We define five increasingly comprehensive classes of infinite-state systems, called STS1–STS5, whose state spaces have finitary structure. For four of these classes, we provide examples from hybrid systems.

STS1 These are the systems with finite bisimilarity quotients. They can be analyzed symbolically by iteratively applying predecessor and boolean operations on state sets, starting from a finite number of observable state sets. Any such iteration is guaranteed to terminate in that only a finite number of state sets can be generated. This enables model checking of the μ-calculus.

STS2 These are the systems with finite similarity quotients. They can be analyzed symbolically by iterating the predecessor and positive boolean operations. This enables model checking of the existential and universal fragments of the μ-calculus.

STS3 These are the systems with finite trace-equivalence quotients. They can be analyzed symbolically by iterating the predecessor operation and a restricted form of positive boolean operations (intersection is restricted to intersection with observables). This enables model checking of all ω-regular properties, including linear temporal logic.

STS4 These are the systems with finite distance-equivalence quotients (two states are equivalent if for every distance \(d\), the same observables can be reached in \(d\) transitions). The systems in this class can be analyzed symbolically by iterating the predecessor operation and terminating when no new state sets are generated. This enables model checking of the existential conjunction-free and universal disjunction-free fragments of the μ-calculus.

STS5 These are the systems with finite bounded-reachability quotients (two states are equivalent if for every distance \(d\), the same observables can be reached in \(d\) or fewer transitions). The systems in this class can be analyzed symbolically by iterating the predecessor operation and terminating when no new states are encountered (this is a weaker termination condition than above). This enables model checking of reachability properties.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs

General Terms: Formal Verification, Temporal Logics

Additional Key Words and Phrases: Model Checking, Symbolic Algorithms, State Equivalences, Hybrid Automata

1. INTRODUCTION

Algorithmic verification methods (“model checking”) were originally invented for the analysis of finite-state systems, whose state spaces can be explored exhaustively. Much recent interest has concerned the application of such methods to infinite-state systems. There are two important approaches. Methods of the first kind reduce an infinite-state system to an “equivalent” finite-state system — often a quotient system — and then explore the resulting finite quotient space. We call these methods reductionist. A well-known representative of the reductionist approach is the region-graph method for timed automata [Alur and Dill 1994]: every timed automaton is bisimilar to a finite graph of clock regions, each representing an equivalence class of infinitely many clock states; model checking a timed automaton can therefore be reduced to model checking its region graph. Methods of the second kind explore the infinite state space directly, by manipulating a data type called region, whose members represent possibly infinite sets of states. We call

these methods *symbolic*.¹ A typical representative of the symbolic approach is the clock-zone method for timed automata [Henzinger et al. 1994]: the symbolic model checking of timed automata manipulates clock zones, each representing a boolean combination of clock constraints, where a clock constraint bounds a clock value or the difference between two clock values (a single clock zone, therefore, may correspond to a union of many clock regions). While sometimes optimal in theoretical complexity, reductionist methods usually experience state explosion and are often outperformed in practice by symbolic methods. It is easy to see why: a symbolic method never distinguishes states that are considered equivalent by the reductionist approach, but when answering a specific verification question, a symbolic method performs an analysis of the given infinite state space that may be considerably less detailed than would be required for constructing the entire finite quotient system. In a sense, the symbolic method performs no more work than necessary for answering the specific question, whereas the reductionist method provides a worst-case upper bound on the amount of work to be performed.

Regions (state sets) in symbolic model checking might be implemented as predicates in some constraint language, for example, as constraints on the booleans, integers, or reals. A region algebra supports individual operations on regions. For model checking, we are particularly interested in boolean operations on regions (such as set intersection and set difference) as well as the predecessor operation Pre, which, given a target region, computes the region of all states with successors in the target region. The iteration of these operations may generate an infinite number of distinct regions. The main concern with symbolic methods, therefore, is termination. We refer to procedures that may or may not terminate as “semi-algorithms.” In this paper, we study restricted classes of infinite-state transition systems for which certain forms of iteration terminate after a finite number of region operations, and yet yield sufficient information for checking unbounded temporal properties of the system. In particular, we argue that the semi-algorithms for model checking various temporal logics can be seen as instances of generic closure semi-algorithms, which refine a partition of the state space by applying the Pre operator together with a possibly limited selection of boolean region operators. Hence, if a closure semi-algorithm terminates, so do the corresponding semi-algorithms for model checking. Second, we show that the closure semi-algorithms terminate exactly when certain equivalence relations on the infinite state space have finite index. Thus, to obtain symbolic model-checking procedures for infinite-state systems, it suffices that the corresponding equivalence relations have finite index. In other words, while the algorithms themselves are completely symbolic, their guarantees of termination are given by a reductionist argument (existence of an “equivalent” finite quotient). For example, while in theory there are infinitely many clock constraints for timed automata, the clock-zone method can be shown to compute only

¹Our usage of the term “symbolic” is considerably broader than the narrow usage common in some model-checking communities, where “symbolic” often means “based on binary-decision diagrams” (BDDs) [Burch et al. 1992]. Note that BDDs are but one data structure for representing state sets (in this case, finite boolean state sets). Similarly, our usage of the term “region” is more general than the clock regions of timed automata: while the latter is a set of clock states of a specific shape, we denote by “region” any representable set of states.
clock constraints that define blocks (unions) of the finitely many clock regions which represent bisimilarity classes of states. Reduction is not part of the algorithm, but part of its correctness proof.

We propose a classification of infinite-state systems into five increasingly general classes, depending on which equivalence relations have finite index. The first class of infinite-state systems are those with finite bisimilarity quotients. Timed automata fall into this class. On systems with finite bisimilarity quotients, we can symbolically model check all \(\mu \)-calculus formulas, including the formulas of the branching temporal logics \(\text{CTL} \) and \(\text{CTL}^* \) [Emerson 1990]. The second class of infinite-state systems are those with finite similarity quotients. On these, we can model check all existential and universal formulas of the \(\mu \)-calculus (and of branching temporal logics). A formula is existential (resp. universal) if it is in positive normal form (i.e., negations occur only in front of atomic propositions) and contains only existential (resp. universal) path quantifiers. Infinite-state systems of the third class have finite trace-equivalence quotients. On these, all \(\omega \)-regular properties, expressed by Büchi automata or linear temporal-logic formulas, can be model checked. The fourth class constitute systems with finite distance-equivalence quotients. Distance equivalence distinguishes two states \(u \) and \(v \) if there is an observable \(p \) and a number \(n \), such that from \(u \) a state satisfying \(p \) can be reached in \(n \) transitions, but from \(v \) no \(p \)-state can be reached in exactly \(n \) transitions. On systems with finite distance-equivalence quotients, we can model check the existential conjunction-free and universal disjunction-free formulas of the \(\mu \)-calculus. Finally, the fifth class contains systems with finite bounded-reachability quotients. Bounded-reach equivalence distinguishes two states \(u \) and \(v \) if there is an observable \(p \) and a number \(n \), such that from \(u \) a state satisfying \(p \) can be reached in \(n \) transitions, but from \(v \) no \(p \)-state can be reached in \(n \) or fewer transitions. These are the well-structured transition systems of [Finkel and Schnoebelen 1998], and they permit the model checking of reachability properties.

This classification provides a syntax-independent way for proving the termination of symbolic model-checking algorithms for infinite-state systems. Examples can be found from subclasses of hybrid automata: while timed automata fall into the first class (finite bisimilarity [Alur and Dill 1994]), two-dimensional rectangular automata fall into the second class (finite similarity [Henzinger et al. 1995]), higher-dimensional rectangular automata fall into the third class (finite trace equivalence [Henzinger et al. 1998; Henzinger and Kopke 1996]), and networks of timed and rectangular automata fall into the fifth class (finite bounded reachability [Abdulla and Jonsson 1998]). While in each of these four specific cases, termination of the symbolic approach has been proved individually [Henzinger et al. 1994; Henzinger et al. 1995; Henzinger and Majumdar 2000; Abdulla and Jonsson 1998], in this paper we provide termination proofs for symbolic model-checking algorithms for the entire classes 1–5. It should be mentioned that we know of no natural representatives for the fourth class of infinite-state systems. However, the closure properties of classes 1–3 immediately give rise to a more general class, which, however, does not encompass all well-structured transition systems (class 5): bisimilarity classes are closed under \(\text{Pre} \), intersection, and difference; similarity classes, under \(\text{Pre} \) and intersection; trace-equivalence classes, under \(\text{Pre} \) and intersection with observ-
The tuple (Q, δ, R, τ, P) consists of a (possibly infinite) set Q of states, a (possibly nondeterministic) transition function $\delta: Q \rightarrow 2^Q$ which maps each state to a set of successor states, a (possibly infinite) set R of regions, an extension function $\tau^\gamma: R \rightarrow 2^Q$ which maps each region to a set of contained states, and a finite set $P \subseteq R$ of observables, such that the following six conditions are satisfied:

1. The set P of observables covers the state space Q; that is, $\bigcup \{\tau^\gamma | p \in P\} = Q$. Moreover, for each observable $p \in P$, there is a complementary observable $\overline{p} \in P$ such that $\tau^\gamma \overline{p} = Q \setminus \tau^\gamma p$.

2. For each region $\sigma \in R$, there is a region $\text{Pre}(\sigma) \in R$ such that
$$\tau^\gamma \text{Pre}(\sigma) = \{u \in Q | (\exists v \in \delta(u): v \in \sigma)\};$$
Furthermore, the function $\text{Pre}: R \rightarrow R$ is computable.

3. For each pair $\sigma, \tau \in R$ of regions, there is a region $\text{And}(\sigma, \tau) \in R$ such that $\tau^\gamma \text{And}(\sigma, \tau) = \tau^\gamma \sigma \cap \tau^\gamma \tau$; furthermore, the function $\text{And}: R \times R \rightarrow R$ is computable.

4. For each pair $\sigma, \tau \in R$ of regions, there is a region $\text{Diff}(\sigma, \tau) \in R$ such that $\tau^\gamma \text{Diff}(\sigma, \tau) = \tau^\gamma \sigma \setminus \tau^\gamma \tau$; furthermore, the function $\text{Diff}: R \times R \rightarrow R$ is computable.

5. All emptiness questions about regions can be decided; that is, there is a computable function $\text{Empty}: R \rightarrow \mathbb{B}$ such that $\text{Empty}(\sigma)$ iff $\tau^\gamma \sigma = \emptyset$.

6. All membership questions about regions can be decided; that is, there is a computable function $\text{Member}: Q \times R \rightarrow \mathbb{B}$ such that $\text{Member}(u, \sigma)$ iff $u \in \tau^\gamma \sigma$.

