, all the variables that are a function of time
will be denoted as f (t) until Sect. 1.3. Then, the subindex k will be used to denote
sample-based adaptation and n to trial-based adaptation.

1.2 Basic Adaptive Estimators

1.2.1 Mean Estimation

Let us assume the data as a stochastic process x(t), that is series of stochastic vari-
ables x ordered in time t; at each instant t in time, the sample value x(t) is observed,
and the whole observed process consists of N observations. Then, the (overall) mean
value μx of x(t) is

mean(x) = μx = 1

N

N∑

t=1

x(t) = E〈x(t)〉 (1)

In case of a time-varying estimation, the mean can be estimated with a sliding
window approach using

μx(t) = 1
∑n−1

i=0 wi

n−1∑

i=0

wi · x(t − i) (2)

where n is the width of the window and wi are the weighting factors. A simple
solution is using a rectangular window i.e. wi = 1 resulting in

μx(t) = 1

n

n−1∑

i=0

x(t − i) (3)



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

334 A. Schlögl et al.

For the rectangular window approach (wi = const), the computational effort can
be reduced by using this recursive formula

μx(t) = μx(t − 1) + 1

n
· (x(t) − x(t − n)) (4)

Still, one needs to keep the n past sample values in memory. The following adaptive
approach needs no memory for its past sample values

μx(t) = (1 − UC) · μx(t − 1) + UC · x(t) (5)

whereby UC is the update coefficient, describing an exponential weighting
window

wi = UC · (1 − UC)i (6)

with a time constant of τ = 1/(UC · Fs) if the sampling rate is Fs. This means that
an update coefficient UC close to zero emphasizes the past values while the most
recent values have very little influence on the estimated value; a larger update coef-
ficient will emphasize the most recent sample values, and forget faster the ealiers
samples. Accordingly, a larger update coefficient UC enables a faster adaptation.
If the update coefficient UC becomes too large, the estimated values is based only
on a few samples values. Accordingly, the update coefficient UC can be used to
determine the tradeoff between adaptation speed and estimation accuracy.

All mean estimators are basically low pass filters whose bandwidths (or edge fre-
quency of the low pass filter) are determined by the window length n or the update
coefficient UC. The relationship between a rectangular window of length n and an

AQ2 exponential window with UC = 1
n is discussed in [36] (Sect. 3.1). Thus, if the win-

dow length and the update coefficient are properly chosen, a similar characteristic
can be obtained.

Table 1 shows the computational effort for the different estimators. The station-
ary estimator is clearly not suitable for a real-time estimation; the sliding window
approaches require memory that is proportional to the window size and are often
computationally more expensive than adaptive methods. Thus the adaptive method

AQ3

has a clear advantage in terms of computational costs.

Table 1 Computational effort of mean estimators. The computational and the memory effort per
time step are shown by using the O-notation, with respect to the number of samples N and the
window size n.1

Method Memory effort Computational effort

stationary O(N) O(N)
weighted sliding window O(N · n) O(N · n)
rectangular sliding window O(N · n) O(N · n)
recursive (only for rectangular) O(N · n) O(N · n)
adaptive (exponential window) O(N) O(N)
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1.2.2 Variance Estimation

The overall variance σ 2
x of xt can be estimated with

var(x) = σ 2
x = 1

N

N∑

t=1

(x(t) − μ)2 = E〈(x(t) − μ)2〉 (7)

= 1

N

N∑

t=1

(x(t)2 − 2μx(t) + μ2) = (8)

= 1

N

N∑

t=1

x(t)2 − 1

N

N∑

t=1

2μx(t) + 1

N

N∑

t=1

μ2 = (9)

= 1

N

N∑

t=1

x(t)2 − 2μ
1

N

N∑

t=1

x(t) + 1

N
Nμ2 = (10)

= σ 2
x = 1

N

N∑

t=1

x(t)2 − μ2
x (11)

Note: this variance estimator is biased. To obtain an unbiased estimator, one must
multiply the result by N/(N − 1).

An adaptive estimator for the variance is this one

σx(t)2 = (1 − UC) · σx(t − 1)2 + UC · (x(t) − μx(t))2 (12)

Alternatively, one can also compute the adaptive mean square

MSQx(t) = (1 − UC) · MSQx(t − 1) + UC · x(t)2 (13)

and obtain the variance by

σx(t)2 = MSQx(t) − μx(t)2 (14)

When adaptive algorithms are used, we also need initial values and a suitable
update coefficient. For the moment, it is sufficient to assume that initial values and
the update coefficient are known. Various approaches to identify suitable values will
be discussed later (see Sect. 1.5).

1.2.3 Variance-Covariance Estimation

In case of multivariate processes, also the covariances between the various dimen-
sions are of interest. The (stationary) variance-covariance matrix (short covariance
matrix) is defined as

cov(x) = Σx = 1

N

N∑

t=1

(x(t) − μx)T · (x(t) − μx) (15)
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whereby T indicates the transpose operator. The variances are the diagonal elements
of the variance-covariance matrix, and the off-diagonal elements indicate the covari-
ance σi,j = 1

N

∑N
t=1

(
(xi(t) − μi) · (xj(t) − μj)

)
between the i-th and j-th element.

