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Abstract

Objective and methods: Sixteen polysomnographic recordings from 8 European sleep laboratories were analyzed. The histogram analysis

was used to introduce quality control of all-night EEG recordings.

Results: It was found that the header information does not always provide the real saturation values of the recording equipment. The

entropy measure was used for the quantitative analysis of the dynamic range of routinely used polysomnographic recorders. It was found that

the recording equipment provides EEG data with entropy in the range of 8±11 bits.

Conclusion: In the all-night sleep EEG were observed non-linearities. It is recommended that the equipment provide the saturation values

in order to apply automated over¯ow detection. q 1999 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

Typical artifacts in biosignal processing are saturation

effects caused by the limited dynamic range of the ampli®er

and/or the analog-to-digital converter (ADC). Over¯ow arti-

facts can be caused by electrode movement, failing electro-

des, or EMG activity in an EEG channel. If the limit is

reached, the true signal is no longer represented, and a

saturation effect takes place, which implies that a non-line-

arity is introduced. In this case, almost all signal processing

methods fail or produce large estimation errors.

One way to enlarge the dynamic range and to minimize

the probability of reaching the limits is to reduce the ampli-

®cation gain. However, this would cause the amplitude reso-

lution, or signal-to-noise ratio (SNR), to worsen. In practice,

a compromise between the resolution and the dynamic range

of the signal is chosen. The dynamic range can be quanti®ed

with Shannon's communication theory by applying the

concept of the entropy of information to the (coded) EEG

data (Shannon and Weaver, 1949).

The analysis of the amplitude histograms is useful for the

quantitative analysis of the dynamic range and is often used

for testing ADCs. Histograms are useful features, which

provide a compressed representation of the data. They

were used early in automated analysis systems for different

applications. (Elul, 1969; Glass, 1970). Martin-Rodriguez et

al. (1982) investigated spiking neurons using interval histo-

grams. Rieke et al. (1997) provided a mathematical frame-

work of entropy analysis for information transmission

between spiking neurons.

In this study we calculated the amplitude histograms and

entropies of all-night sleep recordings from 8 different sleep

laboratories. Polysomnographic signals were measured,

ampli®ed and digitized with an ADC. The data were stored

in a digital data format for biosignals using 16 bit integer

numbers (Kemp et al., 1992). Other technical details besides

the technical speci®cations of the recorders may be impor-

tant. The following analysis should enlighten the details and
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introduce quantitative measures for recordings of bio-

signals.

2. Methods and data

The data were recorded according to the protocol of the

SIESTA project (Dorffner 1998). Sixteen polysomno-

graphic channels (6 1 1 EEG, 2 EOG, 2 EMG, 1 ECG, 3

respiration and one oxygen saturation (SaO2) -channels)

from 16 all-night recordings (between 6:00 h 26 min 10.0

s and 8:00 h 56 min 00.0 s, see also Table 1) were investi-

gated. The recordings were chosen according to a rando-

mized list. Sleep recorders from the following providers

were used: Fa Jaeger (SleepLap 1000P), Nihon Kohden/

DeltaMed, Walter Graphtek (PL-EEG), Flaga (EMBLA)

and Siemens. Sampling rates of 1, 8, 16, 20, 25, 100, 200,

256 and 400 Hz were used for the various channels. The

sampling rates and ®lter settings were stored in the headers

of the data ®les (Kemp et al., 1992) for further evaluation.

The European data format for biosignals (EDF) (Kemp et

al., 1992) uses two byte (16 bit) signed integer numbers; the

scaling information is stored in the ®le header. This format

allows values within a range from 2215 � 232 768 to

1215 2 1 � 32 767 to be represented.

Each voltage value is mapped (coded) to one of these

digital values. The smallest voltage difference that gives a

different digitized value determines the amplitude resolu-

tion. The digitization error is also called the quanti®cation

noise.

The digitized data is used to investigate how many

samples of one data series (channel) have a certain value.