The tuple $\mathcal{R}_S = (P, \text{Pre}, \text{And}, \text{Diff}, \text{Empty})$ is called the region algebra of S. \hfill \Box

Remark: Abstract interpretation. In a symbolic transition system, the semantics is lifted from individual states to sets of states. Hence the region algebra of a symbolic transition system can be viewed as the collecting semantics (in the sense of abstract interpretation [Cousot and Cousot 1977]) of the concrete semantics of the transition system. \hfill \Box

Remark: Duality. We take an existential view of symbolic transition systems. The dual, universal view requires (1) $\bigcap \{\tau^\gamma p | p \in P\} = \emptyset$, (2–4) closure of R under computable functions $\tau^\gamma \text{Pre}$, $\tau^\gamma \text{And}$, and $\tau^\gamma \text{Diff}$ such that
$$\tau^\gamma \text{Pre}(\sigma) = \{u \in Q | (\forall v \in \delta(u): v \in \sigma)\},$$
$$\tau^\gamma \text{And}(\sigma, \tau) = \tau^\gamma \sigma \cup \tau^\gamma \tau,$$
and $\tau^\gamma \text{Diff}(\sigma, \tau) = Q \setminus \tau^\gamma \text{Diff}(\tau, \sigma)$, and (5) a computable function Empty for deciding all universality questions about regions (that is, $\text{Empty}(\sigma)$ iff $\tau^\gamma \sigma = Q$). The tuple $\overline{\mathcal{R}_S} = (P, \overline{\text{Pre}}, \overline{\text{And}}, \overline{\text{Diff}}, \overline{\text{Empty}})$ is the dual
2.1 Example: Polyhedral Hybrid Automata

A polyhedral hybrid automaton H of dimension m, for a positive integer m, consists of the following components [Alur et al. 1996]:

Continuous variables. A set $X = \{x_1, \ldots, x_m\}$ of real-valued variables. We write \dot{X} for the set $\{\dot{x}_1, \ldots, \dot{x}_m\}$ of dotted variables (which represent first derivatives during continuous change), and we write X' for the set $\{x'_1, \ldots, x'_m\}$ of primed variables (which represent values at the conclusion of discrete change). A linear constraint over X is an expression of the form $k_0 \sim k_1 x_1 + \cdots + k_m x_m$, where $\sim \in \{<, \leq, =, \geq, >\}$ and k_0, \ldots, k_m are integer constants. A linear predicate over X is a boolean combination of linear constraints over X. Let $\mathcal{L}^m(X)$ be the set of linear predicates over X. Given a predicate ϕ over X, and a valuation $x \in \mathbb{R}^m$ for the variables in X, we write $\phi[x := x]$ for the truth value that results from evaluating ϕ at x.

Discrete locations. A finite, directed multigraph (V, E). The vertices in V are called locations; the edges in E are called jumps.

Invariant and flow conditions. Two vertex-labeling functions inv and $flow$. For each location $v \in V$, the invariant condition $inv(v)$ is a conjunction of linear constraints over X, and the flow condition $flow(v)$ is a conjunction of linear constraints over \dot{X}. While the automaton control resides in location v, the variables may evolve according to $flow(v)$ as long as $inv(v)$ remains true.

Update conditions. An edge-labeling function $update$. For each jump $e \in E$, the update condition $update(e)$ is a conjunction of linear constraints over $X \cup X'$. The predicate $update(e)$ relates the possible values of the variables at the beginning of the jump (represented by X) and at the conclusion of the jump (represented by X').

The polyhedral hybrid automaton H is a rectangular automaton [Henzinger et al. 1998] if

- all linear constraints that occur in invariant conditions of H have the form $x \sim k$, for $x \in X$ and $k \in \mathbb{Z}$;
- all linear constraints that occur in flow conditions of H have the form $\dot{x} \sim k$, for $x \in X$ and $k \in \mathbb{Z}$;
- all linear constraints that occur in jump conditions of H have the form $x \sim k$ or $x' = x$ or $x' \sim k$, for $x \in X$ and $k \in \mathbb{Z}$;
- if e is a jump from location v to location v', and $update(e)$ contains the conjunct $x' = x$, then both $flow(v)$ and $flow(v')$ contain the same constraints on \dot{x}.

The rectangular automaton H is a singular automaton if each flow condition of H has the form $\dot{x}_1 = k_1 \land \ldots \land \dot{x}_m = k_m$. The singular automaton H is a timed automaton [Alur and Dill 1994] if each flow condition of H has the form $\dot{x}_1 = 1 \land \ldots \land \dot{x}_m = 1$.

The polyhedral hybrid automaton H defines the symbolic transition system $S_H = (Q_H, \delta_H, R_H, ^\tau, \gamma_H, P_H)$ with the following components:

$Q_H = V \times \mathbb{R}^m$; that is, every state (v, x) consists of a location v (the discrete component of the state) and values x for the variables in X (the continuous component).

$\delta_H(v, x') \in \delta_H(v, x)$ if either (1) there is a jump $e \in E$ from v to v' such that $update(e)[X, X' := x, x']$ is true, or (2) $v' = v$ and there is a real $\Delta \geq 0$ and a differentiable function $f : [0, \Delta] \rightarrow \mathbb{R}^m$ with first derivative \dot{f} such that $f(0) = x$ and $f(\Delta) = x'$, and for all reals $\varepsilon \in (0, \Delta)$, both $inv(v)[X := f(\varepsilon)]$ and $flow(v)[X := \dot{f}(\varepsilon)]$ are true. In case (2), the function f is called a flow function.

$R_H = V \times L^m(X)$; that is, every region (v, ϕ) consists of a location v (the discrete component of the region) and a linear predicate ϕ over X (the continuous component).

$\overline{\overline{\gamma}}(v, \phi)(H) = \{(v, x) \ | \ x \in \mathbb{R}^m$ and $\phi[X := x]$ is true$\}$; that is, the extension function maps the continuous component ϕ of a region to the valuations for the variables in X which satisfy the predicate ϕ. Consequently, the extension of every region consists of a location and a polyhedral subset of \mathbb{R}^m.

$P_H = V \times \{true\}$; that is, only the discrete component of a state is observable.

It requires some work to see that S_H is indeed a symbolic transition system. First, notice that the linear predicates over X are closed under all boolean operations, and that satisfiability is decidable for the linear predicates. Second, the Pre operator is computable on R_H, because all flow functions can be replaced by straight lines [Alur et al. 1996].

2.2 Background Definitions

The symbolic transition systems are a special case of transition systems. A transition system $S = (Q, \delta, \cdot, \cdot, \gamma, \cdot, P)$ has the same components as a symbolic transition system, except that no regions are specified and the extension function is defined only for the observables (that is, $\overline{\overline{\cdot}} : P \rightarrow 2^Q$).

State equivalences. A state equivalence \cong is a family of relations which contains for each transition system S an equivalence relation \cong^S on the states of S. The \cong equivalence problem for a class \mathcal{C} of transition systems asks, given two states u and v of a transition system S from the class \mathcal{C}, whether $u \cong^S v$. The state equivalence \cong_a is as coarse as the state equivalence \cong_b if $u \cong^S_b v$ implies $u \cong^S_a v$ for all transition systems S. The equivalence \cong_a is coarser than \cong_b, if \cong_a is as coarse as \cong_b, but \cong_b is not as coarse as \cong_a. Given a transition system $S = (Q, \delta, \cdot, \gamma, \cdot, P)$ and a state equivalence \cong, the quotient system is the transition system $S/\cong = (Q/\cong, \delta/\cong, \cdot, \gamma/\cong, P)$ with the following components:

- the states in S/\cong are the equivalence classes of \cong^S;
- $\tau \in \delta/\cong(\sigma)$ if there is a state $u \in \sigma$ and a state $v \in \tau$ such that $v \in \delta(u)$;
- $\sigma \in \gamma/\cong_p$ if there is a state $u \in \sigma$ such that $u \in \gamma_p$.

The quotient construction is of particular interest to us when it transforms an infinite-state system S into a finite-state system S/\cong.

State logics. A state logic L is a logic whose formulas are interpreted over the states of transition systems; that is, for every L-formula φ and every transition
system S, there is a set $[[\varphi]]_S$ of states of S which satisfy φ. The L model-checking problem for a class C of transition systems asks, given an L-formula φ and a state u of a transition system S from the class C, whether $u \in [[\varphi]]_S$. Two formulas φ and ψ of state logics are equivalent if $[[\varphi]]_S = [[\psi]]_S$ for all transition systems S. The state logic L_a is as expressive as the state logic L_b if for every L_a-formula φ, there is an L_b-formula ψ which is equivalent to φ. The logics L_a and L_b are equally expressive if L_a is as expressive as L_b, and L_b is as expressive as L_a. The logic L_a is more expressive than L_b if L_a is as expressive as L_b, but L_b is not as expressive as L_a.

Every state logic L induces a state equivalence, denoted \equiv_L: for all states u and v of a transition system S, define $u \equiv^S_L v$ if for all L-formulas φ, we have $u \in [[\varphi]]_S$ iff $v \in [[\varphi]]_S$. We say that the state logic L preserves the state equivalence \equiv if \equiv_L is as coarse as \equiv, and L defines \equiv over a class C of transition systems if \equiv^C_L coincides with \equiv^C for all transition systems S in C. The state logic L admits abstraction if for every L-formula φ and every transition system S, we have $[[\varphi]]_S = \bigcup\{\sigma \mid \sigma \in [[\varphi]]_{S/\equiv_L}\}$; that is, a state u of S satisfies an L-formula φ iff the \equiv_L equivalence class of u satisfies φ in the quotient system. Consequently, if L admits abstraction, then every L model-checking question on a transition system S can be reduced to an L model-checking question on the induced quotient system S/\equiv_L. Below, we shall repeatedly prove the L model-checking problem for a class C of transition systems to be decidable by observing that for every transition system S from C, the quotient system S/\equiv_L has finitely many states and can be constructed effectively.

Symbolic semi-algorithms. A symbolic semi-algorithm takes as input the region algebra $R_S = (P, \text{Pre}, \text{And}, \text{Diff}, \text{Empty})$ of a symbolic transition system $S = (Q, \delta, R, \preceq, P)$, and generates regions in R using the operations P, Pre, And, Diff, and Empty. Depending on the input S, a symbolic semi-algorithm on S may or may not terminate. The dual of a symbolic semi-algorithm is obtained by replacing the operators Pre, And, Diff, and Empty with their duals Pre, And, Diff, and Empty, respectively.

2.3 Preview

In sections 3–7 of this paper, we shall define five increasingly comprehensive classes STS_1–STS_5 of symbolic transition systems. In each case $i \in \{1, \ldots, 5\}$, we will proceed in four steps:

1 Definition: Finite characterization. We give a state equivalence \equiv^i and define the class $\text{STS}(i)$ to contain precisely the symbolic transition systems S for which the equivalence relation \equiv^S has finite index (i.e., there are finitely many \equiv^S equivalence classes). Each state equivalence \equiv^i is coarser than its predecessor \equiv^{i-1}, which implies that $\text{STS}(i-1) \subseteq \text{STS}(i)$ for $i \in \{2, \ldots, 5\}$.

