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BioSig is an open source software library for biomedical signal processing. The aim of the BioSig project is to foster research in
biomedical signal processing by providing free and open source software tools for many different application areas. Some of the
areas where BioSig can be employed are neuroinformatics, brain-computer interfaces, neurophysiology, psychology, cardiovascular
systems, and sleep research. Moreover, the analysis of biosignals such as the electroencephalogram (EEG), electrocorticogram
(ECoG), electrocardiogram (ECG), electrooculogram (EOG), electromyogram (EMG), or respiration signals is a very relevant
element of the BioSig project. Specifically, BioSig provides solutions for data acquisition, artifact processing, quality control,
feature extraction, classification, modeling, and data visualization, to name a few. In this paper, we highlight several methods
to help students and researchers to work more efficiently with biomedical signals.

1. Introduction

The area of biomedical signal processing has to deal with
a large variety of topics. Artifact contamination, low signal-
to-noise ratios, different data formats, classification, and
statistical evaluation are general challenges of the field.
Furthermore, a large number of different data processing
methods for different signal modalities (EEG, ECG, etc.) and
for different applications has to be considered. Moreover,
software development itself is an important part of biomedi-
cal signal processing.

In the 1990s, the use of Matlab became popular to process
biosignals. However, the algorithms were rarely available and
the reimplementation of methods was common, even within
the same research group. The field of software development
was characterized by providers that offered closed (propri-
etary) solutions. This caused incompatibilities, and the same
algorithms were implemented again and again. Another side
effect was that each equipment provider defined its own

data format for storing biosignals. These data could then be
analysed only with the proprietary software of the vendor.
Data export, if possible, was difficult and resulted usually
in loss of information (e.g., metadata about the recording
conditions, like filter settings or sampling rate, were not
preserved).

These facts made the development and validation of new
methods difficult. Additionally, the success of free and open
source software in the field of operating systems (e.g., Linux)
and server software did encourage the development of a free
software library for biomedical signal processing.

Despite its focus on EEG data, BioSig can be used for gen-
eral signal processing tasks related to a variety of measure-
ment modalities. One example is the calculation of event-
related averages in MEG. Another one is the calculation of
spectral estimates of individual channels or time segments
in functional near-infrared spectroscopy data. BioSig covers
many EEG and polygraphic data formats. Furthermore, data
loading is accomplished by a simple command.
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BioSig consists of some (more or less) coherent parts, that
are summarized as follows.

(i) BioSig for Octave and Matlab (biosig4octmat). A tool-
box for Octave and Matlab with powerful data import
and export filters, feature extraction algorithms,
classification methods, and a powerful viewing and
scoring software.

(ii) BioSig for C/C++ (biosig4c++). A C/C++ library that
provides reading and writing routines for different
biosignal data formats.

(iii) rtsBCI (rtsbci). A real-time Brain Computer Interface
(BCI) system implemented in Matlab and Simulink.

Most functions implemented in BioSig can be used
with both Matlab and Octave and are installed through
the package “biosig4octmat”. This is also the main module
of the project. Within this library many data formats are
supported, and the toolbox provides a common interface for
reading [1] different formats. An automated detection of the
file format eases the use, making the detection transparent
to the user. The writing of several common file formats is
also supported. Additionally, useful algorithms for artifact
detection and correction are available. Many algorithms for
stochastic model parameters (autoregressive, multivariate,
time-varying, etc.) are accessible in the time series analysis
(TSA) [2] toolbox. These and other functions from the NaN-
toolbox [3] are able to handle data with missing values
(caused by, e.g., artifacts), too.

BioSig software is available “on-line” (cf. [4]) and under
the terms of the “General Public License” (GPL) v3 [5].
The GPL guarantees to the users that the BioSig library can
be freely used, studied, modified, and distributed. Having
a library for biomedical signal processing provides a sum-
mary of prior art in the field and might be helpful against the
detrimental effects of software patents.

2. Structure of BioSig

2.1. Toolbox Components. Matlab is a widespread numer-
ical programming language used for biosignal processing,
therefore BioSig started being developed for this proprietary
platform. However, in order to provide a really free and
open library, a special effort was undertaken to provide
compatibility with Octave [6], a free and largely compatible
alternative to Matlab. All functions are tested for their
compatibility with both platforms. Although BioSig supports
other programming languages such as C/C++ or Python, the
main module of BioSig is for Matlab and Octave and we will
focus on this in the following.