Performing this for every possible value from 2 32 768 to

1 32 767 gives a function H(i), which is called the histo-

gram of that data series.

Various parameters can be obtained from the histogram:

the total number of samples N (A1), the entropy of informa-

tion (A3), the mean value (A6), the variance s2 (A7), and

the corresponding Gaussian distribution (A8) based on the

mean and variance. The latter can be related to the prob-

ability (A2) of the occurrence of a certain value. In addition

the skewness (A9) and kurtosis (A10, A11) of the data can

be calculated. The details of the computation can be found

in the Appendix (A1±A11). Note that once the histogram is

available, the computational effort ± even for an all-night

recording ± is quite low. Calculations were done using

Matlab on an Intel Pentium processor with a Redhat

Linux operating system.

Most of the measures, e.g. mean, variance, probability

distribution etc, are well known and need no further expla-

nation, with a possible exception of the entropy measure.

Shannon and Weaver (1949) introduced the concept of the

`entropy of information' into communication theory

(coding, information transmission). The entropy value is a

measure for the variability, randomness, the average amount

of choices or the average amount of information. The larger

the variability, the higher is the entropy. For our purpose is

suf®cient to know, ®rstly, how the entropy is de®ned in

discrete systems (see Appendix A3). Secondly, the entropy

of a continuous Gaussian process is de®ned by the variance

(A4). One can also estimate the entropy of noise, for exam-

ple the quantization noise in an ADC or the ampli®er noise.

Thirdly, the entropy difference between a signal and noise is

determined by the SNR (A5) and vice versa. A larger value

of the entropy difference means a better SNR and a better

resolution of the signal. In the following the entropy of the

digitized signal based on the histogram (A3) will be used.

3. Results

In Fig. 1 the histograms of the EEG channel C3-A2 of

each recording are shown. The following ®ndings can be

observed:
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Table 1

The sampling rate, number of samples, maximum and minimum value, mean, standard deviation (SD), skewness, kurtosis and entropy of channel C3-A2 of 16

recordings are shown. The results were obtained from the histograms in Fig. 1. All values (except the entropy) have the unit 1

Record Sample rate (Hz) Samples Maximum Minimum Mean SD Skewness Kurtosis Entropy (bit)

B1 200 5778000 1008 21851 0 62.24 21.96E 1 05 1.94E 1 08 7.7

B04 200 5780400 3395 21921 20.9 70.3 3.16E 1 05 2.05E 1 09 7.9

C07 200 5718000 32767 232767 23.4 304.83 27.26E 1 08 7.77E 1 13 8.0

C17 200 5802000 32534 232469 1.1 118.18 3.34E 1 06 4.75E 1 12 8.2

H02 100 3001000 4080 21995 25.9 241.19 5.79E 1 06 5.04E 1 10 9.8

H09 100 2956000 4080 22048 23.4 407.85 22.56E 1 07 3.94E 1 11 9.8

M04 200 3216000 32763 232768 210.6 954.91 29.75E 1 09 7.72E 1 14 8.1

M09 200 5438000 32767 232768 22.3 1180.35 21.10E 1 09 1.20E 1 15 8.5

N01 256 6815744 2051 22107 21.8 556.26 5.18E 1 07 3.43E 1 11 10.8

N04 256 5931520 2030 22128 11.8 379.26 24.49E 1 06 1.33E 1 11 10.4

P01 256 6772736 1610 21610 25.8 100.09 21.13E 1 05 1.20E 1 09 8.5

P02 256 6913280 1562 21552 25.6 152.93 3.73E 1 05 1.46E 1 10 8.7

S02 256 7432448 1596 21643 24 198.41 4.82E 1 06 2.26E 1 10 9.2

S07 256 7397376 1619 21642 25.8 159.59 3.00E 1 05 1.51E 1 10 8.9

UH3 200 5762000 4750 2742 2042 241.61 23.10E 1 06 4.26E 1 10 9.5

U06 200 5762000 4600 2676 2060.7 212.69 21.36E 1 06 2.90E 1 10 9.6



1. The histogram of B1 is not smooth. Certain values have

much lower probability than their neighboring values.