2 Algorithmics: Symbolic state-space exploration. We give a symbolic semi-algorithm A_i that terminates precisely on the symbolic transition systems in the class $\text{STS}(i)$. This provides an operational characterization of the class $\text{STS}(i)$ which is equivalent to the denotational definition of $\text{STS}(i)$. The symbolic semi-algorithm A_i is called a closure semi-algorithm, because it closes the finite set P of observables under certain operations. The termination of the closure semi-algorithm A_i is proved by observing that, if given the region algebra of a symbolic
transition system S as input, then the extensions of all regions generated by A_i are \equiv^S_i blocks (i.e., unions of \equiv^S_i equivalence classes). If S is in the class $STS(i)$, then there are only finitely many \equiv^S_i blocks, and the closure semi-algorithm A_i terminates upon having constructed a representation of the quotient system S/\equiv_i. The closure semi-algorithm A_i can therefore be used to decide the \equiv_i equivalence problem for the class $STS(i)$ of symbolic transition systems.

3 Verification: Decidable properties. We give a state logic L_i which admits abstraction and defines the state equivalence \equiv_i over the class $STS(i)$ of symbolic transition systems. Since the finite \equiv_i quotient can be constructed effectively using the closure semi-algorithm A_i, it follows that the L_i model-checking problem for the class $STS(i)$ is decidable. However, model-checking algorithms that rely on the explicit construction of quotient systems are usually impractical. Hence, we also present a symbolic semi-algorithm B_i that, given the region algebra of a symbolic transition system S from $STS(i)$, and an L_i-formula φ, computes the region $\llbracket \varphi \rrbracket_S$. The symbolic semi-algorithm B_i is called a model-checking semi-algorithm, because it directly solves all L_i model-checking questions for the class $STS(i)$. The termination of the model-checking semi-algorithm B_i is proved by observing that B_i never generates any regions that are not generated by the closure semi-algorithm A_i. However, for a given system S and formula φ, the model-checking semi-algorithm B_i often generates fewer regions than the closure semi-algorithm A_i and is thus preferable in practice.

4 Example: Hybrid systems. The interesting members of the class $STS(i)$ are those symbolic transition systems which have infinitely many states. In four out of the five cases $STS1$–$STS5$, following [Henzinger 1996], we provide certain kinds of polyhedral hybrid automata as examples. In this way, we obtain uniform decidability proofs and uniform symbolic model-checking algorithms for several classes of hybrid automata.

3. CLASS-1 SYMBOLIC TRANSITION SYSTEMS

The class-1 systems are characterized by finite bisimilarity quotients. The region algebra of a class-1 system has a finite subalgebra that contains the observables and is closed under Pre, And, and $Diff$ operations. This enables the model checking of all μ-calculus properties. Infinite-state examples of class-1 systems are provided by the singular hybrid automata, and by the bakery protocol for mutual exclusion.

3.1 Finite Characterization: Bisimilarity

Definition: Bisimilarity. Let $S = (Q, \delta, \cdot, \cdot, \cdot, P)$ be a transition system. A binary relation \preceq on the state space Q is a simulation on S [Milner 1971] if $u \preceq v$ implies the following two conditions:

1. For each observable $p \in P$, we have $u \in \lceil p \rceil$ iff $v \in \lceil p \rceil$.
2. For each state $u' \in \delta(u)$, there is a state $v' \in \delta(v)$ such that $u' \preceq v'$.

Two states $u, v \in Q$ are bisimilar, denoted $u \equiv^S_1 v$, if there is a symmetric simulation \preceq on S such that $u \preceq v$. The state equivalence \equiv^S_1 is called bisimilarity. □

Definition: Class $STS1$. A symbolic transition system S belongs to the class $STS1$ if the bisimilarity relation \equiv^S_1 has finite index. □
Symbolic semi-algorithm Closure1
Input: a region algebra \(\mathcal{R} = (P, Pre, And, Diff, Empty) \).

\[
T_0 := P;
\]
for \(i = 0, 1, 2, \ldots \) do

\[
T_{i+1} := T_i \cup \{ Pre(\sigma) \mid \sigma \in T_i \} \\
\cup \{ And(\sigma, \tau) \mid \sigma, \tau \in T_i \} \\
\cup \{ Diff(\sigma, \tau) \mid \sigma, \tau \in T_i \}
\]
until \(\forall T_{i+1} \subseteq \forall T_i \),

The termination test \(\forall T_{i+1} \subseteq \forall T_i \), which is shorthand for \(\forall \{ \forall \sigma \mid \sigma \in T_{i+1} \} \subseteq \forall \{ \forall \sigma \mid \sigma \in T_i \} \), is decided as follows: for each region \(\sigma \in T_{i+1} \) check that there is a region \(\tau \in T_i \) such that both \(Empty(Diff(\sigma, \tau)) \) and \(Empty(Diff(\tau, \sigma)) \).

Fig. 1. Partition refinement.

3.2 Symbolic State-Space Exploration: Partition Refinement

The bisimilarity relation of a finite-state system can be computed by partition refinement [Kanellakis and Smolka 1990]. The symbolic semi-algorithm Closure1 of Figure 1 applies this method to infinite-state systems [Bouajjani et al. 1990; Henzinger 1995]. The semi-algorithm Closure1 inductively constructs regions, starting from the observables, by applying the three operations \(Pre, And, \) and \(Diff \). It terminates when no new regions are generated. Suppose that the input given to Closure1 is the region algebra of a symbolic transition system \(\mathcal{S} = (Q, R, \delta, \gamma, P) \). Then each \(T_i \), for \(i \geq 0 \), is a finite set of regions; that is, \(T_i \subseteq R \). By induction it is easy to check that for all \(i \geq 0 \), the extension of every region in \(T_i \) is a \(S^1 \) block. Thus, if \(S^1 \) has finite index, then Closure1 terminates. Conversely, suppose that Closure1 terminates with \(\forall T_{i+1} \subseteq \forall T_i \). From the definition of bisimilarity it follows that if for each region \(\sigma \in T_{i+1} \), we have \(u \equiv \sigma \) iff \(v \equiv \sigma \), then \(u \equiv S^1 v \). This implies that \(S^1 \) has finite index.

Theorem 1A For all symbolic transition systems \(\mathcal{S} \), the symbolic semi-algorithm Closure1 terminates on the region algebra \(\mathcal{R} \) iff \(\mathcal{S} \) belongs to the class \(STS^1 \).

Corollary 1A The \(S^1 \) (bisimilarity) equivalence problem is decidable for the class \(STS^1 \) of symbolic transition systems.

3.3 Decidable Properties: Branching Time

Definition: \(\mu \)-calculus. The formulas of the \(\mu \)-calculus [Kozen 1983] are generated by the grammar

\[
\varphi ::= p \mid \overline{p} \mid x \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists x \varphi \mid \forall x \varphi \mid (\mu x. \varphi) \mid (\nu x. \varphi),
\]
for constants \(p \) from some set \(\Pi \), and variables \(x \) from some set \(X \). The \(\exists \) constructor is a “next-state” modality; the \(\mu \) and \(\nu \) constructors are least and greatest fixpoint quantifiers. Let \(\mathcal{S} = (Q, \delta, \gamma, R, P) \) be a transition system whose observables include all constants; that is, \(\Pi \subseteq P \). Let \(\mathcal{E} : X \rightarrow 2^Q \) be a mapping from the variables to sets of states. We write \(\mathcal{E}[x \mapsto \beta] \) for the mapping that agrees with

\(^2\)We define all formulas to be in positive normal form, where only constants are negated.
\(\mathcal{E} \) on all variables, except that \(x \in X \) is mapped to \(\rho \subseteq Q \). Given \(S \) and \(\mathcal{E} \), every formula \(\varphi \) of the \(\mu \)-calculus defines a set \([\varphi]_{S,\mathcal{E}} \subseteq Q \) of states:

\[
\begin{align*}
[p]_{S,\mathcal{E}} &= \{p\}; \\
[\neg p]_{S,\mathcal{E}} &= Q \setminus \{p\}; \\
[x]_{S,\mathcal{E}} &= \mathcal{E}(x); \\
[\varphi_1(x) \land \varphi_2]_{S,\mathcal{E}} &= [\varphi_1]_{S,\mathcal{E}} \cap [\varphi_2]_{S,\mathcal{E}}; \\
[\{x\} \cup \varphi]_{S,\mathcal{E}} &= \{u \in Q \mid \exists v \in \delta(u): v \in [\varphi]_{S,\mathcal{E}}\}; \\
[\{x\} \setminus \varphi]_{S,\mathcal{E}} &= \{v \in Q \mid v \notin [\varphi]_{S,\mathcal{E}}\}; \\
[\exists x. \varphi]_{S,\mathcal{E}} &= \{\rho \subseteq Q \mid \exists \rho = [\varphi]_{S,\mathcal{E}[x \mapsto \rho]}\}.
\end{align*}
\]

A variable \(x \) is called free in a formula \(\varphi \) if there is an occurrence of \(x \) in \(\varphi \) that is not in the scope of some \(\mu x \) or \(\nu x \). A \(\mu \)-calculus formula is closed if it has no free variables. If we restrict ourselves to the closed formulas of the \(\mu \)-calculus, then we obtain a state logic, denoted \(\mathcal{L}_1^\mu \): the state \(u \in Q \) satisfies the \(\mathcal{L}_1^\mu \)-formula \(\varphi \) if \(u \in [\varphi]_{S,\mathcal{E}} \) for any variable mapping \(\mathcal{E} \); that is, \([\varphi]_S = [\varphi]_{S,\mathcal{E}} \) for any and all \(\mathcal{E} \).

Remark: Duality. For every \(\mathcal{L}_1^\mu \)-formula \(\varphi \), the dual \(\mathcal{L}_1^{\mu^*} \)-formula \(\overline{\varphi} \) is obtained by replacing the constructors \(p, \neg, \lor, \land, \exists, \forall, \mu, \) and \(\nu \) by \(\overline{p}, \lor, \land, \neg, \forall, \exists, \mu^*, \) \(\nu^* \), respectively. Then, \([\overline{\varphi}]_S = Q \setminus [\varphi]_S \). It follows that the answer of the model-checking question for \(u \in Q \) and an \(\mathcal{L}_1^\mu \)-formula \(\varphi \) is complementary to the answer of the model-checking question for \(u \) and the dual formula \(\overline{\varphi} \).

