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Fig. S1. The optimal time window for manual scoring (twin). 
 

  
 

Analysis of the dependence of AUC on the duration of the manual scoring expansion 

window (twin).  Data were obtained from in vivo recordings (A, B) or in vitro recordings 

(C, D) and scored by either expert E1 (A, C) or expert E2 (B, D). Note that the optimum 

twin value was 3–4 ms under all conditions. Red curve, mean ± SEM; dashed lines, 

data from individual experiments. The optimum value of twin defines the temporal 

resolution of the entire method, including manual scoring and automatic detection. 

Results shown were computed using the cross-validation scheme “A1B2–A2B1”.   
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Fig. S2. The optimal time shift  and influence of filter length of the Wiener filter. 

 

Analysis of the dependence of AUC on the time shift  for various values of the filter 

length (200, 300, 500, 1000, 1400, 2000, and 2800 samples, sampling frequency 

25000 Hz).  = 0 corresponds to the time points of manual scoring. Data were obtained 

from in vivo recordings (A, B) or in vitro recordings (C, D) and scored by either expert 

E1 (A, C) or expert E2 (B, D). Overall, the filter length has only minor effects on the 

AUC. Note that the optimum time shift was ~20 ms for the in vivo data sets and ~5 ms 

for the in vitro data sets. This is likely to be caused by the slower time course of EPSPs 

in the in vivo data in comparison to the faster time course of the EPSCs in the in vitro 

data. Also note that delay values were slightly different between expert scorings (E1 

versus E2), because experts marked synaptic events at slightly different time points. 

The results shown were computed using the general classifier.  
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Fig. S3. The minimal length of scored traces required for reliable detection.  

 

Cumulative distribution of AUC values for different duration of the scoring period used 

for training of MOD. Data were obtained from in vivo recordings (A, B) or in vitro 

recordings (C, D) and scored by either expert E1 (A, C) or expert E2 (B, D). Note that 

AUC values were consistently above 0.8 for scoring periods of  10 s. In contrast, a 

fraction of analysis data points showed AUC values of < 0.8 for shorter scoring periods 

of 1–5 s. Thus, MOD analysis based on shorter scoring periods is possible, but 

occasionally unreliable.  
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Fig. S4. Comparison of different criteria for determining detection threshold. 

 

 

(A) Plot of TPR against FPR for a synthetic data set (ROC curve). The signal-to-noise 

ratio was 3, i.e. 9.5 dB in this simulation. The AUC was 0.970. The “x” in the ROC 

curve indicates the point on the ROC curve that corresponds to maximal , implying 

the optimal detection threshold.  Inset shows the dependence of Cohen’s  on the 

threshold, peak value of , and cumulative distribution of data points in the detection 

trace.  

(B) ROC curves for simulated data. The signal-to-noise ratio SNR = 20*log10(peak 

amplitude/noise rms) was varied from −52 dB to 26 dB in steps of 7.8 dB. Note that 

larger signal-to-noise ratios yield ROC curves with a larger AUC. The maxima of 

different performance metrics (Cohen’s , mutual information (MI), Youden index (YI), 

accuracy (ACC), Matthews correlation coefficients (MCC), and F1) are depicted.  
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Fig. S5. Comparison of detection methods using an SSE-based goodness-of-fit 

metric and relationship between SSE and AUC.  
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(A, B) Comparison of the performance of MOD against previously published methods 

(TMP, template-fit; DEC, deconvolution; BAY, Bayesian detection) for 6 in vivo data 

sets. Note that SSE is smallest for MOD, indicating MOD outperforms the traditional 

methods TMP, DEC, and BAY for EPSPs recorded in vivo.   

(C, D) Comparison of the performance of MOD against TMP; DEC; BAY for 6 in vitro 

data sets. Note that MOD outperforms the traditional approaches TMP and DEC for 

EPSCs recorded in vitro (* indicates P < 0.05). Results shown were computed using 

the cross-validation scheme “A1B2–A2B1” with twin = 4 ms.  