We define also the so-called extended covariance matrix (ECM) E as

ECM(x) = Ex =
Nx∑

t=1

[1, x(t)]T · [1, x(t)] =
[

a b
c D

]
= Nx ·

[
1 μx

μx
T �x + μT

x μx

]
(16)

One can obtain from the ECM E the number of samples N = a, the mean
μ = b/a as well as the variance-covariance matrix Σ = D/a − (c/a) · (b/a). This
decomposition will be used later.

The adaptive version of the ECM estimator is

Ex(t) = (1 − UC) · Ex(t − 1) + UC · [1, x(t)]T · [1, x(t)] (17)

where t is the sample time, UC is the update coefficient. The decomposition of
the ECM E, mean μ, variance σ 2 and covariance matrix Σ is the same as for the
stationary case; typically is N = a = 1.

1.2.4 Adaptive Inverse Covariance Matrix Estimation

Some classifiers like LDA or QDA rely on the inverse Σ−1 of the covariance
matrix Σ ; therefore, adaptive classifiers require an adaptive estimation of the inverse
covariance matrix. The inverse covariance matrix Σ can be obtained from Eq. (16)
with

Σ−1 = a ·
(

D − c · a−1 · b
)−1

. (18)

This requires an explicit matrix inversion. The following formula shows how
the inverse convariance matrix Σ−1 can be obtained without an explicit matrix
inversion. For this purpose, the block matrix decomposition [1] and the matrix

inversion lemma (20) is used. Let us also define iECM = E−1 =
[

A B
C D

]−1

with

S = D − CA−1B. According to the block matrix decomposition [1]

E−1
x =

[
A B
C D

]−1

=
[

A−1 + A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

]

=
[

1 + μx�
−1
x μx −μT

x �−T
x

−�−1
x μT

x �−1
x

] (19)

The inverse extended covariance matrix iECM = E−1 can be obtained adap-
tively by applying the matrix inversion lemma (20) to Eq. (17). The matrix inversion
lemma (also know as Woodbury matrix identity) states that the inverse A−1 of a
given matrix A = (B+UDV) can be determined by
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A−1 = (B+UDV)−1 = 20

= B−1 + B−1U
(
D−1 + VB−1U

)−1
VB−1 (20)

To adaptively estimate the inverse of the extended covariance matrix, we identify
the matrices in (20) as follows:

A = E(t) (21)

B−1 = (1 − UC) · E(t − 1) (22)

UT = V = x(t) (23)

D = UC (24)

where UC is the update coefficient and x(t) is the current sample vector.
Accordingly, the inverse of the covariance matrix is:

E(t)−1 = 1

(1 − UC)
·
(

E(t − 1)−1 − 1
1−UC

UC + x(t) · v
· v · vT

)
(25)

with v = E(t − 1)−1 · x(t)T . Since the term x(t) · v is a scalar, and no explicit matrix
inversion is needed.

In practice, this adaptive estimator can become numerically unstable (due to
numerical inaccuracies, the iECM can become asymmetric and singular). This
numerical problem can be avoided if the symmetry is enforced, e.g. in the following
way:

E(t)−1 =
(

E(t)−1 + E(t)−1,T
)

/2 (26)

Now, the inverse covariance matrix Σ−1 can be obtained by estimating the
extended covariance matrix with Eq. (25) and decomposing it according to Eq. (19).

Kalman Filtering and the State Space Model

The aim of a BCI is to identify the state of the brain from the measured signals. The
measurement itself, e.g. some specific potential difference at some electrode, is not
the “brain state” but the result of some underlying mechanism generating different
patterns depending on the state (e.g. alpha rhythm EEG). Methods that try to identify
the underlying mechanism are called system identification or model identification
methods. There are a large number of different systems and different methods in this
area. In the following, we’ll introduce an approach to identify a state-space model
(Fig. 2). A state-space model is a general approach and can be used to describe a
large number of different models. In this chapter, an autogregressive model and a
linear discriminant model will be used, but a state-state space model can be also used
to describe more complex models. Another useful advantage, besides the general
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Fig. 2 State Space Model. G is the state transition matrix, H is the measurement matrix, 
t denotes
a one-step time delay, C and D describe the influence of some external input u to the state vector
and the output y, respectively. The system noise w and observation noise v are not shown

nature of the state-space model, is the fact that efficient adaptive algorithms are
available for model identification. This algorithm is called the Kalman filter.