The following facts about the distinguishing and expressive powers of the \(\mu \)-calculus are well-known. First, \(\mathcal{L}_1^\mu \) preserves \(\equiv_1 \) (bisimilarity); indeed, the state equivalence defined by \(\mathcal{L}_1^\mu \) over the class \(\text{STS}1 \) of symbolic transition systems with finite bisimilarity quotients is exactly \(\equiv_1 \) [Browne et al. 1988]. Second, \(\mathcal{L}_1^\mu \) is very expressive (see [Janin and Walukiewicz 1996] for a characterization); in particular, \(\mathcal{L}_1^\mu \) is more expressive than the temporal logics \(\text{CTL} \) and \(\text{CTL}^* \) [Emerson 1990], which like \(\mathcal{L}_1^\mu \) define bisimilarity over the \(\text{STS}1 \) systems. Third, \(\mathcal{L}_1^\mu \) admits abstraction [Alur and Henzinger 1998] (the proof is by induction on \(\mathcal{L}_1^\mu \)-formulas). It follows that that the \(\mathcal{L}_1^\mu \) model-checking problem is decidable for the \(\text{STS}1 \) systems. However, we now present a model-checking algorithm for \(\mathcal{L}_1^\mu \) over \(\text{STS}1 \) systems which avoids the construction of bisimilarity quotients.

The definition of \(\mathcal{L}_1^\mu \) naturally suggests a model-checking algorithm for finite-state systems, where each fixpoint can be computed by successive approximation [Emerson and Lei 1986; Burch et al. 1992]. The symbolic semi-algorithm \text{ModelCheck} of Figure 2 applies this procedure to infinite-state systems. Suppose that the input given to \text{ModelCheck} is the region algebra of a symbolic transition system \(S = (Q, \delta, R, \tau, \mathcal{P}) \), a \(\mu \)-calculus formula \(\varphi \), and any mapping \(E : X \rightarrow 2^R \) from the variables to sets of regions. Then for each recursive call of \text{ModelCheck}, each \(T_i \), for \(i \geq 0 \), is a finite set of regions from \(R \), and each recursive call returns a finite set of regions from \(R \). It is easy to check that all of these regions are also generated by the semi-algorithm \text{Closure1} on input \(R_S \). Thus, if \text{Closure1} terminates, then so does \text{ModelCheck}. Furthermore, if it terminates, then \text{ModelCheck} returns a set \([\varphi]_E \subseteq R \) of regions such that \(\bigcup \{[\sigma]_E \mid \sigma \in [\varphi]_E \} = [\varphi]_{S,\mathcal{E}} \), where \(\mathcal{E}(x) = \bigcup \{[\tau]_E \mid \sigma \in E(x)\} \) for all \(x \in X \). In particular, if \(\varphi \) is closed, then a state \(u \in Q \) satisfies \(\varphi \) iff \(\text{Member}(u, \sigma) \) for some region \(\sigma \in [\varphi]_E \).

Theorem 1B For all symbolic transition systems \(S \) in \(\text{STS}1 \) and every \(\mathcal{L}_1^\mu \)-formula \(\varphi \),

Symbolic semi-algorithm \textbf{ModelCheck}
\textbf{Input}: a region algebra $\mathcal{R} = (P, \text{Pre}, \text{And}, \text{Diff}, \text{Empty})$, a formula $\varphi \in L^\mathcal{R}_1$, and a mapping E with domain X.
\textbf{Output}: $[\varphi]_E := $
\textbf{if} $\varphi = p$ then return $\{p\}$;
\textbf{if} $\varphi = \neg p$ then return $\{\text{Diff}(q, p) \mid q \in P\}$;
\textbf{if} $\varphi = x$ then return $E(x)$;
\textbf{if} $\varphi = (\varphi_1 \lor \varphi_2)$ then return $[\varphi_1]_E \cup [\varphi_2]_E$;
\textbf{if} $\varphi = (\varphi_1 \land \varphi_2)$ then return $\{ \text{And}(\sigma, \tau) \mid \sigma \in [\varphi_1]_E \text{ and } \tau \in [\varphi_2]_E \}$;
\textbf{if} $\varphi = \exists \circ \varphi'$ then return $\{ \text{Pre}(\sigma) \mid \sigma \in [\varphi']_E \}$;
\textbf{if} $\varphi = \forall \circ \varphi'$ then return $P \setminus \{ \text{Pre}(\sigma) \mid \sigma \in (P \setminus [\varphi']_E) \}$;
\textbf{if} $\varphi = (\mu x \cdot \varphi')$ then return $T_0 := \emptyset$;
\textbf{for} $i = 0, 1, 2, \ldots$ \textbf{do}
$T_{i+1} := [\varphi']_E_{[\sigma \leftarrow T_i]}_{[\sigma \leftarrow T_i]}$
\textbf{until} $\bigcup \{ [\sigma]_{\varphi} \mid \sigma \in T_{i+1} \} \subseteq \bigcup \{ [\sigma]_{\varphi} \mid \sigma \in T_i \}$;
return T_i;
\textbf{if} $\varphi = (\nu x \cdot \varphi')$ then return $T_0 := P$;
\textbf{for} $i = 0, 1, 2, \ldots$ \textbf{do}
$T_{i+1} := [\varphi']_E_{[\sigma \leftarrow T_i]}_{[\sigma \leftarrow T_i]}$
\textbf{until} $\bigcup \{ [\sigma]_{\varphi} \mid \sigma \in T_{i+1} \} \supseteq \bigcup \{ [\sigma]_{\varphi} \mid \sigma \in T_i \}$;
return T_i.

The \textit{pairwise-difference} operation $T \setminus \{T' \}$ between two finite sets T and T' of regions is computed inductively as follows:
$T \setminus \emptyset = T$;
$T \setminus \{ \sigma \} = \{ \text{Diff}(\sigma, \tau) \mid \tau \in T \} \setminus \{T' \}$.

The termination test $\bigcup \{ [\sigma]_{\varphi} \mid \sigma \in T \} \subseteq \bigcup \{ [\sigma]_{\varphi} \mid \sigma \in T' \}$ is decided by checking that $\text{Empty}(\sigma)$ for each region $\sigma \in (T \setminus \{T' \})$.

![Fig. 2. Model checking.](image)

The symbolic semi-algorithm \textbf{ModelCheck} terminates on the region algebra \mathcal{R}_S and the input formula φ.

\textbf{Corollary 1B} The $L^\mathcal{R}_1$ model-checking problem is decidable for the class STS1 of symbolic transition systems.

\textbf{Remark: Duality.} Model checking of $L^\mathcal{R}_1$-formulas on STS1 systems can also be performed by the dual of the semi-algorithm \textbf{ModelCheck}. Suppose that the input given to the dual semi-algorithm \textbf{ModelCheck} is the dual region algebra of a symbolic transition system $\mathcal{S} = (Q, \delta, R, \text{Empty}, P)$, and the $L^\mathcal{R}_1$-formula φ. If \mathcal{S} belongs to the class STS1, then \textbf{ModelCheck} terminates with the output $T \subseteq R$ such that $[\varphi]_S = \bigcap \{ [\sigma]_{\varphi} \mid \sigma \in T \}$.

3.4 Example: The Bakery Protocol

Consider the 2-process bakery protocol [Lamport 1974] for mutual exclusion, which is presented as a collection of guarded commands in Figure 3. The program counters of the two processes, p_{c1} and p_{c2}, each range over three locations: $p_{c1} = N$ if process i is not in its critical section; $p_{c1} = W$ if process i is waiting to enter its

A Classification of Symbolic Transition Systems

\[\text{var } pc_1, pc_2 : \{N, W, C\} \]
\[\text{var } y_1, y_2 : \mathbb{N} \]
\[| pc_1 = N \rightarrow pc_1, y_1 := W, y_2 + 1 \]
\[| pc_1 = W \land (y_2 = 0 \lor y_1 \leq y_2) \rightarrow pc_1 := C \]
\[| pc_1 = C \rightarrow pc_1, y_1 := N, 0 \]
\[| pc_2 = N \rightarrow pc_2, y_2 := W, y_1 + 1 \]
\[| pc_2 = W \land (y_1 = 0 \lor y_2 < y_1) \rightarrow pc_2 := C \]
\[| pc_2 = C \rightarrow pc_2, y_2 := N, 0 \]

Fig. 3. The 2-process bakery protocol.

critical section; and \(pc_i = C \) if process \(i \) is in its critical section. The protocol uses two variables \(y_1 \) and \(y_2 \), which range over the natural numbers and represent the “tokens” of the two processes. A state of the protocol, therefore, is a quadruple of values in \(\{N, W, C\}^2 \times \mathbb{N}^2 \). The observables are the boolean formulas over the program counters, in particular, the observable \(p_{\text{init}} = (pc_1 = N \land pc_2 = N) \) is the initial region, and \(T_{\text{mutex}} = (pc_1 = C \land pc_2 = C) \) is the region that violates mutual exclusion. The values of the tokens are not observable.

The bisimilarity relation of this infinite-state system has finite index. To see this, define the binary relation \(\approx \) on states as follows: for all states \(u \) and \(v \), let \(u \approx v \) iff (1) \(u(pc_i) = v(pc_i) \) for \(i = 1, 2 \); (2) \(u(y_i) = 0 \) iff \(v(y_i) = 0 \) for \(i = 1, 2 \); and (3) \(u(y_1) \leq u(y_2) \) iff \(v(y_1) \leq v(y_2) \), where \(u(x) \) denotes the value of variable \(x \) in state \(u \). By a simple case enumeration, it can be checked that \(\approx \) is a bisimulation (i.e., a symmetric simulation). Moreover, the relation has finite index (the number of equivalence classes is 72). Thus, the 2-process bakery protocol is in \(\text{STS1} \). By Theorem 1A, the closure semi-algorithm \(\text{Closure1} \) terminates on the region algebra of the protocol. By Theorem 1B, the model-checking semi-algorithm \(\text{ModelCheck} \) terminates as well for all \(L_1^\mu \)-formulas. In particular, the region \([p_{\text{init}} \land (\mu x : T_{\text{mutex}} \lor \exists \times x)] \) can be computed to be empty in a finite number of steps. This proves that there is no sequence of transitions that leads from an initial state to a state that violates mutual exclusion; thus the protocol guarantees mutual exclusion.

3.5 Example: Singular Hybrid Automata

The fundamental theorem of timed automata [Alur and Dill 1994] shows that for every timed automaton, the (time-abstract) bisimilarity relation has finite index. The proof can be extended to the singular automata [Alur et al. 1995]. It follows that the symbolic semi-algorithm \(\text{ModelCheck} \), which has been implemented for polyhedral hybrid automata in the tool HyTech [Henzinger et al. 1995], decides all \(L_1^\mu \) model-checking questions for singular automata. The singular automata form a maximal class of hybrid automata in \(\text{STS1} \). This is because there is a 2D (two-dimensional) rectangular automaton whose bisimilarity relation is state equality [Henzinger 1995].

Theorem 1C The singular automata belong to the class \(\text{STS1} \). There is a 2D rectangular automaton that does not belong to \(\text{STS1} \).
Symbolic semi-algorithm Closure2
Input: a region algebra $R = (P, Pre, And, Diff, Empty)$.