The pattern is also quite periodic. One explanation is

that the integer values obtained by the analog-digital-

converter (ADC) were scaled with some non-integer

values. Effects of rounding effects yield this kind of

histogram.

2. (a) In recordings H02, H09, N01 and N04 large upper and

lower `sidelobes' in the histograms can be seen. These

`sidelobes' are clipping peaks and indicate the saturation

of the ampli®er and/or the ADC. The sample value does

not represent the signal; an over¯ow took place. These

peaks can be found in almost all histograms. They repre-

sent the saturation effect and are not unexpected. More

surprising is that values in the EDF-®le-header (indicated

with marker £) rarely correspond to these saturation

values. (b) In some recordings (e.g. P02, S02, S07 and

UH3) the saturation values were diffuse rather than

sharp. This indicates that the digitized signal was ®ltered

and/or re-sampled to different sampling rate without

considering the over¯ow effects. Alternatively, the

ampli®er with drifting saturation thresholds caused the

clipping.

3. Recordings P01, P02, S02 and S07 display a singular

peak with a missing neighboring value close to the

sample-value zero. It is obvious that the ADC has a

`strange' behavior with one value in the input range

apparently missing. The corresponding value is assigned

to the neighboring value.

4. A similar phenomenon with some histogram peak can be

found in H09, N01 and is exceptionally large in UH3. In

contrast to previous cases, no neighboring values are

missing. This phenomenon can be caused by a very

busy computer, in which the complete recording system

does not ful®ll the real-time conditions. In the investi-

gated cases, the ADC was off for some time; e.g. the

channel was switched to ground. During that time no

data was recorded and the values were set to zero. A

detector might be useful to indicate these periods. The

remaining data can be used for further analysis.
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Fig. 1. Histograms of EEG channel C3±A2 from 16 all-night recordings. The units at the horizontal axes are digits and can range from 232 768 to 32 767. The

horizontal line with the vertical ticks displays the mean ^ the 1, 3 and 5 times of the standard deviation. The markers M and N indicate the real maxima and

minima found in the recordings. The markers £ indicate the digital minima and maxima as stored in the header information; if invisible the values are outside

the scope. The light parabolic lines display the Gaussian distribution with the corresponding mean and variance.



5. It can be seen that the distributions of the EEG ampli-

tudes deviate from a normal distribution. Partly, artifacts

can explain it. It is important to remember that the y axis

is scaled logarithmically; so the deviation concerns only

relatively few samples. Despite that fact, the non-linear

behavior can be clearly observed.

6. The value range on the x-axis illustrates whether a 16 bit

(a better quantization with an e.g. 22 bit-ADC cannot be

represented by the EDF data format) or a 12 bit ADC

converter was used. Recordings C07, C17, M04 and M09

have a value range of ^32 767 (16 bit), all others have a

value range of about ^2048 (12 bit). The standard devia-

tion of the 16 bit data (C07, C17, M04 and M07) is quite

small compared to the total value range. Therefore, it can

be recommended to increase the ampli®cation gain in

these cases. Over¯ow effects would not be greatly

increased, but the signal-to-noise ratio ± between EEG

power and quantization noise ± would be improved.

7. Recordings H02 and H09 show a histogram peak at 4096.

This is caused by a bug in the ADC that appears in the

last few seconds before terminating the recording.

Between 0 and 1000 samples have this value which is

less than 10 s.

Measures obtained from the histograms displayed in Fig.

1 are summarized in Table 1. Comparing the entropy with

the histogram, it can be said that histograms like those in

N01 and N04 produce large entropy values (10.4±10.8 bits),

whereas B1, B04 and C07 result in low entropy (7.7±8.0

bits).