Kalman [12] and Bucy [13] presented the original idea of Kalman filtering
(KFR). Meinhold et al. [20] provided a Bayesian formulation of the method. Kalman
filtering is an algorithm for estimating the state (vector) of a state space model with
the system Eq. (27) and the measurement (or observation) Eq. (28).

z(t) = G(t, t − 1) · z(t − 1) + C(t) · u(t) + w(t) (27)

y(t) = H(t) · z(t) + D(t) · u(t) + v(t) (28)

u(t) is an external input. When identifying the brain state, we usually ignore the
external input. Accordingly C(t) and D(t) are zero, while z(t) is the state vector and
depends only on the past values of w(t) and some initial state z0. The observed output
signal y(t) is a combination of the state vector and the measurement noise v(t) with
zero mean and variance V(t) = E〈v(t) · v(t)T〉. The process noise w(t) has zero mean
and covariance matrix W(t) = E〈w(t) · w(t)T〉. The state transition matrix G(t, t −1)
and the measurement matrix H(t) are known and may or may not change with time.

Kalman filtering is a method that estimates the state z(t) of the system from mea-
suring the output signal y(t) with the prerequisite that G(t, t−1), H(t), V(t) and W(t)
for t > 0 and z0 are known. The inverse of the state transition matrix G(t, t− t) exists
and G(t, t − 1) · G(t − 1, t) = I is the unity matrix I. Furthermore, K(t, t − 1), the a-
priori state-error correlation matrix, and Z(t), the a posteriori state-error correlation
matrix are used; K1,0 is known. The Kalman filter equations can be summarized in
this algorithm

e(t) = y(t) − H(t) · ẑ(t)
ẑ(t + 1) = G(t, t − 1) · ẑ(t) + k(t − 1) · e(t)

Q(t) = H(t) · K(t, t − 1) · HT (t) + V(t)
k(t) = G(t, t − 1) · K(t, t − 1) · HT (t)/Q(t)
Z(t) = K(t, t − 1) − G(t − 1, t) · k(t) · H(t) · K(t, t − 1)

K(t + 1, t) = G(t, t − 1) · Z(t) · G(t, t − 1)T + W(t)

(29)
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Using the next observation value y(t), the one-step prediction error e(t) can be
calculated using the current estimate ẑ(t) of the state z(t), and the state vector z(t+1)
is updated (29). Then, the estimated prediction variance Q(t) that can be calculated
which consists of the measurement noise V(t) and the error variance due to the
estimated state uncertainty H(t) · K(t, t − 1) · H(t)T . Next, the Kalman gain k(t)
is determined. Finally, the a posteriori state-error correlation matrix Z(t) and the
a-priori state-error correlation matrix K(t + 1, t) for the next iteration are obtained.

Kalman filtering was developed to estimate the trajectories of spacecrafts and
satellites. Nowadays, Kalman filtering is used in a variaty of applications, includ-
ing autopilots, economic time series prediction, radar tracking, satellite navigation,
weather forecasts, etc.

1.3 Feature Extraction

Many different features can be extracted from EEG time series, like temporal, spa-
tial, spatio-temporal, linear and nonlinear parameters [8, 19]. The actual features
extracted use first order statistical properties (i.e. time-varying mean like the slow
cortical potential [2]), or more frequently the second order statistical properties of
the EEG are used by extracting the frequency spectrum, or the autoregressive param-
eters [18, 31, 36]. Adaptive estimation of the mean has been discussed in Sect. 1.2.
Other time-domain parameters are activity, mobility and complexity [10], ampli-
tude, frequency, spectral purity index [11], Sigma et al. [49] and brainrate [28].
Adaptive estimators of these parameters have been implemented in the open source
software library Biosig [30].

Spatial correlation methods are PCA, ICA and CSP [3, 4, 16, 29]; typically these
methods provide a spatial decomposition of the data and do not take into account
a temporal correlation. Recently, extensions of CSP have been proposed that can
construct spatio-temporal filters [4, 7, 16]. To address non-stationarities, covariate
shift compensation approaches [38, 40, 41] have been suggested and adaptive CSP
approaches have been proposed [42, 43]. In order to avoid the computational expen-
sive eigendecomposition after each iteration, an adaptive eigenanalysis approaches
as suggested in [21, 39] might be useful.

Here, the estimation of the adaptive autoregressive (AAR) parameters is dis-
cussed in greater depth. AAR parameters can capture the time-varying second order
statistical moments. Almost no a priori knowledge is required, the model order p
is not very critical and, since it is a single coefficient, it can be easily optimized.
Also, no expensive feature selection algorithm is needed. AAR parameters provide
a simple and robust approach, and hence provide a good starting point for adaptive
feature extraction.

1.3.1 Adaptive Autoregressive Modeling

A univariate and stationary autoregressive (AR) model is described by any of the
following equations
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yk = a1 · yk−1 + · · · + ap · yk−p + xk =
= ∑p

i=1 ai · yk−i + xk =
= [yk−1, . . . , yk−p] · [a1, ...ap]T + xk =
= Yk−1 · a + xk30

(30)

with innovation process xk = N(μx = 0, σ 2
x ) having zero mean and variance σ 2

x .
For a sampling rate f0, the spectral density function Py(f ) of the AR process yk is

Py(f ) = σ 2
x /(2π f0)

|1 − ∑p
k=1(ai · exp−jk2π f /f0 )|2 (31)

There are several estimators (Levinson-Durbin, Burg, Least Squares, geometric
lattice) for the stationary AR model. Estimation of adaptive autoregressive (AAR)
parameters can be obtained with Least Mean Squares (LMS), Recursive Least
Squares (RLS) and Kalman filters (KFR) [36]. LMS is a very simple algorithm,
but typically performs worse (in terms of adaptation speed and estimation accuracy)
than RLS or KFR [9, 31, 36]. The RLS method is a special case of the more general
Kalman filter approach. To perform AAR estimation with the KFR approach, the
AAR model needs to be adapted – in a suitable way – to the state space model.