$p = P;$
for $i = 0, 1, 2, \ldots$ do

$p = T_i$

$p = T_i$

$\cup \{Pre(\sigma) \mid \sigma \in T_i\}$

$\cup \{And(\sigma, \tau) \mid \sigma, \tau \in T_i\}$

$\text{until } ^{\vee}T_{i+1} \subseteq ^{\vee}T_i.$

The termination test $^{\vee}T_{i+1} \subseteq ^{\vee}T_i$ is decided as in Figure 1.

Fig. 4. Intersection refinement.

4. CLASS-2 SYMBOLIC TRANSITION SYSTEMS

The class-2 systems are characterized by finite similarity quotients. The region algebra of a class-2 system has a finite subalgebra that contains the observables and is closed under Pre and And operations. This enables the model checking of all existential and universal μ-calculus properties. Infinite-state examples of class-2 systems are provided by the 2D rectangular hybrid automata.

4.1 Finite Characterization: Similarity

**Definition: **Similarity. Let S be a transition system. Two states u and v of S are similar, denoted $u \equiv_2 v$, if there are two simulations \leq_1 and \leq_2 on S such that $u \leq_1 v$ and $v \leq_2 u$. The state equivalence \equiv_2 is called similarity.

**Definition: **Class STS2. A symbolic transition system S belongs to the class STS2 if the similarity relation \equiv_2 has finite index.

Since similarity is coarser than bisimilarity [van Glabbeek 1990], the class STS2 of symbolic transition systems is a proper extension of STS1.

4.2 Symbolic State-Space Exploration: Intersection Refinement

The symbolic semi-algorithm Closure2 of Figure 4 is an abstract version of the method presented in [Henzinger et al. 1995] for computing the similarity relation of an infinite-state system. A different algorithm for computing simulation quotients is given in [Bustan and Grumberg 2003]. Suppose that the input given to Closure2 is the region algebra of a symbolic transition system $S = (Q, \delta, R, ^{\vee}, P)$. Given two states $u, v \in Q$, we say that v simulates u if $u \leq v$ for some simulation \leq on S. For $i \geq 0$ and $u \in Q$, define

$$Sim_i(u) = \bigcap \{^{\vee}\sigma \mid \sigma \in T_i \text{ and } u \in ^{\vee}\sigma\},$$

where the set T_i of regions is computed by Closure2. By induction it is easy to check that for all $i \geq 0$, if v simulates u, then $v \in Sim_i(u)$. Thus, the extension of every region in T_i is a \equiv_2 block, and if \equiv_2 has finite index, then Closure2 terminates. Conversely, suppose that Closure2 terminates with $^{\vee}T_{i+1} \subseteq ^{\vee}T_i$. From the definition of simulations it follows that if $v \in Sim_i(u)$, then v simulates u. This implies that \equiv_2 has finite index.

Theorem 2A For all symbolic transition systems S, the symbolic semi-algorithm
Closure2 terminates on the region algebra \(R_S \) iff \(S \) belongs to the class STS2.

Corollary 2A The \(\cong_2 \) (similarity) equivalence problem is decidable for the class STS2 of symbolic transition systems.

4.3 Decidable Properties: Negation-free Branching Time

Definition: Negation-free \(\mu \)-calculus. The negation-free \(\mu \)-calculus consists of the \(\mu \)-calculus formulas that are generated by the grammar

\[
\varphi ::= p \mid x \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists x: \varphi \mid (\mu x: \varphi) \mid (\nu x: \varphi),
\]

for constants \(p \in \Pi \) and variables \(x \in X \). The state logic \(L_{\mu}^2 \) consists of the closed formulas of the negation-free \(\mu \)-calculus. The state logic \(T_{\mu}^2 \) consists of the duals of all \(L_{\mu}^2 \)-formulas.

The following facts about the distinguishing and expressive powers of the negation-free \(\mu \)-calculus and its dual are well-known. First, both \(L_{\mu}^2 \) and \(T_{\mu}^2 \) preserve \(\cong_2 \) (similarity); indeed, the state equivalence defined by \(L_{\mu}^2 \) (respectively, \(T_{\mu}^2 \)) over the class STS2 of symbolic transition systems with finite similarity quotients is exactly \(\cong_2 \) [Loiseaux et al. 1995]. Therefore the \(\mu \)-calculus \(L_{\mu}^1 \) with negation is more expressive than either \(L_{\mu}^2 \) or \(T_{\mu}^2 \). Second, the negation-free \(\mu \)-calculus \(L_{\mu}^2 \) is more expressive than the existential fragments of CTL and CTL* [Emerson 1990], which also define similarity over the STS2 systems. The dual logic \(T_{\mu}^2 \) is more expressive than the universal fragments of CTL and CTL*, which again define similarity over the STS2 systems. Third, both \(L_{\mu}^2 \) and \(T_{\mu}^2 \) admit abstraction [Alur and Henzinger 1998]. It follows that the \(L_{\mu}^2 \) and \(T_{\mu}^2 \) model-checking problems are decidable for the STS2 systems. However, we now show that the procedure ModelCheck from Figure 2 decides the model-checking problems for \(L_{\mu}^2 \) and \(T_{\mu}^2 \) over STS2 systems without constructing similarity quotients.

If we apply the symbolic semi-algorithm ModelCheck to the region algebra of a symbolic transition system \(S \) and an input formula from \(L_{\mu}^2 \), then the cases \(\varphi = \overline{p} \) and \(\varphi = \forall \varphi' \) are never executed. It follows that all regions which are generated by ModelCheck are also generated by the semi-algorithm Closure2 on input \(R_S \). Thus, if Closure2 terminates, then so does ModelCheck.

Theorem 2B For all symbolic transition systems \(S \) in STS2 and every \(L_{\mu}^2 \)-formula \(\varphi \), the symbolic semi-algorithm ModelCheck terminates on the region algebra \(R_S \) and the input formula \(\varphi \).

Corollary 2B The \(L_{\mu}^2 \) and \(T_{\mu}^2 \) model-checking problems are decidable for the class STS2 of symbolic transition systems.

4.4 Example: 2D Rectangular Hybrid Automata

For every 2D rectangular automaton, the (time-abstract) similarity relation has finite index [Henzinger et al. 1995]. It follows that the symbolic semi-algorithm ModelCheck, as implemented in HyTech, decides all \(L_{\mu}^2 \) and \(T_{\mu}^2 \) model-checking questions for 2D rectangular automata. The 2D rectangular automata form a maximal class of hybrid automata in STS2. This is because there is a 3D rectangular automaton whose similarity relation is state equality [Henzinger and Kopke 1996].
Theorem 2C The 2D rectangular automata belong to the class STS2. There is a 3D rectangular automaton that does not belong to STS2.

5. CLASS-3 SYMBOLIC TRANSITION SYSTEMS
The class-3 systems are characterized by finite trace-equivalence quotients. The region algebra of a class-3 system has a finite subalgebra that contains the observables and is closed under Pre operations and those And operations for which one of the two arguments is an observable. This enables the model checking of all linear temporal properties. Infinite-state examples of class-3 systems are provided by the rectangular hybrid automata.

5.1 Finite Characterization: Traces

Definition: Trace equivalence. Let $S = (Q, \delta, \cdot, \cdot, P)$ be a transition system. A trajectory of S is a finite sequence $\theta = u_0 u_1 \ldots u_n$ of states $u_i \in Q$ such that $u_{i+1} \in \delta(u_i)$ for all $0 \leq i < n$. The first state u_0 is called the source of the trajectory θ, the last state u_n is its sink, and the length of the trajectory is n. An observation is a set of observables. Every state $u \in Q$ induces an observation, denoted by $\langle u \rangle = \{ p \in P \mid u \in \cdot p \}$. A trace from state u is a finite sequence of observations which is induced by some trajectory with source u; that is, $\theta = \pi_0 \pi_1 \ldots \pi_n$ is a trace from $u \in Q$ if there exists a trajectory $u_0 u_1 \ldots u_n$ of S such that (1) $u_0 = u$ and (2) $\langle \langle u_i \rangle \rangle = \pi_i$ for all $0 \leq i \leq n$. The observables in the last observation π_n are called the targets of the trace θ, and its length is n. Two states $u, v \in Q$ are trace equivalent, denoted $u \equiv^S_3 v$, if every trace from u is a trace from v, and vice versa. The state equivalence \equiv^S_3 is called trace equivalence. □

Definition: Class STS3. A symbolic transition system S belongs to the class STS3 if the trace-equivalence relation \equiv^S_3 has finite index. □

Since trace equivalence is coarser than similarity [van Glabbeek 1990], the class STS3 of symbolic transition systems is a proper extension of STS2.

5.2 Symbolic State-Space Exploration: Observation Refinement

Trace equivalence can be characterized operationally by the symbolic semi-algorithm Closure3 of Figure 5. Suppose that the input given to Closure3 is the region algebra of a symbolic transition system $S = (Q, \delta, R, \cdot, \cdot, P)$. By induction it is easy to check that for all $i \geq 0$, the extension of every region in T_i is a \equiv^S_3 block. Thus, if \equiv^S_3 has finite index, then Closure3 terminates. Conversely, suppose that Closure3 terminates with $\cdot T_{i+1} \subseteq \cdot T_i$. Suppose further that there are two states $u, v \in Q$ and a trace $\pi_0 \pi_1 \ldots \pi_n$ from u which is not a trace from v. For $1 \leq j \leq n$, let π_j be the region that results from conjoining by And the observables in the finite set π_j (note that for every observable $p \in P$, either $p \in \pi_j$ or $\overline{p} \in \pi_j$). Then T_i contains the region And($\pi_0, Pre(And(\pi_1, Pre(\ldots, And(\pi_{n-1}, Pre(\pi_n))))))$, which contains u but not v. It follows that if for each region $\sigma \in T_i$, we have $u \in \cdot \sigma$ iff $v \in \cdot \sigma$, then $u \equiv^S_3 v$. This implies that \equiv^S_3 has finite index.

Theorem 3A For all symbolic transition systems S, the symbolic semi-algorithm Closure3 terminates on the region algebra R_S iff S belongs to the class STS3.

Symbolic semi-algorithm Closure3
Input: a region algebra \(R = (P, \text{Pre}, \text{And}, \text{Diff}, \text{Empty}) \).

\[
T_0 := P; \\
\text{for } i = 0, 1, 2, \ldots \text{ do} \\
T_{i+1} := T_i \\
\quad \cup \{ \text{Pre}(\sigma) | \sigma \in T_i \} \\
\quad \cup \{ \text{And}(\sigma, p) | \sigma \in T_i \text{ and } p \in P \} \\
\text{until } \forall T_{i+1} \subseteq \forall T_i.
\]

The termination test \(\forall T_{i+1} \subseteq \forall T_i \) is decided as in Figure 1.

Fig. 5. Observation refinement.

Fig. 6. Trace equivalence does not imply \(\omega \)-trace equivalence.