Fig. 2 shows that the entropy of the EEG, EOG and ECG

channels is in the range of 7.7±11 bits (channel 1 in B1 is a

non-typical outlier). Hence, a 16 bit data format, such as

EDF, provides a dynamic range from 32 (25) to 315 (28.3)

times of the standard deviation. The typical entropy values

of EMG, respiration (air¯ow, chest, abdomen) and SaO2 -

channels range from 5 (2) to 10, 5 to 14, and 2 to 5 bits,

respectively.

4. Discussion

The noise of an EEG recorder consists of the quantization

noise of the ADC and the ampli®er noise. For an entropy

analysis of the ampli®er, the ampli®er noise has to be

known. To provide a high SNR, both types of noise must

be low. In this study only results of the histogram-based

entropy were analyzed. The entropy analysis of the ampli-

®er was outlined theoretically.

The phenomena (1) and (3) may be considered unimpor-

tant, because the error is only 1 digit. However, in terms of

signal-to-noise ratio it implies that the quantization noise is

larger (sometimes twice as large), the dynamic range is
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Fig. 2. Entropy values from 6 1 1 EEG, 2 EOG, 2 EMG, 1 ECG, 3 respiratory and 1 oxygen saturation channels of 16 polysomnographic all-night recordings.



reduced (only half) and the entropy is reduced (by 1 bit). To

avoid effect (1) it is recommended not to multiply the digi-

tized value but rather, to consider the scaling factors in the

header information. The origin of effect (3) might be caused

by the dif®culties with the two's-complement representation

of negative integer values.

Looking at phenomenon (2a) and (2b), it is obvious that

an over¯ow check is important. Any ®ltering, resampling

(changing the sampling rate), or re-referencing (linear

combination of EEG channels) which does not consider

the saturation effect, yields incorrect results. An over¯ow

check would also detect phenomenon (7). The phenomenon

(4) requires a detector if the input is off or at ground. If such

events are encoded with a number larger than or equal to the

saturation value, this case could also be handled automati-

cally by a simple over¯ow detector.

One possibility is, also, to store these events in a separate

event-marking channel. A method for implementing events

in the EDF format has been presented by Van de Velde et al.

(1998).

In real-world applications an in®nite dynamic range is

never available. A tradeoff must always be made between

the amplitude range and amplitude resolution. In other

words, an over¯ow can rarely be avoided. On the other

hand, the occurrence of an over¯ow is a technical artifact.

The sample value does not represent the true value of the

biosignal; a non-linear effect is introduced.

The crucial point in over¯ow detection is ®nding the

correct upper and lower threshold. Three possibilities of

an automatic detection were considered. First, using the

header information, but the minimum and maximum in

the header is rarely associated with the saturation values.

Second, the real minimum and maximum found in the

recording are not useful in case of a diffuse over¯ow.

Third, the threshold values could be set to the mean ^ a

multiple of the standard deviation, but in this case no consis-

tent factor could be derived. A fourth possibility is choosing

the threshold visually, but this has the disadvantage that it

can not be automated. None of these methods is completely

suitable for a general-purpose method for automated over-

¯ow detection. Therefore, it is highly recommended that the

providers of recording equipment supply a reliable over¯ow

threshold in the header information. Furthermore, it should

be encoded if the input is off or at ground (e.g. as described

by phenomenon 7). These simple improvements would

provide an important tool for the quality control of the data.

Besides the saturation effect another non-linearity in the

recordings was observed (phenomenon 5). The histograms

deviate from a Gaussian distribution. It seems to be a non-

linear superposition of one or more Gaussian processes.

Several reasons might cause this effect. First, it might be

caused by technical artifact e.g. the slow decay after an

electrode over¯ow or a non-linearity of the ADC; second,

the EEG might actually be really non-linear (Elul, 1969);

thirdly and most likely the time-varying behavior of the

sleep EEG causes this non-normal distributed histogram.