The aim is to estimate the time-varying autoregressive parameters; therefore, the
AR parameters become state vectors zk = ak = [a1,k, · · · , ap,k]T . Assuming that
the AR parameters follow a mutltivariate random walk, the state transition matrix
becomes the identity matrix Gk,k−1 = Ip×p and the system noise wk allows for
small alterations. The observation matrix Hk consists of the past p sampling values
yk−1, . . . , yk−p. The innovation process vk = xk with σ 2

x (k) = Vk. The AR model
(30) is translated into the state space model formalism (27-28) as follows:

State Space Model ⇔ Autoregressive Model
zk = ak = [a1,k, ...ap,k]T

Hk = Yk−1 = [yk−1, ..., yk−p]T

Gk,k−1 = Ip×p

Vk = σ 2
x (k)

Zk = E〈(ak − âk)T · (ak − âk)〉
Wk = Ak = E〈(ak − ak−1)T · (ak − ak−1)〉
vk = xk

(32)

Accordingly, the Kalman filter algorithm for the AAR estimates becomes

ek =yk − Yk−1 · âk−1
â(k) =âk−1 + kk−1 · ek

Qk =Yk · Ak−1 · YT
k + Vk

kk =Ak−1 · Yk−1/Qk
Zk =Ak−1 − kk · YT

k · Ak−1
Ak =Zk + Wk

(33)

Wk and Vk are not determined by the Kalman equations, but must be known.
In practice, some assumptions must be made which result in different algorithms
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[36]. For the general case of KFR, the equation with explicit Wk is used Ak =
Zk + Wk with Wk = qk · I. In the results with KFR-AAR below, we used qk = UC ·
trace(Ak−1)/p. The RLS algorithm is characterized by the fact that Wk = UC·Ak−1.
Numerical inaccuracies can cause instabilities in the RLS method [36]; these can be
avoided by enforcing a symmetric state error correlation matrix Ak. For example,
Eq. (33) can be choosen as Ak = (1 + UC) · (

(Zk + ZT
k

)
/2. The AAR parameters

calculated using this algorithm are referred as RLS-AAR. In the past, KFR was
usually used for stability reasons. With this new approach, RLS-AAR performs best
among the various AAR estimation methods, as shown by results below.

Typically, the variance of the prediction error Vk = (1 − UC) · Vk−1 + UC · e2
k is

adaptively estimated from the prediction error (33) according to Eq. (12).
Kalman filters require initial values, namely the initial state estimate z0 = a0, the

initial state error correlation matrix A0 and some guess for the variance of innovation
process V0. Typically, a rough guess might work, but can also yield a long lasting
initial transition effect. To avoid such a transition effect, a more sensible approach
is recommended. A two pass approach was used in [33]. The first pass was based on
some standard initial values, these estimates were used to obtain the initial values
for the second pass a0 = μa, A0 = cov(ak), V0 = var(ek). Moreover, Wk = W =
cov(αk) with αk = ak − ak−1 can be used for the KFR approach.

For an adaptive spectrum estimation (31), not only the AAR parameters, but also
the variance of the innovation process σ 2

x (k) = Vk is needed. This suggests that the
variance can provide additional information. The distribution of the variance is χ2-
distribution. In case of using linear classifiers, this feature should be “linearized”
(typically with a logarithmic transformation). Later, we will show some experimen-
tal results comparing AAR features estimates with KFR and RLS. We will further
explore whether including variance improves the classification.

1.4 Adaptive Classifiers

In BCI research, discriminant based classifiers are very popular because of their
simplicity and the low number of parameters needed for their computation. For these
reasons they are also attractive candidates for on-line adaptation. In the following,
linear (LDA) and quadratic (QDA) discriminant analysis are discussed in detail.

1.4.1 Adaptive QDA Estimator

The classification output D(x) of a QDA classifier in a binary problem is obtained
as the difference between the square root of the Mahalanobis distance to the two
classes i and j as follows:

D(x) = d{j}(x) − d{i}(x) (34)

where the Mahalanobis distance is defined as:
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d{i}(x) = ((x − μ{i})T · �−1
{i} · (x − μ{i}))1/2 (35)

where μ{i} and �{i} are the mean and the covariance, respectively, of the class sam-
ples from class i. If D(x) is greater than 0, the observation is classified as class i and
otherwise as class j. One can think of a minimum distance classifier, for which the
resulting class is obtained by the smallest Mahalanobis distance argmini(d{i}(x)).
As seen in Eq. (35), the inverse covariance matrix (16) is required. Writing the
mathematical operations in Eq. (35) in matrix form yields:

d{i}(x) = ([1; x] · F{i} · [1; x]T )1/2 (36)

with

F{i} =
[−μT{i}

I

]
· Σ−1

{i} · [−μi

∣∣I
] =

[
μT{i}�

−1
{i} μ{i} −μT{i}�

−T
{i}

−�−1
{i} μ{i} �−1

{i}

]
(37)