Corollary 3A The \(\equiv_3 \) (trace) equivalence problem is decidable for the class STS3 of symbolic transition systems.

Remark: Infinite traces. We have defined trace equivalence based on finite traces only. An \(\omega \)-trajectory of \(S \) is an infinite sequence \(u_0u_1u_2 \ldots \) of states such that all finite prefixes of \(\theta \) are trajectories of \(S \). An \(\omega \)-trace from state \(u \in Q \) is an infinite sequence of observations which is induced by some \(\omega \)-trajectory of \(S \) with source \(u \). Two states \(u, v \in Q \) are \(\omega \)-trace equivalent if every trace and \(\omega \)-trace from \(u \) is also a trace or \(\omega \)-trace from \(v \), and vice versa. As transition systems may not be finitely branching, trace equivalence does not imply \(\omega \)-trace equivalence. To see this, consider the states \(u \) and \(v \) of Figure 6, which are trace equivalent but not \(\omega \)-trace equivalent. This is because \(u \) and \(v \) agree on all finite traces of the form \(\{p\}^n \), for \(n \geq 1 \), but only \(u \) has the \(\omega \)-trace \(\{p\}^\omega \). Note that Algorithm Closure3 does not terminate on the symbolic transition system from Figure 6. The following lemma shows that if Algorithm Closure3 terminates, then trace equivalence and \(\omega \)-trace equivalence coincide.

Lemma 3a For all states \(u \) and \(v \) of a symbolic transition system \(S \) in the class STS3, if \(u \equiv_3 v \), then \(u \) and \(v \) are \(\omega \)-trace equivalent.

Proof. Suppose that Algorithm Closure3 terminates, and consider two states \(u \) and \(v \) that are trace equivalent. We show that every \(\omega \)-trace from \(u \) is also an \(\omega \)-trace from \(v \). Consider an \(\omega \)-trace \(\theta = \pi_0\pi_1\pi_2 \ldots \) from \(u \). By way of contradiction,
suppose that there is no ω-trajectory with source v which induces the ω-trace ϑ. For each $n \geq 1$, denote the prefix $\pi_0 \pi_1 \ldots \pi_n$ of ϑ by ϑ_n. We build the following subtree T of the unfolding of the transition function from state v: the root of T is $\langle v \rangle$; the nodes of T have the form $\langle u_0 u_1 \ldots u_n \rangle$, where $u_0 u_1 \ldots u_n$ is a trajectory with source v which induces the trace ϑ_n; there is an edge in T from $\langle u_0 u_1 \ldots u_n \rangle$ to $\langle u_0 u_1 \ldots u_{n+1} \rangle$ if $u_{n+1} \in \delta(u_n)$. We say that a node z of T is infinitely reaching if z has a descendant at distance n for all $n \geq 1$; and z is infinitely branching if z has infinitely many immediate descendants (at distance 1). Since u and v are trace equivalent, for each $n \geq 1$, there is a trajectory with source v which induces ϑ_n. It follows that the root of T is infinitely reaching. However, since there is no ω-trajectory with source v which induces ϑ, the tree T has no infinite path. By König’s lemma, T must contain a node z which is both infinitely reaching and infinitely branching. For each $n \geq 1$, there must exist $f(n) \geq n$ such that z has an immediate successor $\langle \ldots u_{f(n)} \rangle$ which is the root of a subtree of height $f(n)$ but not $f(n) + 1$. Then Algorithm Closure3 should have separated all states $u_{f(n)}$ for $n \geq 1$, into different equivalence classes, and hence could not have terminated.

5.3 Decidable Properties: Linear Time

Definition: Deterministic μ-calculus. The deterministic μ-calculus (also called “L_1” in [Emerson et al. 1993]) consists of the μ-calculus formulas that are generated by the grammar

$$
\varphi ::= p \mid x \mid \varphi \lor \varphi \mid p \land \varphi \mid \exists x. \varphi \mid (\mu x. \varphi) \mid (\nu x. \varphi),
$$

for constants $p \in \Pi$ and variables $x \in X$. The state logic L_3^μ consists of the closed formulas of the deterministic μ-calculus. The state logic $\overline{L_3^\mu}$ consists of the duals of all L_3^μ-formulas.

Following [Emerson et al. 2001], we show that L_3^μ has the same expressive power as existentially interpreted Büchi automata. We recall a few definitions. A Büchi automaton [Thomas 1990] is a tuple $B = (S, \Phi, \rightarrow, s_0, F, B)$, where S is a finite set of states, Φ is a finite input alphabet, $\rightarrow \subseteq S \times \Phi \times S$ is a labeled transition relation, $s_0 \in S$ is the start state, $F \subseteq S$ is a set of finite accepting states, and $B \subseteq S$ is a set of Büchi accepting states. The automaton B accepts a finite word $w_0 w_1 \ldots w_n \in \Phi^*$ if there is a finite sequence $s_0 s_1 \ldots s_{n+1}$ of states $s_i \in S$, beginning from the start state s_0, such that (1) $s_i w_i s_{i+1}$ for all $0 \leq i \leq n$, and (2) $s_{n+1} \in F$. The automaton B accepts an infinite word $w_0 w_1 w_2 \ldots \in \Phi^*$ if there is an infinite sequence $s_0 s_1 s_2 \ldots$ of states, beginning with s_0, such that (1) $s_i w_i s_{i+1}$ for all $i \geq 0$, and (2) $s_i \in B$ for infinitely many $i \geq 0$. The state logic $\exists \text{Büchi}$ has a formula of the form $\exists B$ for every Büchi automaton B with $\Phi = 2^\Pi$: that is, each input letter is a set of constants. Then, given a transition system $S = (Q, \delta, \rightarrow, \pi, P)$ with $\Pi \subseteq P$, and a state $u \in Q$, let $u \in \exists B(S)$ if there exist a trace or ω-trace $\vartheta = \pi_0 \pi_1 \pi_2 \ldots$ from u, and a finite or infinite word $\varpi = w_0 w_1 w_2 \ldots$ with the same length as ϑ, such that (1) $w_i \subseteq \pi_i$ for all $i \geq 0$, and (2) the word ϖ is accepted by B. If (1) and (2), then we say that the trace or ω-trace ϑ is accepted by the Büchi automaton B.

Lemma 3b The state logics L_3^μ and $\exists \text{Büchi}$ are equally expressive.

Proof. The proof is based on the following constructions. By induction on the structure of an L_3^μ-formula φ, we can construct a Büchi automaton B_φ such that $\exists B_\varphi$
is equivalent to φ; see [Emerson et al. 2001] for details. Conversely, given a Büchi automaton B, we construct an L_ω^B-formula φ_B such that for all transition systems S, a state u of S satisfies φ iff some trace or ω-trace from u is accepted by B_u. Let $B = (S, 2^S, \rightarrow, s_0, F, B)$ be a Büchi automaton over the alphabet 2^S. For notational convenience, we present the formula φ_B in equational form [Cleaveland et al. 1992]; it can be easily converted into the standard fixpoint representation by unrolling the equations and binding variables with least and greatest fixpoint quantifiers. For a set $\pi \subseteq P$ of observables, let π be the conjunction $\bigwedge \pi$ of the observables in π. For each automaton state $s \in S$, we introduce a variable $x_s \in X$. If $s \in F$ is a finite accepting state, then $x_s = s$. If $s \notin F$, then the equation for x_s is

$$x_s = \lambda \bigvee \{ \pi \land \exists x_{s'} \mid s \xrightarrow{r} s' \}$$

where $\lambda = \nu$ if S is a Büchi accepting state, and $\lambda = \mu$ otherwise. The top-level variable is x_{s_0}, where s_0 is the start state of the automaton. The correctness of the procedure follows from [Bhat and Cleaveland 1996] (an equivalent construction is given in [Dam 1994]).

The state logic $\exists \text{Büchi}$, by its very definition, preserves ω-trace equivalence. Moreover, as every finite trace can be specified by a Büchi automaton, over the class STS3 of symbolic transition systems with finite trace-equivalence quotients, by Lemma 3a, the state equivalence defined by $\exists \text{Büchi}$ is exactly \equiv_3 (trace equivalence). By Lemma 3b, it follows that both the deterministic μ-calculus L_μ^3 and its dual L_ν^3 also preserve ω-trace equivalence, and the state equivalence defined by L_μ^3 (respectively, L_ν^3) over the STS3 systems is \equiv_3. Therefore the negation-free μ-calculus L_μ^3 with unrestricted conjunction is more expressive than L_μ^3, and L_ν^3 is more expressive than L_ν^3. Since Büchi automata are more expressive than the linear temporal logic LTL [Wolper 1983], by Lemma 3b, the deterministic μ-calculus L_μ^3 is more expressive than the existential interpretation of LTL, which also defines trace equivalence over the STS3 systems. For example, the existential LTL formula $\exists (p \text{U} q)$ ("on some trace, p until q") is equivalent to the L_μ^3-formula $(\mu x : q \lor (p \land \exists x \land x))$ (notice that one argument of the conjunction is a constant). The dual logic L_ν^3 is more expressive than the usual, universal interpretation of LTL, which again defines trace equivalence over the STS3 systems. For example, the universal LTL formula $\forall (p \text{U} q)$ ("on all traces, either p forever, or p until q") is equivalent to the L_ν^3-formula $(\nu x : p \land \forall x (q \lor x))$ (notice that one argument of the disjunction is a constant). Finally, both L_μ^3 and L_ν^3 admit abstraction [Alur and Henzinger 1998]. It follows that the L_μ^3 and L_ν^3 model-checking problems are decidable for the STS3 systems. However, we now show that the procedure ModelCheck from Figure 2 decides the model-checking problems for L_μ^3 and L_ν^3 over STS2 systems without constructing trace-equivalence quotients.

If we apply the symbolic semi-algorithm ModelCheck to the region algebra of a symbolic transition system S and an input formula from L_μ^3, then all regions which are generated by ModelCheck are also generated by the semi-algorithm Closure3 on input R_S. Thus, if Closure3 terminates, then so does ModelCheck.

Theorem 3B For all symbolic transition systems S in STS3 and every L_μ^3-formula φ, the symbolic semi-algorithm ModelCheck terminates on the region algebra R_S and
the input formula φ.

Corollary 3B The L_3^μ and L_3^ν model-checking problems are decidable for the class $STS3$ of symbolic transition systems.

Remark: LTL model checking. The LTL model-checking problem for a class C of transition systems asks, given an existential (respectively, universal) LTL formula $\exists \psi$ (respectively, $\forall \psi$) and a state u of a transition system from the class C, whether some (respectively, all) ω-traces from u satisfy ψ [Emerson 1990]. Our results suggest a symbolic procedure for LTL model checking over $STS3$ systems [Henzinger and Majumdar 2000]. Suppose that S is a symbolic transition system in the class $STS3$, and $\exists \psi$ is an existential LTL formula (for a universal LTL formula, take the negation). First, convert ψ into a Büchi automaton B_ψ using a tableau construction [Wolper 1983], and then into an equivalent L_3^μ-formula φ_ψ in equational form (introduce one variable x_s per state s of B_ψ, as in the proof of Lemma 3B). Second, run the symbolic semi-algorithm ModelCheck on the inputs R_ψ and φ_ψ. It will terminate with a representation of the set of states that satisfy $\exists \psi$ in S.