With the method of histogram analysis, we can, ®rstly,

calculate the mean, variance, skewness, and kurtosis with

low computational effort. The skewness and the kurtosis

describe the deviation from Gaussianity of the data. That

might be of some theoretical importance for the understand-

ing of the underlying brain processes. Secondly, quality

control by means of over¯ow detection can not currently

be automated because the threshold (i.e. saturation) values

are not available. The histograms can be used to identify the

saturation values of the ampli®er. Thirdly and ®nally, the

histograms are the basis for calculating the entropy measure.

The question is how much information about the brain

processes we can gain from observing the EEG. Improving

the technology (e.g. 16 bit or even 22 bit instead of 12 bit)

may have important consequences for the EEG recording

technique. But it is also shown that it is not suf®cient to use a

16 bit ADC instead of a 12 bit ADC; one must also use the

full dynamic range. Otherwise, the same low entropy

measures (circa 8 bit) are obtained. In this way the histo-

gram and entropy analysis is one important tool for the

quality control of EEG and other biomedical recordings.
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Appendix A. Entropy

Given is a time series Y consisting of N elements

�y�1�¼y�N��. N is the number of available samples, e.g.

for an 8 h recording with 200 Hz sampling rate we obtain

N � 8 p 60 p 60 p 200 � 5 760 000 samples. Each element

y(k) is digitized, i.e. it is assigned to one value out of 216 �
65 536 possible ones. The value range goes from 2 32 768

to 1 32 787. A histogram HY is a function of i; for each

possible value i is HY(i) the number of samples of Y, which

have the value i. The index Y indicates that HY is the histo-

gram of the signal Y. The total number of samples is

NY �
X

i

�HY �i�� �A1�

For large N the histogram corresponds to the probability

density function of the time series Y. In other words, the
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probability p that a certain value of the digitized signal Y has

the value i is

pY �i� � HY �i�=NY �A2�
It is known from coding theory that the entropy of informa-

tion in binary digits (bits) is

IY � 2
X

i

�PY �i��log2�PY �i��� �A3�

Assuming, that all of the 16 bits are signi®cant, the entropy

provides the amount of information inherent in each sample

of the signal Y. The largest entropy in a discrete system is if

the histogram is ¯at. In case of a 16 bit system, 216 � 65 536

values are possible; if the probability p(i) is 1=65 536 for

each value i, the entropy is 16 bit. The entropy is smaller

if p(i) is not equally distributed.

The entropy of a continuous Gaussian process Y is deter-

mined by the variance s2
Y (e denotes Euler's constant

2.718¼)

IY � 0:5log2�2pes2
Y � �A4�

The entropy difference DI between signal Y and noise N is

determined by the SNR

DI � 0:5log2�s2
Y 1 s2

N�=s2
N � 0:5log2�1 1 SNR� �A5�

For more details see also Shannon and Weaver (1949) and

Rieke et al. (1997).

The mean (m) and variance (s 2) of signal Y can be

obtained from the histogram

mY � E{Y�t�} �
X

i

�i HY �i��=NY �A6�

s2
Y � E Y t� �2 mY

ÿ �2n o
�
X

i

i 2 mY

ÿ �2
HY i� �

� �
=NY �A7�

The corresponding Gaussian distribution (gd) is

gd x� � � N 2ps2
� �21=2

exp 2 x 2 m
ÿ �2

= 2s2
� �� �

�A8�

whereby x corresponds to i and ranges from 21 , x , 1.

Furthermore, the skewness g3 and kurtosis g4 of the data

series Y are de®ned (Nikias and Petropulu, 1993)

g3
Y �

X
i

i 2 mY

ÿ �3
HY i� �

� �
=NY �A9�

g4
Y �

X
i

i 2 mY

ÿ �4
HY i� �

� �
=NY 2 3 s2

� �2 �A10�
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