Comparing Eq. (19) with (37), we can see that the difference between F{i} and
E−1

{i} is just a 1 in the first element of the matrix, all other elements are equal.
Accordingly, the time-varying Mahalanobis distance of a sample x(t) to class i is

d{i}(xk) =
{

[1, xk] ·
(

E−1
{i},k −

[
1 01×M

0M×1 0M×M

])
· [1, xk]T

}1/2

(38)

where E−1
{i} can be obtained by Eq. (25) for each class i.

1.4.2 Adaptive LDA Estimator

Linear discriminant analysis (LDA) has linear decision boundaries. This is the case
when the covariance matrices of all classes are equal; that is, Σ {i} = Σ for all
classes i. Then, all observations are distributed in hyperellipsoids of equal shape and
orientation, and the observations of each class are centered around their correspond-
ing mean μ{i}. The following equation is used in the classification of a two-class
problem:

D(x) = w · (x − μx)T = [b, w] · [1, x]T (39)

w = 
μ · �−1 = (μ{i} − μ{j}) · �−1 (40)

b = −μx · wT = −1

2
· (μ{i} + μ{j}) · wT (41)

where D(x) is the difference in the distance of the feature vector x to the separating
hyperplane described by its normal vector w and the bias b. If D(x) is greater than
0, the observation x is classified as class i and otherwise as class j.
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μj

μi

Hyperplane:
b+x*wT=0

wμi−μj

Fig. 3 Concept of classification with LDA. The two classes are reprensented by two ellipsoids
(the covariance matrices) and the respective class mean values. The hyperplane is the boundary of
decision, with D(x) = b + x · WT = 0. A new observation x is classified as follows: if D(x) is
greater than 0, the observation x is classified as class i and otherwise as class j. The normal vector
to the hyperplane, w, is in general not in the direction of the difference between the two class means

heightheight

Fig. 4 Paradigm of cue-based BCI experiment. Each trial lasted 8.25 s. A cue was presented at
t = 3s, feedback was provided from t=4.25 to 8.25 s

The methods to adapt LDA can be divided in two different groups. First, usingAQ4

the estimation of the covariance matrices of the data, for which the speed of adap-
tion is fixed and determined by the update coefficient. The second group is based
on Kalman Filtering and has the advantage of having a variable adaption speed
depending on the properties of the data.

Fixed Rate Adaptive LDA Using (19), it can be shown that the distance function
(Eq. 39) is

D(xk) = [bk, wk] · [1, xk]T (42)

= bk + wk · xT
k (43)

= −
μk · �−1
k · μT

k + 
μk · �−1
k · xT

k (44)

= [0, μ{i},k − μ{j},k] · E−1
k · [1, xk] (45)

with 
μk = μ{i},k − μ{j},k, b = −
μ(t) · �(t)−1 · μ(t)T and w = 
μ(t) · �−1.
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Accordingly, the adaptive LDA can be estimated with Eq. (45) using (25) for
estimating E−1

k and (5) for estimating the class-specific adaptive mean μ{i},k and
μ{j},k. The adaptation speed is determined by the update coefficient UC used in
the Eq. (5) and (25). For a constant update coefficient, the adaptation rate is also
constant.

Variable Rate Adaptive LDA This method is based in Kalman Filtering and its
speed of adaptation depends on the Kalman Gain, shown in Eq. (29), which varies
with the properties of the data. The state space model for the classifier case is sum-
marized in (46), where ck is the current class label, zk are the classifier weights, the
measurement matrix Hk is the feature vector with a one added in the front [1; xk],
and Dk(x) is the classification output.

State Space Model ⇔ LinearCombiner
yk = ck

zk = [bk, wk]T

Hk = [1; xk]T

Gk,k−1 = IM×M

Zk = E〈(wk − ŵk)T · (wk − ŵk)〉
Wk = Ak = E〈(wk − wk−1)T · (wk − wk−1)〉
ek = Dk(x) − ck

(46)

Then, the Kalman filter algorithm for the adaptive LDA classifier is

ek =yk − Hk · zT
k−147

zk =zk−1 + kk · ek

Qk =Hk · Ak−1 · HT
k + Vk

kk =Ak−1 · HT
k /Qk

Zk =Ak−1 − kk · HT
k · Ak−1

Ak =Zk + Wk47

(47)

The variance of the prediction error Vk was estimated adaptively from the pre-
diction error (47) according to Eq. (12). The RLS algorithm was used to estimate
Ak.