While ModelCheck provides, in this way, a symbolic semi-algorithm for model checking LTL, traditionally a different method has been used for the symbolic model checking of LTL formulas [Clarke et al. 1994]. Given a state u of a finite-state transition system S, and an existential LTL formula $\exists \psi$, the model-checking question can be answered by constructing the product of S with the tableau automaton B_ψ, and then checking the nonemptiness of a Büchi condition on the product structure. A Büchi condition is an LTL formula of the form $\Box \Diamond \phi$, where ϕ is a boolean combination of observables; therefore Büchi nonemptiness can be checked symbolically by evaluating the equivalent L_3^μ-formula

$$
\chi = (\nu x_1 : (\mu x_2 : (\exists \Diamond x_2) \lor (\phi \land \exists \Diamond x_1))).
$$

To extend this method to infinite-state systems, we need to be more formal. Let $S = (Q, \delta, R, \rho, \gamma, P)$ be a symbolic transition system, and let $B_\psi = (S, 2^P, \rightarrow, s_0, \emptyset, B)$ be a Büchi automaton. Notice that since we interpret LTL only over ω-traces, the set F of finite accepting states of the Büchi automaton is empty. The product structure $S_\psi = (S \times Q, \delta_\psi, S \times R, \rho \cdot \gamma, S \times P)$ is the following symbolic transition system with state space $S \times Q$, region set $S \times R$, and observable set $S \times P$: the extension $\rho \cdot \gamma$ is the loop $s \in S$ and $s' \in \delta_\psi(s, u)$ iff $s \xrightarrow{\rho} s'$ and $s' \in \rho \cdot \gamma$ for all observables $p \in \pi$. Since the state space of the Büchi automaton B_ψ is finite, it is easy to check that S_ψ is again a symbolic transition system. Furthermore, for all states $s \in Q$, we have $u \in [\exists B_\psi]_S$ iff $(s_0, u) \in [\Box \Diamond \phi]_{S_\psi}$, where $\phi = \bigvee_{s \in B, p \in P}(s, p)$.

Let DirectCheck be the instance of the symbolic semi-algorithm ModelCheck which evaluates the L_3^μ-formula φ_ψ on the region algebra of the symbolic transition system S, and let ProductCheck be the instance of ModelCheck which evaluates the L_3^μ-formula χ on the region algebra of the product structure S_ψ. We show that

3In practice, we run a variant of ModelCheck directly on the equational representation of the L_3^μ-formula φ_ψ [Cleaveland et al. 1992]. This is because in equational form, the size of φ_ψ is linear in the size of the Büchi automaton B_ψ (and exponential in the size of the LTL formula ψ). Conversion of φ_ψ into fixpoint representation would involve another exponential.

there is a direct correspondence between the regions computed by ProductCheck and the regions computed by DirectCheck; in fact, the algorithm DirectCheck mimics the evaluation of χ with respect to \mathcal{S}_ψ. To see this, we first write the formula χ in equational form as $x_1 = \nu x_2$ and $x_2 = \mu (\exists x_2) \lor (\phi \land \exists x_1)$. Now we introduce two sets of variables, $\{x_s^1 | s \in S\}$ and $\{x_s^2 | s \in S\}$. For $j = 1, 2$, we use the variable x_s^j to track the value of x_j on the product structure at the automaton state s, that is, at each step, $x_1 = \nu \{x_1^s | s \in S\}$ and $x_2 = \mu \{x_2^s | s \in S\}$. With these new variables, the equations for χ become $x_s^1 = x_2$ for all $s \in S$, and $x_s^2 = \nu \{\pi \land \exists x_1^s | s \xrightarrow{n} s'\}$ for all $s \in B$, and $x_s^2 = \mu \{\pi \land \exists x_2^s | s \xrightarrow{n} s'\}$ for all $s \in S \setminus B$. The top-level variable is $x_1^{s_0}$. From this, it is clear that these two methods are equivalent in the regions they compute. It follows that ProductCheck terminates if DirectCheck does.

Corollary 3B For all symbolic transition systems \mathcal{S} in STS3, and every existential LTL formula $\exists \psi$, the symbolic semi-algorithm ProductCheck terminates for \mathcal{S} and ψ.

5.4 Example: Rectangular Hybrid Automata

For every rectangular automaton, the (time-abstract) trace-equivalence relation has finite index [Henzinger et al. 1998]. It follows that the symbolic semi-algorithm ModelCheck, as implemented in HyTech, decides all L_3^μ and L_3^{\forall} model-checking questions for rectangular automata. The rectangular automata form a maximal class of hybrid automata in STS3. This is because for simple generalizations of rectangular automata, the reachability problem is undecidable [Henzinger et al. 1998].

Theorem 3C The rectangular automata belong to the class STS3. There is a polyhedral hybrid automaton that does not belong to STS3.

6. CLASS-4 SYMBOLIC TRANSITION SYSTEMS

We define two states of a transition system to be “distance equivalent” if for every distance d, the same observables can be reached in d transitions. The class-4 systems are characterized by finite distance-equivalence quotients. The region algebra of a class-4 system has a finite subalgebra that contains the observables and is closed under Pre operations. This enables the model checking of all existential conjunction-free and universal disjunction-free μ-calculus properties, such as the property that an observable can be reached in an even number of transitions.

6.1 Finite Characterization: Equi-distant Targets

Definition: Distance equivalence. Let \mathcal{S} be a transition system. Two states u and v of \mathcal{S} are distance equivalent, denoted $u \equiv^d_4 v$, if for every trace from u with length n and target p, there is a trace from v with length n and target p, and vice versa. The state equivalence \equiv_4 is called distance equivalence.

Definition: Class STS4. A symbolic transition system \mathcal{S} belongs to the class STS4 if the distance-equivalence relation \equiv_4^d has finite index.

Figure 7 shows that distance equivalence is coarser than trace equivalence: the states u and v are distance equivalent but not trace equivalent. It follows that the
Fig. 7. Distance equivalence is coarser than trace equivalence.

Symbolic semi-algorithm Closure4
Input: a region algebra \(R = (P, \text{Pre}, \text{And}, \text{Diff}, \text{Empty}) \).

\[
T_0 := P;
\]

\[
\text{for } i = 0, 1, 2, \ldots \text{ do}
\]

\[
T_{i+1} := T_i \cup \{ \text{Pre}(\sigma) \mid \sigma \in T_i \}
\]

\[
\text{until } \cap T_{i+1} \subseteq \cap T_i.
\]

The termination test \(\cap T_{i+1} \subseteq \cap T_i \) is decided as in Figure 1.

Fig. 8. Predecessor iteration.

Definition: Conjunction-free \(\mu \)-calculus. The conjunction-free \(\mu \)-calculus con-
sists of the \(\mu \)-calculus formulas that are generated by the grammar
\[
\varphi ::= p \mid x \mid \varphi \lor \varphi \mid \exists \varphi \mid (\mu x : \varphi)
\]
for constants \(p \in \Pi \) and variables \(x \in X \). The state logic \(L_4^\mu \) consists of the closed formulas of the conjunction-free \(\mu \)-calculus. The state logic \(\overline{L_4^\mu} \) consists of the duals of all \(L_4^\mu \)-formulas.

Definition: Conjunction-free temporal logic. The formulas of the conjunction-free temporal logic \(L_4^\phi \) are generated by the grammar
\[
\varphi ::= p \mid \varphi \land \varphi \mid \exists \varphi \mid \exists \varphi \leq d \varphi \mid \exists \varphi
\]
for constants \(p \in \Pi \) and nonnegative integers \(d \geq 0 \). Let \(S = (Q, \delta, \gamma, \Gamma, P) \) be a transition system whose observables include all constants; that is, \(\Pi \subseteq P \). The \(L_4^\phi \)-formula \(\varphi \) defines the set \([\varphi]_S \subseteq Q \) of satisfying states:
\[
[p]_S = \Gamma p;
[\varphi_1 \lor \varphi_2]_S = [\varphi_1]_S \cup [\varphi_2]_S;
[\exists \varphi]_S = \{ u \in Q \mid (\exists v \in \delta(u) : v \in [\varphi]_S) \};
[\exists \varphi \leq d]_S = \{ u \in Q \mid \text{there is a trajectory of } S \text{ with source } u, \text{ length at most } d, \text{ and sink in } [\varphi]_S \};
[\exists \varphi]_S = \{ u \in Q \mid \text{there is a trajectory of } S \text{ with source } u \text{ and sink in } [\varphi]_S \}. \]

Note that the \(L_4^\phi \)-formula \(\exists \varphi \) is equivalent to the \(L_4^\mu \)-formula \((\mu x : \varphi \lor \exists \varphi) \). Moreover, the constructor \(\exists \varphi \leq d \) is definable from \(\exists \varphi \) and \(\lor \); however, it will be essential in the \(\exists \varphi \)-free fragment of \(L_4^\phi \) we will consider below.

Remark: Duality. For every \(L_4^\phi \)-formula \(\varphi \), the dual formula \(\overline{\varphi} \) is obtained by replacing the constructors \(p, \lor, \exists \varphi, \exists \varphi \leq d, \) and \(\exists \varphi \) by \(\overline{p}, \land, \forall \varphi, \forall \varphi \leq d, \) and \(\forall \varphi \), respectively. The semantics of the dual constructors is defined as usual, such that \([\overline{\varphi}]_S = Q \setminus [\varphi]_S \). The state logic \(\overline{L_4^\phi} \) consists of the duals of all \(L_4^\phi \)-formulas. It follows that the answer of the model-checking question for a state \(u \in Q \) and an \(L_4^\phi \)-formula \(\varphi \) is complementary to the answer of the model-checking question for \(u \) and the \(L_4^\phi \)-formula \(\overline{\varphi} \).