BioSig covers many aspects of biomedical signal pro-
cessing. Therefore, the toolbox is divided into subcategories
which depend on the functionally of the algorithms con-
tained in them. After installing BioSig, the following folders
are available and ordered by subtasks:

(i) file access, data input and output (loading and saving
routines), path: biosig/t200/∗,

(ii) preprocessing, quality control, and artifact process-
ing, path: biosig/t250/∗,

(iii) signal processing and feature extraction, path:
biosig/t300/∗,

(iv) event-related synchronization/desynchronization
(ERS/D) maps, path: biosig/t310/∗,

(v) classification and statistics (single trial analysis),
path: biosig/t400/∗,

(vi) statistical tests, path: biosig/t450/∗,

(vii) evaluation criteria, path: biosig/t490/∗,

(viii) visualization, path: biosig/t500/∗,

(ix) time series analysis, path: tsa/∗,

(x) statistics of data with missing values encoded as NaN
(not a number), path: nan/∗,

(xi) interactive viewer and scoring (requires Matlab),
path: biosig/viewer/∗,

(xii) documentation and help, path: biosig/doc/∗.

Figure 1 represents a scheme of the toolbox and how its
different elements are interrelated.

The module “data input and output” is a common
interface for accessing the various formats including an
automated format detection. It supports reading of about
40 and writing of 10 different data formats including some
audio formats. The preprocessing module provides tools for
triggering (segmenting) signal data, for artifact detection,
artifact reduction and quality control. The signal processing
module includes several specialized biosignal processing
functions, but also interfaces to standard signal process-
ing functions and wrapper functions for more complex
analyses. The classification module includes support for
different classification methods. A number of classifiers
including linear, quadratic and regularized discriminant
analysis, several methods of Support Vector Machines
(SVM), Naive Bayes Classifiers, Perceptron Learning, Partial
Least Squares/Regression analysis as well as some sparse
classifiers are supported; cross-validation procedures are
supported to prevent overfitting. More recently, these meth-
ods were extended for the use with missing values and are
now also distributed as part of the NaN-toolbox [3]. The
module on evaluation criteria contains several functions
for performance metrics as used in the field of Brain-
Computer Interface (BCI) research [7]. The visualization
module contains a simple viewer for biomedical data as
well as a wrapper function to visualize the results of several
standard analysis procedures. The interactive viewing and
scoring software (SViewer) is based on the graphical user
interface of Matlab, which is currently not supported by
Octave. An alternative is the free stand-alone viewing and
scoring software “SigViewer”.

Other important modules of BioSig are the Time Series
Analysis (TSA) toolbox [2] and the NaN-toolbox [3], which
are also part of the Octave-forge repository. The TSA
toolbox provides a unique variety of coupling measures
based on a multivariate autoregressive modeling routine. The
NaN toolbox handles data with missing values, which are
commonly caused by artifacts and encoded by not-a-number
(NaN). BioSig contains also several demonstration examples
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Figure 1: Architecture of the BioSig toolbox and its elements.

and a benchmark function for comparing the performance of
different platforms. The benchmark functions perform some
typical processing steps for calculating the classifier of BCI
experiment. First some data is loaded; then several features
are extracted; the features are used to compute a classifier;
a cross-validation procedure (in this case a leave-one-out
method) is used for validating the classifiers. The benchmark
can be used to compare different hardware platforms as well
as different versions of Octave and Matlab.

Contemporary high-density EEG and MEG can result in
very large multidimensional signal vectors. As a consequence
their processing might require large amounts of memory
only available within 64 bit operating systems. To facilitate
work with simpler hardware, BioSig can read data in blocks
and the user has to control that parameter extraction is
consistent across blocks of data. Reading of individual
channels is possible even if the full data set does not fit
into memory. This is accomplished by consecutive reading
of blocks and concatenation of single channel data slices.

2.2. Compatibility between Octave and Matlab. Making
BioSig compatible to Octave and Matlab was not self-evident.
In the past, a number of core functions present in Matlab
were missing from Octave, and had to be provided by
BioSig for full compatibility. Luckily, the number of missing
functions has been strongly reduced with newer versions of
Octave (v3.2 and higher).