As the class labels are bounded between 1 and -1, it would be convenient to also
bound the product Hk · zT

k−1 between these limits. Hence, a transformation in the
estimation error can be applied, but then the algorithm is not a linear filter anymore:

ek = yk + 1 − 2

(1 + exp(−Hk · zT
k−1))

(48)

1.5 Selection of Initial Values, Update Coefficient and Model Order

All adaptive algorithms need some initial values and must select some update coef-
ficients. Some algorithms like adaptive AAR need also a model order p. Different
approaches are available to select these parameters. The initial values can be often
obtained by some a priori knowledge. Either it is known that the data has zero mean
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(e.g. because it is low pass filtered), or a reasonable estimate can be obtained from
previous recordings, or a brief segment in the beginning of the record is used to esti-
mate the initial values. If nothing is known, it is also possible to use some random
initial values (e.g. zero) and wait until the adaptive algorithm eventually converges
to the proper range. For a state space model [9], we recommend starting with a
diagonal matrix weighted by the variance of previous data and multiplied by a factor
δ, which can be very small or very large Σ0 = δσ 2I.

Of course one can also apply more sophisticated methods. For example, to apply
the adaptive classifier to new (untrained) subjects, a general classifier was estimated
from data of seven previous records from different subjects. This had the advan-
tage that no laborious training sessions (i.e. without feedback) were needed, but the
new subjects could work immediately with BCI feedback. Eventually, the adaptive
classifier adapted to the subject specific pattern [44–48].

A different approach was used in an offline study using AAR parameters [33].
Based on some preliminary experiments, it became obvious that setting the initial
values of the AAR parameters to zero can have some detrimental influence on the
result. The initial transient took several trials, while the AAR parameters were very
different than the subsequent trials. To avoid this problem, we applied the AAR
estimation algorithm two times. The first run was initialized by �a0 = [0, ..., 0], A0 =
Ipp, Vk = 1 − UC, Wk = I · UC · trace(Ak−1)/p. The resulting AAR estimates
were used to estimate more reasonable initial values �a0 = mean( �at), A0 = cov �at,
Vk = varet, Wk = cov
 �at with 
 �at = �at − �at−1.

The selection of the update coefficient is a trade-off between adaptation speed
and estimation accuracy. In case of AAR estimation in BCI data, a number of results
[31, 35, 36] suggest, that there is always a global optimum to select the optimum
update coefficient, which makes it rather easy to identify a reasonable update coef-
ficient based on some representative data sets. In case of adaptive classifiers, it is
more difficult to identify a proper update coefficient from the data; therefore we
determined the update coefficient based on the corresponding time constant. If the
classifier should be able to adapt to a new pattern within 100 trials, the update
coefficient was chosen such that the corresponding time constant was about 100
trials.

The order p of the AAR model is another free parameter that needs to be
determined. Traditional model order selection criteria like the Akaike Information
Criterion (AIC) and similar ones are based on stationary signal data, which is not
the case for AAR parameters. Therefore, we have developed a different approach
to select the model order which is based on the one-step prediction error [35, 36]
of the AAR model. These works were mostly motivitated by the principle of uncer-
tainty between time and frequency domain suggesting model orders in the range
from 9 to 30. Unfortunately, the model order obtained with this approach was not
necessarily the best for single trial EEG classification like in BCI data, often much
smaller orders gave much better results. We have mostly used model orders of 6 [27,
31, 34] and 3 [33, 44, 45, 47]. These smaller orders are prefered by the classifiers,
when the number of trials used for classification is rather small. A simple approach
is the use the rule of thumb that the nunber of features for the classifier should
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not exceed a 1/10 of the number of trials. So far the number of studies investi-
gating the most suitable strategy for selecting model order, update coefficient and
initial values are rather limited, future studies will be needed to address this open
issues.

1.6 Experiments with Adaptive QDA and LDA

Traditional BCI experiments use a block-based design for training the classifiers.
This means that some data must be recorded first before a classifier can be estimated;
and the classifier can be only modified after a “run” (which is typically about 20 or
40 trials) is completed. Typically, this procedure also involve a manual decision
whether the previous classifier should be replaced by the new one or not. Adaptive
classifiers overcome this limitation, because the classifier is updated with every trial.
Accordingly, an adaptive classifier can react much faster to a change in recording
conditions, or when the subject modifies its brain patterns. The aim of the study
was to investigate whether such adaptive classifiers can be applied in practical BCI
experiments.

Experiments were carried out with 21 able-bodied subjects without previous BCI
experience. They performed experiments using the “basket paradigm” [15]. At the
bottom of a computer screen, a so-called basket was presented either on the left
side or the right side of the screen. A ball moved from the top of the screen to the
bottom at a constant velocity. During this time (typically 4 s), the subject controls
the horizontal (left-right) position with the BCI system. The task was to control
the horizontal position of the ball to move the ball into the displayed basket. Each
subject conducted three different sessions, with 9 runs per session and 40 trials per
run. 1080 trials were available for each of them (540 trials for each class). Two
bipolar channels, C3 and C4, were recorded.

The system was a two-class cue-based and EEG-based BCI, and the subjects
had to perform motor imagery of the left or right hand depending on the cue. More
specifically, they were not instructed to imagine any specific movement, but they
were free to find their own strategy. Some of them reported that the imagination of
movements that involve several parts of the arm were more successful. In any case,
they were asked to maintain their strategy for at least one run.