(E) Scatter plot of log10(SSE) versus AUC for in vivo and in vitro data sets scored by 

experts E1 and E2 for MOD.  

(F–H) Scatter plot of log10(SSE) versus AUC for TMP (F), DEC (G), and BAY (H).  

SSE and AUC were highly correlated in all data sets, implying that both may allow 

judgement of the goodness of fit. Pearson’s correlation coefficients were 0.6343 (E), 

0.8461 (F), 0.7213 (G), and 0.9608 (H), and corresponding P values were 8.7279×10−4 

(E), 1.9027×10−7 (F), 6.9701×10−5 (G), and 9.5923×10−14 (H). Note, however, that SSE 

is dependent of the choice of an optimal threshold, whereas AUC is independent on 

any assumptions about threshold.  
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Fig. S6. Using MOD with combined expert scoring.  

 
 

(A–D) One-second segments of scored in vivo data (A, B) and in vitro data (C, D) for 

AND combination of scorings (A, C) or OR combination of scorings (B, D).  Top, raw 

data, together with the scoring from one expert. Center, raw detection trace from the 

MOD method; the markers (○) indicate peaks above threshold. Bottom, binary 

detection trace obtained by applying the optimum threshold to the raw detection trace.  
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(E, F) ROC curve analysis of detection performance for in vivo data (E) and in vitro 

data (F). Blue lines, AND combination; green lines, OR combination.  

 

Table S1. Properties of manually scored data sets.  

Parameter in vivo data set  in vitro data set Additional information 

Total scoring duration  71.0 ± 10.1 s 73.7 ± 8.4 s  

Total number of 

scored events  

2100 ± 683 811 ± 305  

Average event 

frequency  

30.0 ± 9.3 Hz  11.4 ± 5.6 Hz  

Number of scored 

cells  

6  6  

Number of scorings 12 12 Expert E1 with in vivo 

background, expert 

E2 with in vitro 

background 

 

In vivo data set was obtained by making whole-cell current-clamp recordings of EPSPs 

in dentate gyrus GCs near the resting potential in head-fixed mice running on a linear 

belt (for details, see Methods).  

In vitro data set was obtained using presynaptic cell-attached recording from 

hippocampal mossy fiber terminals and simultaneous postsynaptic whole-cell voltage-

clamp recordings of EPSCs from CA3 pyramidal neurons in acute hippocampal slices 

(for details, see Methods).  
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Table S2. Computation time for individuals steps of MOD.  

 Computation time 

(mean ± SD) 

Reference  Conditions 

Computing auto-

correlation 

functions 

14.14 ± 0.32 s Eq. 6a normalized to 30 s of 

training data 

Computing cross-

correlation 

functions 

35.33 ± 0.79 s Eq. 6b normalized to 30 s of 

training data 

Solving Wiener-

Hopf equation   

0.028 ± 0.001 s  Eq. 5  

Raw data filtering 14.59 ± 0.26 s  Eqs. 2 and 8 normalized to 600 s 

of raw data 

Computing ROC, 

AUC, and   

0.073 ± 0.044 s Fig. 2C, F;  

Fig. 3C; Fig. 4C 

normalized to 600 s 

of raw data 

 

The results were computed on a Supermicro computer with an X9DRT mainboard, 

and Intel Xeon CPU (E5-2670 v2 @ 2.60GHz, Sandy Bridge, with hyper-threading 

enabled). The machine was running under the operating system "Debian(9.6)/Stretch", 

and the computations were done with Octave 4.4.0 on a single CPU core.   

Computation time is wall clock time in seconds. Twelve data sets were analyzed, 

and the cross-validation scheme (A1B2–A2B1) was used, thus 24 results were 

computed. The computational time of each data set was normalized to a length of 30 s 

of training data, and 600 s of total raw data.  

 