In addition, another problem with proprietary Matlab
was addressed, notable not all Matlab users have all tool-
boxes available. Additional effort was spent to replace the
dependency on add-on toolboxes (like statistics and signal
processing) with free alternatives. This effort resulted in the
release of “free toolboxes for Matlab” (freetb4matlab), which
makes toolbox from Octave and Octave-forge available for
the use with Matlab.

In general, the attempt to make BioSig (in particular
biosig4octmat) fully compatible to Octave as well as Matlab
was widely successful. Currently, only the interactive scoring
software (a desirable but not mission-critical component)
cannot be used with Octave. BioSig demonstrates that also
a large-scale project can be programmed in such a way that

it can run on Matlab as well as Octave without any code
modifications.

2.3. Compatibility of BioSig with Other Toolboxes.
Clearly the BioSig is one of several toolboxes designed
for biomedical signal analysis. This suggests that
interdependency between toolboxes and avoiding
redundancy are quite important, but so far this topic
has been rather neglected. A promising example is the
reliance of FieldTrip (http://fieldtrip.fcdonders.nl/) and SPM
(http://www.fil.ion.ucl.ac.uk/spm) on the BioSig for specific
tasks. Examples are the reading of various file formats only
supported in the BioSig (cf. FieldTrip: ft read data.m) and
the multivariate autoregressive modeling implemented in
the BioSig (cf. FieldTrip: ft mvaranalysis.m). Additionally,
Biosig is also included in EEGlab, a widely used interactive
Matlab toolbox for EEG and MEG processing.

Dependencies like these need to be better addressed as
no single toolbox provides all possible types of analysis. The
range of processing steps appropriate for bioelectric and
biomagnetic signals as summarized in [8] clearly exceeds the
scope of a single toolbox. Unlike for proprietary software,
Toolbox design is not “one against the others race”, but rather
a cooperative effort to create “scratch an itch” of developers
and users, and eventually build the “super tool” for everyone.

A related question is the proper acknowledgment of
a toolbox and its authors in the scientific literature. A toolbox
typically implements several tens to at most a few hundred
published algorithms. An interesting idea, is that the toolbox
provides a “log of methods” used by an application to
the user. Currently, BioSig cites the publications in the
documentation of each function. In this way, the authors
of the original works can be acknowledged. It would be
desirable, that also the published software and its authors are
properly cited.

3. Data Formats

Biomedical signals are stored in many different data formats.
Most formats have been developed for a specific purpose
of a specialized community (ECG research, EEG analysis,
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Format Physical units 

ASTM E14676 No

BCI2000 No Yes No Yes/no Yes No Yes

BDF Yes int24 No char[8] Yes/no Yes No Yes

BKR No int16 No No/no Yes No Yes

EBS No No Yes

EDF Yes int16 No char[8] No/no Yes No Yes

EDF+ Yes int16 No char[8] Yes/no Yes No Yes

FEF Yes Yes Yes Yes (2) Yes No No

GDFv1.x Yes Yes Yes char[8] Yes/yes Yes No Yes

GDFv2.0 Yes Yes Yes Yes (2) Yes/yes Yes Yes Yes

GDFv2.1 Yes Yes Yes Yes (2) Yes Yes/yes Yes Yes Yes

HL7aECG Yes Yes No Free text Yes No Yes

MFER Yes 23 predefined No Yes

SCP-ECG No No No Fixed Yes Ecg only Yes No Yes

unisens No

SIGIF Yes Yes Free text Yes No Yes

Multiple

sampling rates 

and 

scaling factors 

Multiple

data types

Supports

automated

overflow

 detection 

Patient info,

recording 

equipment,

researcher

Events, 

markers, 

annotations/

predefined 

codes 

Random 

data access,

streaming

Electrode

position/

orientation 

Software

tools 

available

“uV”

“uV”

Overview of open data formats for biomedical signals

−(1)

−(1)

−(1)

−(1)

−(1)

−(1)

−(1)

−(1)

+(1)

Figure 2: Properties of open and vendor independent data formats.

sleep research, etc.), by companies, research groups, and
standardization organizations. A detailed comparison of
about 20 biomedical data formats with publicly available
specifications is shown in Figure 2 (for more details see [9]).