In the past, KFR-AAR was the best choice because it was a robust and sta-
ble method; other methods were not stable and required periodic reinitialization.
With the enforcing of a symetric system matrix (Eq. 1.3), RLS could be stabi-
lized. Moreover, based on the compostion of AR spectra, it seems reasonable to
also include the variance of the innovation process as a feature. To compare these
methods, Kalman based AAR parameters (KFR-AAR) (model order p = 6), RLS-
AAR (p = 6) parameters, RLS-AAR (p = 5) combined with the logarithm of
the variance (RLS-AAR+V) and the combination of RLS-AAR(p = 4) and band
power estimates (RLS-AAR+BP) are compared. The model order p was varied to
maintain 6 features per channels. The classifier was LDA without adaptation, and
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Fig. 5 Time course of the performance measurements. These changes are caused by the short-term
nonstationarities of the features; the classifier was constant within each trial
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a leave-one-out cross-validation procedure was used selecting the order of the AR
model.

The performance results were obtained by single trial analysis of the online
classification output of each experimental session. For one data set, the time
courses of the error rate and the mutual information (MI are shown in Fig. 5).
The mutual information MI is a measure the transfered information and is defined

MI = 0.5·log2(1+SNR) with the signal-to-noise ratio SNR = σ 2
signal

σ 2
noise

. The signal part

of the BCI output is the variance from the class-related differences, and the noise
part is the variance of the background activity described by the variability within one
class. Accordingly, the mutual information can be determined from the total vari-
ability (variance of the BCI output among all classes), and the average within-class
variability by [32, 34, 36]

MI = 0.5 · log2
σ 2

total

σ 2
within

(49)

For further comparison, the minimum error rate and the maximum mutual
information are used. Figure 6 depicts the performance scatter plots of different
AAR-based features against KFR-AAR. The first row shows ERR and the second
MI values. For ERR (MI), all values under the diagonal show the superiority of the
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Fig. 6 The first row shows the scatter plots of error rates of different adaptive feature types using
an LDA classifier and cross-validation based on leave-one (trial)-out procedure. The second row
are scatter plots for mutual information results. The used methods are (i) bandpower values for the
bands 8–14 and 16–28 Hz (BP) with a 1-second rectangular sliding window, (ii) AAR estimates
using Kalman filtering (KFR), (iii) AAR estimates using the RLS algorithm, RLS-based AAR esti-
mates combined with the logarithm of the variance V (AAR+V), and RLS-based AAR estimates
combined with bandpower (AAR+BP). In the first row, values below the diagonal show the supe-
riority of the method displayed in the y-axis. In the second row (MI values), the opposite is true.
This figure shows that all methods outperform AAR-KFR
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method displayed in the y-axis. Looking at these scatter plots, one can see that KFR-
AAR is clearly inferior to all other methods. For completition of the results, and to
compare the performance of each feature type, the mean value and standard error of
each investigated feature were computed and presented in Table 2.

Table 2 Summary results from 21 subjects. The mean and standard error of the mean (SEM) of
minimum ERR and maximum MI are shown. The AAR-based results are taken from the results
shown in Fig. 6. Additionally, results from standard bandpower (10–12 and 16–24 Hz) and the
bandbower of selected bands (8–14 and 16–28 Hz) are included

Feature ERR[%] MI[bits]

BP-standard 26.16±1.90 0.258±0.041
BP 25.76±1.86 0.263±0.041
KFR-AAR 27.85±1.04 0.196±0.021
RLS-AAR 23.73±1.27 0.277±0.031
RLS-AAR+V 21.54±1.45 0.340±0.041
RLS-AAR+BP 22.04±1.44 0.330±
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The results displayed in Table 2, with a threshold p-value of 1.7%, show simi-
lar performance in ERR and MI for RLS-AAR+V and RLS-AAR+BP; both were
found significantly better than KFR-AAR and RLS-AAR. Also RLS-AAR was sig-
nificantly better than KFR-AAR. The bandpower values are better then the Kalman
filter AAR estimates, but are worse compared to RLS-AAR and RLS-AAR+V.

Using the features RLS-AAR+V, we tested then several adaptive classifiers. To
simulate a causal system, the time point when the performance of the system was
measured was previously fixed, and the ERR and MI calculated at these previously
defined time-points. The set of parameters for the classifiers in the first session were
common to all subjects and computed from previously recorded data from 7 subjects
during various feedback sessions [26]. The set of parameters in the second session
were found by subject specific optimization of the data of the first session. The same
procedure was used for the parameters selected for the third session.