Although BioSig supports over 40 different data formats
and can ease the problem, still the definition of a general
purpose format was needed. In order to overcome the
proliferation of data formats a “General Data Format for
biosignals” (GDF) [1] has been developed with the aim
to combine the best features of different formats into a
single data format. BioSig provides a common interface for
different data formats including an automated identification
of the file format. This provides a seamless user interface,
specifically the user can utilize the same functions for reading
different formats.

Version 1 of the General Data format (GDF), [10], has
been developed and successfully implemented and used in
BCI research. GDF provides many useful features (different
sampling rates and calibration values for different channels,
an automated overflow detection, support of different data
types, encoding of filter settings, etc.), that are only partly
implemented in other formats. A key idea is also to
define a fixed coding scheme for events, which supports
compatibility of event information across different studies
and laboratories. GDF is the first data format that addresses
this topic.

Within recent years, new requirements became apparent.
The new Version 2 of the GDF addresses the need for:

(i) subject-specific information (gender, age, impair-
ment, etc.),

(ii) recording location, identification of recording soft-
ware, and so forth,

(iii) possibilities for storing the electrode positions in
spatial coordinates, electrode impedances, and so
forth,

(iv) more efficient encoding of date and time, physical
dimensions, and filter information,

(v) nonequidistant (sparse) sampling.

The structure of GDF v2.0 is similar to EDF [11], GDF1.x
[10], and EDF+ [12].

Briefly, an GDF file consists of the following five
components: the fixed header or header 1 (with 256 bytes)
is mandatory, the variable header or header 2 containing
channel-specific information (number-of-channels times
256 bytes), the tag-length-value (TLV) header or header 3
contains optional information, the data section, and the table
of events. Header 2 can be empty, in case that no channel
information is stored (e.g., in pure event files).

Data is stored in little endian format. However, BioSig
supports also big-endian platforms by converting the data
internally. The Version field is of type char [8] and is stored at
the beginning of the file. This field is used to provide upwards
compatibility with past and future versions of GDF.

The format definition of GDF is nearly as simple as
the definition of EDF. The use of binary encodings enables
a more compressed representation; accordingly, more infor-
mation can be stored within the header information. This
enables a higher accuracy (e.g., in date and time information)
and additional information can be stored without extending
the header size.
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Figure 3: (a) Section of 10 s of raw ECG from a measurement lasting 1800 s. (b) The heart rate determined from the ECG was averaged
with respect to the onset of the finger movement task performed by the subject. The changes in the averaged heart rate are within a range of
4 beats/min. This is small in relation to the 63 beats/min mean value and it can be concluded that the subject was relaxed.

The proposed format specification was successfully
implemented in C/C++ as well as an M-file which can be
used with Octave (>2.9.12) and Matlab (>6.5). The software
implementation requires only minor changes to upgrade
from EDF, BDF, or earlier GDF to GDF 2.20. In BioSig
different data formats can be simultaneously supported.

GDF provides a superset of features from many other
data formats. GDF v2.10 includes support for, user-specified
event description (like in EDF+ and BrainVision format),
manufacturer information (like in SCP [13] and MFER
[14]), and the orientation of MEG sensors. Accordingly, GDF
v2.x is (upwards) compatible with most other data formats;
this means that biosignal data from other formats can be
converted to GDF without loss of information. Routines for
reading and writing GDF files in Octave and Matlab, as well
as in C, are implemented in the open source package BioSig.
For more details, please refer to [1].

4. BioSig in Biomedical Research

4.1. Heart Rate Extraction. Even the apparently simple task
of extracting the heart rate from an electrocardiographic
(ECG) signal is appropriate for a biosignal toolbox because
the user is not distracted by coding a heart rate extractor on
the fly. In BioSig, two well-tested and published algorithms
[15, 16] are implemented in a single routine. The first algo-
rithm determines the envelope of the ECG using a Hilbert
transform and the positions of the R-peaks are determined by
thresholding. The second algorithm uses a bank of filters, and
it incorporates an ectopic beat correction. The resulting heart
rates are therefore suitable for advanced heart rate variability
studies.

The first algorithm [15] was used in the example shown
in Figure 3. During a session lasting 1800 s, the MEG, the
fNIRS (functional near-infrared spectroscopy), and the ECG
were recorded from a subject. For the whole duration the
subject had to alternate between 30 s of finger movements
and 30 s of rest. The heart rate was extracted offline from the

ECG. Subsequently, event-related averages were calculated
for MEG, fNIRS, and heart rate over the 30 epochs of finger
movements using trigger points related to the onset of finger
movements. The extraction of heart rate, determination of
trigger time points, and the averaging were performed using
appropriate routines from BioSig. The acquisition of the
ECG followed by the extraction of an event-related heart
rate, as shown in Figure 3, established that the subject was in
a relaxed state throughout the measurement. The oscillations
in the averaged heart rate in Figure 3(b) indicate a certain
degree of synchrony between respiration and the finger
movement task. Results for MEG and fNIRS are discussed
in [17].

4.2. Artifact Processing. Several artifact processing methods
are included in BioSig. The performance of the methods
has been demonstrated in research and published in several
papers. In the following we briefly explain some of them.

The first method consists of a “histogram-based” quality
control of the biomedical signals (see Figure 4). In [18] it was
found that the header information of the EEG recordings
does not always provide the real saturation values of the
recording equipment, therefore an automated saturation
detection was not possible. A quality control method based
on histogram analysis was developed and its performance
was successfully demonstrated. The amplitude histograms
and entropies of all-night sleep recordings from 8 different
sleep laboratories were calculated. This method is provided
by BioSig in order to support the visual identification of the
thresholds needed for the saturation detection.

Also, algorithms for detection of muscle artifacts are
implemented. For example, the method described in [19]
is available in BioSig. In that paper the authors used time
domain and frequency domain methods for the detection
of muscular noise in awake EEG. For time domain detec-
tion, they used slope and maximum/minimum amplitude.
The parameters in the frequency domain were absolute
and relative “high beta” power (>25 Hz) and spectral edge
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Figure 4: Histograms of 16 all-night sleep EEG (modified from [18]). Thresholds for overflow detection can be obtained through BioSig’s
eeg2hist.m tool.

frequency. The detection thresholds were calculated from
subject distributions calculated from a reference period.
This method consistently outperforms the use of constant
empirical thresholds.

Finally, a method for artifact removal of electrooculo-
graphic (EOG) artifacts in EEG is also available in BioSig. It is
a very powerful algorithm based on simple linear regression.
Its suitability has been demonstrated in two papers, [20, 21].

The observed EEG can be considered as a linear superpo-
sition of EEG and EOG components. This can be written in
the form of a regression model:

⇀
Yt =

⇀
Et + bN×M ·

⇀
Ot . (1)

Accordingly, the observed EEG at time t is a vector
⇀
Yt

with N elements, and the observed EOG activity
⇀
Ot at time

t has M elements. The observed EEG data
⇀
Yt consists of

a linear superposition of the true EEG activity
⇀
Et and the

ocular activity
⇀
Ot that propagates through the mechanism of

volume conduction to each EEG electrode. The propagation
factors are described by the model parameters bN×M , which
describe the influence of M components of the ocular dipoles

to each of the N EEG channel. Because the propagation
mechanism is simple volume conduction [22–24], it depends
only on the geometry and the conductivity of the head tissue.
It is reasonable to assume that these are constant during the
whole EEG recording time T, 0 < t ≤ T and independent of
frequency. It should be noted that the regression model can
be also written in the following form:

⎡
⎢⎣
⇀
Yt

⇀
Zt

⎤
⎥⎦ =

⎡
⎣IN×N bN×M

0M×N IM×M

⎤
⎦ ·
⎡
⎢⎣
⇀
Et

⇀
Ot

⎤
⎥⎦, (2)

where
⇀
Zt =

⇀
Ot represents the observed EOG channels.

If the EOG activity is measured, its contribution can
be removed using the least squares solution of (1). A right

multiplication of (1) with
⇀
O

T

t and applying the expectation
operator 〈·t〉 over time t yields

〈
⇀
Yt ·

⇀
O

T

t

〉
=
〈
⇀
Et ·

⇀
O

T

t

〉
+ bN×M ·

〈
⇀
Ot ·

⇀
O

T

t

〉
. (3)
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Because EEG and EOG can be considered uncorrelated, the

term 〈⇀Et ·
⇀
O

T

t 〉 becomes zero, the true model coefficients are

b =
〈
⇀
Yt ·

⇀
O

T

t

〉
·
〈
⇀
Ot ·

⇀
O

T

t

〉−1

(4)

and the EEG data can be corrected according to

⇀
Et =

⇀
Yt − b · ⇀Ot. (5)

The method is also known as “least squares approach” or
“multiple least squares approach” in case that more than one
EOG component is removed. b is chosen in such a way that

the mean square of
⇀
E is minimized.