Table 3 shows that all adaptive classifiers outperform the no adaptation setting.
The best performing classifier was aLDA, which outperformed the Adaptive QDA
and Kalman LDA. Kalman LDA also was found statistically better than Adaptive
QDA.
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Table 3 Average and SEM of ERR and MI at predefined time points. Error rate values were taken
from results shown also in Fig. 7

Classifier ERR[%] MI[bits]

No adapt 35.17±2.08 0.132±0.031
Adaptive QDA (aQDA) 24.30±1.60 0.273±0.036
Adaptive LDA (aLDA) 21.92±1.48 0.340±0.038
Kalman LDA (kfrLDA) 22.22±1.51 0.331±0.039

Figure 8 depicts how the weights of the adaptive classifier change in time,
and we can see a clear long-term change in their average value. This change can
be largely explained by the improved separability due to feedback training. To
present the changes in the feature space, the features were projected into a two-
dimensional subspace defined by the optimal separating hyperplanes similar to [14,
37]. Figure 9 shows how the distributions (means and covariances of the features)
change from session 1 to 2 and from session 2 to 3. In this example, the opti-
mal projection changes and some common shift of both classes can be observed.
The change of the optimal projection can be explained by the effect of feedback
training. However, the common shift of both classes indicates also other long-term
changes (e.g. fatigue, new electrode montage, or some other change in recording
conditions).
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Fig. 8 Classifier weights changing in time of subject S11. These changes indicate consistent long-
term changes caused by an improved separability due to feedback training. The data is from three
consecutive sessions, each session had 360 trials. The changes after trial 720 probably indicate
some change in the recording conditions (e.g. due to the new electrode montage)
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Fig. 9 Changes in feature distributions from session 1 to session 2 (left) and session 2 to session
3 (right). The separating hyperplanes of two sessions were used to find an orthonormal pair of
vectors, and the features were projected in this subspace. The averages and covariances of each
class and each session are projected into a common 2-dimensional subspace defined by the two
separating hyperplanes

1.7 Discussion

Compensating for non-stationarities in complex dynamical systems is an impor-
tant topic in data analysis and pattern recognition in EEG and many other analysis.
While we have emphasized and discussed the use of adaptive algorithms for BCI,
there are further alternatives to be considered when dealing with non-stationarities:
(a) segmentation into stationary parts where each stationary system is modeled sep-
arately (e.g. [22]), (b) modeling invariance information, i.e. effectively using an
invariant feature subspace that is stationary for solving the task, (c) modeling the
non-stationarity of densities, which can so far be remedied only in the covariate
shift setting, where the conditional p(y|x) stays stable and the densities p(x) exhibit
variation [40, 41].

An important aspect when encountering non-stationarity is to measure and quan-
tify the degree of non-stationary behavior, e.g. as done in [37]. Is non-stationarity
behavior caused by noise fluctuations, or is it a systematic change of the underlying
system? Depending on the answer, different mathematical tools are suitable [33, 36,
40, 47].

Several adaptive methods have been introduced and discussed. The differences
between rectangular and exponential windows are exemplified in the adaptive mean
estimation. The advantage of an exponential window is shown in terms of computa-
tional costs, the memory requirements and the computational efforts are independent
of the window size and the adaptation time constant. This advantage holds not only
for the mean but also for all other estimators.
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The extended covariance matrix was introduced, which makes the software
implementation more elegant. An adaptive estimator for the inverse covariance
matrix was introduced; the use of the matrix inversion lemma enables avoiding
an explicit (and computational costly) matrix inversion. The resulting algorithm
was suitable for adaptive LDA and adaptive QDA classifiers. The Kalman filtering
method for the general state-space model was explained and applied to two specific
models, namely (i) the autoregressive model and (ii) the linear combiner (adaptive
LDA) in the translation step.

All techniques are causal (that is, they use samples only from the past and present
but not from the future) and are therefore suitable for online and real-time applica-
tion. This means that no additional time delay is introduced, but the total response
time is determined by the window size (update coefficient) only. The presented algo-
rithms have been implemented and tested in M-code (available in Biosig for Octave
and Matlab [30]), as well as in the real-time workshop for Matlab/Simulink. These
algorithms were used in several BCI studies with real-time feedback [46–48].

The use of subsequent adaptive steps can lead, at least theoretically, to an
unstable system. To avoid these pitfalls, several measures were taken in the works
described here. First, the feature extraction step and the classification step used very
different time scales. Specifically, the feature extraction step takes into account only
changes within each trial, and the classification step takes into account only the
long-term changes. A more important issue might be the simultaneous adaptation
of the subject and the classifier. The results of [46, 47, 48] also demonstrate that
the used methods provide a robust BCI system, since the system did not become
unstable. This was also supported by choosing conservative (i.e. small) update
coefficients. Nevertheless, there is no guarantee that the BCI system will remain
stable under all conditions. Theoretical analyses are limited by the fact that the
behavior of the subject must be considered. But since the BCI control is based on
deliberate actions of the subject, the subject’s behavior can not be easily described.
Therefore, it will be very difficult to analyse the stability of such a system from a
theoretical point of view.

The present work did not aim to provide a complete reference for all possi-
ble adaptive methods, but it provides a sound introduction and several non-trivial
techniques in adaptive data processing. These methods are useful for future BCI
research. A number of methods are also available from BioSig - the free and open
source software library for biomedical signal processing [30].
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