This model takes into account only EEG and EOG
sources. In practice, other noise sources (e.g., amplifier and
impedance noise, electric and magnetic interferences, and
muscle activity) occur, too. In order to analyze the possible
influence of these noise sources on the reduction method,
a noisy model has to be considered. One consequence of this

analysis is the fact that the model estimates b̂ = β are least
biased if the signal-to-noise ratio between EOG and other
noise sources is as large as possible. Therefore, we estimated
the model coefficients from data with large ocular activity.
Furthermore, it can be advantageous to filter the data (e.g.,
for removing the very low frequency components of the 1/ f
amplifier noise, and the very high frequency activity). In
other words, the correction coefficients are most accurate if
the influence of other noise sources can be avoided.

The difference between the regression approach (linear
superposition model) and the component-based approaches
such as blind source separation remains in the manner how
the signals describing the EOG activity are obtained. While
the regression approach uses the observed EOG activity,
the component-based approaches decompose the data into
a number of independent (and uncorrelated) components,
and different heuristics are used for identifying the EOG
components. An advantage of component-based methods
could not be demonstrated within a study [20]. It is
important to use bipolar EOG channels with EOG electrodes
located close to the eyes as regressors. The results suggest that
it is more difficult to identify the artifact components with
blind source separation methods than with the dedicated
channels (like EOG) recording the artifact.

Figure 5 illustrates the regression method to correct EOG
artifacts in EEG. On the left the raw EEG data is visible,
on the right the corrected EEG is displayed. More detailed
information is available in [20, 21].

4.3. Coupling and Connectivity with EEG and Multivariate
Autoregressive Models. One of the most striking problems in
neuroscience is the study of brain areas that interact with
each other, and how they interact during the performance
of a certain task.

The (auto-)spectrum of a single channel and the cross-
spectrum of two different channels have been used for a while
to analyze the connectivity of different brain areas [25, 26].

An often used measure related to the cross-spectrum is
the coherence, which is defined as the power of the cross-
spectrum of two channels normalized with the correspond-
ing power autospectra. Therefore, its magnitude varies from
0 to +1. The normalized cross-spectrum before taking the
power is called coherency, and it is a complex number, so it
has a real and imaginary part. As a complex number it can be
represented by its amplitude and phase.

Nolte et al. [27] proposed to investigate the imaginary
part of the coherency as a connectivity measure, because
a nonzero imaginary part of coherency can not be explained
by volume conduction alone, but is an indicator for a func-
tional coupling between different brain areas. By computing
the phase of the coherency (using the real and imaginary
parts), the time delay between signals present in two channels
can be estimated. Another measure defined to remove bias
due to volume conduction is the partial coherence. It is
computed between a pair of channels, partializing out the
activity of the remaining channels.

The measures mentioned so far are antisymmetric
or symmetric and therefore cannot represent the direc-
tion of the information flow. Kaminisky and Blinowska
[28] proposed the directed transfer function to detect
whether the coupling between brain areas is forwards,
backwards, or both. The partial directed coherence (PDC),
motivated by the partial coherence, was also defined for
this purpose in [29]. Only the PDC and the general-
ized PDC have the potential to identify the causal rela-
tionships and the underlying structure of an observed
system.

All these measures have in common that they can be
estimated from a multivariate autoregressive (MVAR) model,
so that MVAR models can be considered a common basis
for the comparison of different coupling measures. BioSig
does integrate a complete toolbox for MVAR modeling in the
folder tsa (time series analysis) [2].

Examples for the application of coupling measures to
EEG using BioSig can be found in [30–33], and methodolog-
ical issues are addressed in more detail by the works [8, 34].

4.4. Brain Computer Interfacing. The purpose of a BCI
system is to identify the user’s intention by observing and
analyzing brain activity without relying on signals from
muscles or peripheral nerves. BioSig contains many useful
tools for BCI research, most of them designed for EEG
signals (although certain functions can be used to process
other signals). The reason why BioSig is focused on EEG is
that it is noninvasive, portable, can be used in almost any
environment, and it has excellent time resolution.

Figure 6 illustrates a typical BCI. An online data-
processing system controls devices in real time and provides
feedback to the user. To generate the control signal, the BCI
must extract and classify EEG features. The feature extraction
method is typically based on the type of neurophysiological
activation, and the classifier is usually obtained by offline
analyses of previous data records from the same subject
(subject-selected feature parameters as well, cf. [35]).
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Figure 5: (a) Raw EEG data, contaminated with ocular artifacts. (b) Corrected data using regression analysis.

The rtsBCI toolbox is a real-time Brain Computer
Interface (BCI) system implemented in Matlab and Simulink
that can serve the purpose of designing an online system,
however it is currently not supported.

Some BCIs use primarily spectral analysis (e.g., frequency
band power or autoregressive spectra) to characterize spon-
taneous oscillatory EEG activity. It can also use autoregres-
sive parameters directly to describe the entire spectral density
function [36]. Alternatively, a BCI can analyze the user’s
response to visual or acoustic stimuli, which can be presented
one by one or in a steady-state (repetitive) mode.

As already mentioned in Section 4.2, data preprocessing
is important to remove the influence of technical artifacts
and nonbrain activity such as electrical signals caused by eye

movements or facial muscles. Section 4.2 offers examples of
methods that are implemented in BioSig to remove artifacts.
Additionally, in the case of EEG recordings, spatial filters
can also focus on a specific brain area or identify particular
signal components [35, 37–39]. These are available in BioSig
as well.

A BCI uses offline analysis for several purposes. The most
common is the estimation of a reliable classifier. But when
the classifier and/or features contain hyperparameters, such
as adaptation speed or regularization coefficients, they need
to be tuned off-line [40–43]. For the evaluation of methods,
the application of cross-validation and may be resampling
procedures might be necessary. All tools for offline analysis
are as well available in BioSig.
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Figure 6: Elements of a brain computer interface.

An overview of general methods for BCI research
implemented in BioSig is presented in Table 1.

Evaluation Criteria. Traditionally, BCI performance is quan-
tified by classification accuracy or error rate. For the
multiclass (when the user performs more than 2 tasks), there
are other metrics that might be preferable as for example,
the Cohen’s kappa coefficient, which is derived from the
confusion matrix [44].

In some cases, it is desirable to quantify BCI perfor-
mance in terms of the information transfer rate [45]. Other
metrics are the correlation coefficient, mean square error,
and area under the receiver operating characteristic curve.
Support for these and some more criteria is provided within
BioSig [46–48].

5. BioSig for C/C++ and Libbiosig

BioSig for C/C++ (short biosig4c++) provides some com-
mand line tools for data conversion, a library to access
a number of data formats (libbiosig), and some experi-
mental code for network transfer of biosignal data. The
motivation for a C/C++-based library is performance issues,
flexibility in terms of supported platforms (e.g., Matlab
can be hardly installed on some embedded devices), and
interfacing to existing libraries. When there was a need
for a converter between XML-based HL7aECG and the
SCP-ECG data format, it was first implemented in C/C++
[49], nowadays about 30 data formats can be read and
10 are written. Moreover, biosig4c++ can be used now

with Octave and Matlab through a MEX-interface yielding
a much better performance than the traditional m-scripts.
biosig4c++ provides also an interface for Python (it enables
reading of 30 biosignal data formats into Python) and
might be also useful for other software platforms. The free
viewing and scoring software “SigViewer” uses libbiosig
for accessing biosignal data. An experimental implemen-
tation of a network-based data transfer is included in
biosig4c++, which might be useful for biosignal recorders
(embedded devices) and for network-based biosignal
archives.

6. Conclusions and Future Work

BioSig provides a whole tool chain of data processing
methods for BCI research. These tools are useful in other
application areas, like seizure detection and seizure predic-
tion in epileptic EEG. Connectivity analysis with MVAR
methods is another expanding application topic of BioSig.

Data analysis with biosig4octmat emphasizes the almost
fully automated data analysis. However, a major limitation
to this goal is the manual scoring of artifacts. Here, we see a
need to validate promising artifact processing methods. The
results on EOG artifacts show that a two-channel regression
analysis can reduce about 80% of EOG artifacts in EEG
recordings [21], similarly to blind source separation methods
combined with some heuristics for component selection,
[20]. Similar results are expected for raw MEG data in chan-
nel space. For EMG artifacts, there are methods of inverse
filtering [36] and high pass filtering implemented [50], but
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Table 1: List of BCI-related task that can be performed using
BioSig.

Data preprocessing

Triggering, partitioning of data

Artifact processing

Quality check of data through histogram
analysis

Spatial filters

Detection of EMG artifacts

Common spatial patterns

Feature extraction
Band power

Adaptive autoregressive parameters

Adaptive multivariate autoregressive
parameters

(Adaptive) Hjorth

(Adaptive) Barlow

(Adaptive) Wackermann

(Adaptive) time-domain parameters

Adaptive brain rate,

spectral edge frequency

Feature classification

Linear discriminant analysis (LDA)

Quadratic discriminant analysis (QDA)

Support vector machines

Naive Bayesian classifier (NBC)

Augmented NBC

Sparse LDA

Generalized discriminant analysis

Evaluation criteria
Classification
accuracy

Cohen’s kappa coefficient

Receiver operating characteristics (ROC)

Area under the ROC curve

Mutual information, information transfer
rate

Correlation coefficient

Metafunctions

findclassifier, cross-validation (xval),

standardized analysis

(demo2 is an example of a standardized

offline analysis)

currently only limited results about their performance are
available. However, the validation of the performance of arti-
fact processing methods is crucial for a number of possible
applications, including BCI but also seizure detection and
prediction.

Up to now, controlled signal conditioning under BioSig
is not included in order to simplify the design and also
because during the experiments the conditions are usually
fixed. Otherwise it is not clear whether changes are due to the
recording system or they occurred in the observed system.

biosig4octmat is an application that can be used with
Octave and is available from Sourceforge. Currently, the
monthly download range is about 500 per month. Its instal-
lation in Octave is similar as in Matlab. However, the BioSig
benchmark shows that Octave is somewhat slower than
Matlab. In the future, the BioSig development will stay

committed to compatibility to Octave, and will work actively
to support compatibility with both.

For certain applications, the support of hardware plat-
forms beyond personal computers is of interest. For example,
embedded devices are important for online and real-time
applications. Here, a C/C++ library like biosig4c++/libbiosig
can be very useful. Biosig supports so far different pro-
gramming languages including C/C++, Octave/Matlab and
Python. Experimental support for other programming lan-
guages (e.g., Java, PhP, Perl, Ruby, Tcl, etc.) using the
SWIG tool is currently investigated. Standardization (of data
formats as well as data analysis methods) is also an important
area, and due to its free software development model BioSig
provides a suitable platform for these topics.

So far, the emphasis of BioSig was in providing a library
of high-quality methods, useful algorithms, and reference
implementations for all kind of biomedical signal processing
problems, rather than a “user-friendly” environment for
nonexperts. However, a folder with several Demos is available
after installation (biosig/demo/). The future of BioSig is
open, and the development and future direction of BioSig
depends on each contributor to the BioSig project.
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[1] A. Schlögl, “GDF—a general dataformat for biosignals,” Tech.
Rep., 2004–2009, http://arxiv.org/pdf/cs/0608052v6.
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[36] A. Schlögl, The Electroencephalogram and the Adaptive Autore-
gressive Model: Theory and Applications, Shaker, Aachen,
Germany, 2000.

[37] J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, “Design-
ing optimal spatial filters for single-trial EEG classification in
a movement task,” Clinical Neurophysiology, vol. 110, no. 5, pp.
787–798, 1999.

[38] H. Ramoser, J. Müller-Gerking, and G. Pfurtscheller, “Optimal
spatial filtering of single trial EEG during imagined hand
movement,” IEEE Transactions on Rehabilitation Engineering,
vol. 8, no. 4, pp. 441–446, 2000.

[39] H. Ramoser, J. R. Wolpaw, and G. Pfurtscheller, “EEG-based
communication: evaluation of alternative signal prediction
methods,” Biomedizinische Technik, vol. 42, no. 9, pp. 226–233,
1997.
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[47] A. Schlögl and C. Brunner, “BioSig: a free and open source
software library for BCI research,” Computer, vol. 41, no. 10,
pp. 44–50, 2008.

[48] G. Dornhege, J. R. Millan, T. Hinterberger, D. J. McFarland,
and K.-R. Müller, Eds., Towards Brain-Computer Interfacing,
MIT Press, Cambridge, Mass, USA, 2007.
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