The following easy facts about the conjunction-free \(\mu \)-calculus, conjunction-free temporal logic, and their duals are relevant in our context. First, the state equivalence induced by both \(L_4^\mu \) and \(L_4^\phi \) is \(\equiv_4 \) (distance equivalence). Therefore the deterministic \(\mu \)-calculus \(L_4^\mu \) is more expressive than \(L_4^\phi \), and \(\overline{L_4^\mu} \) is more expressive than \(\overline{L_4^\phi} \). Second, the conjunction-free \(\mu \)-calculus \(L_4^\mu \) is more expressive than the conjunction-free temporal logic \(L_4^\phi \), and \(\overline{L_4^\phi} \) is more expressive than \(\overline{L_4^\mu} \), both of which also induce distance equivalence. For example, the property that an observable \(p \) can be reached in an even number of transitions can be expressed in \(L_4^\mu \) by the formula \((\mu x : p \lor \exists \varphi \exists \varphi x) \), for which there is no equivalent \(L_4^\phi \)-formula [Wolper 1983]. Third, both \(L_4^\mu \) and \(\overline{L_4^\phi} \) admit abstraction. It follows that the \(L_4^\mu \) and \(\overline{L_4^\phi} \) model-checking problems are decidable for the STS4 systems. As usual, we now show that the procedure ModelCheck from Figure 2 decides the model-checking problems for \(L_4^\mu \) and \(\overline{L_4^\phi} \) over STS4 systems without constructing distance-equivalence quotients.
If we apply the symbolic semi-algorithm ModelCheck to the region algebra of a symbolic transition system \(S \) and an input formula from \(L_4^n \), then all regions which are generated by ModelCheck are also generated by the semi-algorithm Closure4 on input \(\mathcal{R}_S \). Thus, if Closure4 terminates, then so does ModelCheck.

Theorem 4B For all symbolic transition systems \(S \) in STS4 and every \(L_4^n \)-formula \(\varphi \), the symbolic semi-algorithm ModelCheck terminates on the region algebra \(\mathcal{R}_S \) and the input formula \(\varphi \).

Corollary 4B The \(L_4^n \) and \(L_4^n \overline{\cdot} \) model-checking problems are decidable for the class STS4 of symbolic transition systems.

7. CLASS-5 SYMBOLIC TRANSITION SYSTEMS

We define two states of a transition system to be “bounded-reach equivalent” if for every distance \(d \), the same observables can be reached in \(d \) or fewer transitions. The class-5 systems are characterized by finite bounded-reach-equivalence quotients. Equivalently, for every observable \(p \) there is a finite bound \(n_p \) such that all states that can reach \(p \) can do so in at most \(n_p \) transitions. This enables the model checking of all reachability and (by duality) invariance properties. The transition systems in class 5 have also been called “well-structured” [Abdulla et al. 1996]. Infinite-state examples of class-5 systems are provided by networks of timed automata.

7.1 Finite Characterization: Bounded-distance Targets

Definition: Bounded-reach equivalence. Let \(S \) be a transition system. Two states \(u \) and \(v \) of \(S \) are **bounded-reach equivalent**, denoted \(u \equiv_5^S v \), if for every trace from \(u \) with length \(n \) and target \(p \), there is a trace from \(v \) with length at most \(n \) and target \(p \), and vice versa. The state equivalence \(\equiv_5^S \) is called **bounded-reach equivalence**.

Definition: Class \text{STS}5. A symbolic transition system \(S \) belongs to the class \text{STS}5 if the bounded-reach-equivalence relation \(\equiv_5^S \) has finite index.

Figure 9 shows that bounded-reach equivalence is coarser than distance equivalence:
Symbolic semi-algorithm Reach
Input: a region algebra \(\mathcal{R} = (P, \text{Pre}, \text{And}, \text{Diff}, \text{Empty}) \).

\[
\text{for each } p \in P \text{ do } \\
T_0 := \{ p \}; \\
\text{for } i = 0, 1, 2, \ldots \text{ do } \\
T_{i+1} := T_i \cup \{ \text{Pre}(\sigma) \mid \sigma \in T_i \} \\
\text{until } \bigcup \{ \langle \sigma \rangle \mid \sigma \in T_i \} \subseteq \bigcup \{ \langle \sigma \rangle \mid \sigma \in T_i \} \\
\text{end.}
\]

The termination test \(\bigcup \{ \langle \sigma \rangle \mid \sigma \in T_{i+1} \} \subseteq \bigcup \{ \langle \sigma \rangle \mid \sigma \in T_{i} \} \) is decided as in Figure 2.

Fig. 10. Predecessor aggregation.

all states \(u_i \), for \(i \geq 0 \), are bounded-reach equivalent, but no two of them are distance equivalent. It follows that the class \(\text{STS}5 \) of symbolic transition systems is a proper extension of \(\text{STS}4 \).

7.2 Symbolic State-Space Exploration: Predecessor Aggregation
The symbolic semi-algorithm Reach of Figure 10 starts from the observables and repeatedly applies the Pre operation, but its termination criterion is more easily met than the termination criterion of the semi-algorithm Closure4; that is, Reach may terminate on more inputs than Closure4. Indeed, we shall show that, if the input is the region algebra of a symbolic transition system \(\mathcal{S} = (Q, \delta, R, R^\star, P) \), then Reach terminates iff \(S \) belongs to the class \(\text{STS}5 \). Furthermore, upon termination, \(u \cong_{\text{STS}5} v \) iff for each observable \(p \in P \) and each region \(\sigma \in T^p_i \), we have \(u \in \langle \sigma \rangle \) iff \(v \in \langle \sigma \rangle \).

An alternative characterization of the class \(\text{STS}5 \) can be given using well-quasi-orders on states [Abdulla et al. 1996; Finkel and Schnoebelen 1998]. A \textit{quasi-order} on a set \(A \) is a reflexive and transitive binary relation on \(A \). A \textit{well-quasi-order} on \(A \) is a quasi-order \(\preceq \) on \(A \) such that for every infinite sequence \(a_0, a_1, a_2, \ldots \) of elements \(a_i \in A \) there exist indices \(i \) and \(j \) with \(i < j \) and \(a_i \preceq a_j \). A set \(B \subseteq A \) is \textit{upward-closed} if for all \(b \in B \) and \(a \in A \), if \(b \preceq a \), then \(a \in B \). If \(\preceq \) is a well-quasi-order on \(A \), then every infinite increasing sequence \(B_0 \subseteq B_1 \subseteq B_2 \subseteq \cdots \) of upward-closed sets \(B_i \subseteq A \) eventually stabilizes; that is, there exists an index \(i \geq 0 \) such that \(B_j = B_i \) for all \(j \geq i \). To see this, we reason by contradiction: if not, then we can find an infinite sequence \(b_0 \in B_0, b_1 \in B_1 \setminus B_0, \ldots, b_i \in B_i \setminus (B_0 \cup \cdots \cup B_{i-1}), \ldots \) such that there are no indices \(i, j \) for which \(b_i \preceq b_j \), leading to a contradiction.

\textbf{Theorem 5A} For all symbolic transition systems \(\mathcal{S} \), the following three conditions are equivalent:

1. \(\mathcal{S} \) belongs to the class \(\text{STS}5 \).
2. The symbolic semi-algorithm Reach terminates on the region algebra \(\mathcal{R}_\mathcal{S} \).
3. There is a well-quasi-order \(\preceq \) on the states of \(\mathcal{S} \) such that for all observables \(p \) and all nonnegative integers \(d \), the set \(\exists \Diamond_{d \leq p} \mathcal{S} \) is upward-closed.

\textbf{Proof.} (2 \(\Rightarrow \) 1) Define \(u \sim_{\text{STS}5} v \) if for all observables \(p \in P \), for every trace from
Fig. 11. An STS5 system on which L^μ_4 model checking does not terminate.

u with length n and target p, there is a trace from v with length at most n and target p, and vice versa. Note that $\sim_{\leq n}^S$ has finite index for all $n \geq 0$. Suppose that the semi-algorithm Reach terminates, for each observable $p \in P$, in at most i iterations. Then for all $n \geq i$, the equivalence relation $\sim_{\leq n}^S$ is equal to $\sim_{\leq n}^S$. Since \equiv_S^S is equal to $\bigcap \{\sim_{\leq n}^S | n \geq 0\}$, it has finite index.

$$(1 \Rightarrow 3)$$ Define the quasi-order $u \leq_S v$ if for all observables $p \in P$ and all $n \geq 0$, for every trace from u with length n and target p, there is a trace from v with length at most n and target p. Then each set $[3 \leq d \leq p]_S$, for an observable $p \in P$ and a nonnegative integer $d \geq 0$, is upward-closed with respect to \leq_S. Furthermore, if \equiv_S has finite index, then \leq_S is a well-quasi-order. This is because $u \equiv_S v$ implies $u \leq_S v$: if there were an infinite sequence u_0, u_1, u_2, \ldots of states such that for all $i \geq 0$ and $j < i$, we have $u_j \not\equiv_S u_i$, then no two of these states would be \equiv_S equivalent.

$$(3 \Rightarrow 2)$$ This part of the proof follows immediately from the stabilization property of well-quasi-orders [Abdulla et al. 1996].

7.3 Decidable Properties: Bounded Reachability

Definition: Bounded-reachability logic. The bounded-reachability logic L^\diamond_3 consists of the L^\diamond_3-formulas that are generated by the grammar

$$\varphi ::= p | \varphi \lor \varphi | \exists \leq d \varphi | \exists \diamond \varphi,$$

for constants $p \in P$ and nonnegative integers d. The state logic $L^\overline{\diamond}_3$ consists of the duals of all L^\diamond_3-formulas.

The following easy facts about bounded-reachability logic and its dual are relevant in our context. First, the state equivalence induced by both L^\diamond_3 and $L^\overline{\diamond}_3$ is \equiv_S (bounded-reach equivalence). Therefore the conjunction-free temporal logic L^\diamond_3 is more expressive than $L^\overline{\diamond}_3$, and $L^\overline{\diamond}_3$ is more expressive than L^\diamond_3. For example, the property that an observable p can be reached in exactly d transitions can be expressed in L^\diamond_3 by the formula $\exists \diamond \ldots \exists \diamond p$ with d next operators, for which there is no equivalent $L^\overline{\diamond}_3$-formula. Second, both L^\diamond_3 and $L^\overline{\diamond}_3$ admit abstraction. Since for STS5 systems the bounded-reach-equivalence quotient can be constructed using the symbolic semi-algorithm Reach, we have the following theorem.

Theorem 5B The L^\diamond_3 and $L^\overline{\diamond}_3$ model-checking problems are decidable for the class STS5 of symbolic transition systems.

A direct symbolic model-checking semi-algorithm for L^\diamond_3 and, indeed, $L^\overline{\diamond}_3$ is easily derived from the semi-algorithm Reach. Then, if Reach terminates, so does model
checking for all L_4-formulas, including unbounded $\exists \bigcirc$ properties. The extension to L_4 is possible, because $\exists \bigcirc$ properties pose no threat to termination. However the same is not true for L_4^*. Figure 7.3 shows a symbolic transition system from the class STS5 for which the evaluation of the L_4^*-formula ($\mu x : p \lor \exists \bigcirc \exists \bigcirc x$) using the symbolic semi-algorithm ModelCheck does not terminate (note that in this example, the symbolic semi-algorithm Reach with Pre replaced by Pre^2, which uses a more relaxed termination criterion, does not terminate either). We show that this is not surprising as L_4^* is undecided on STS5 systems. To establish this result, we proceed as follows. Given a two-counter machine M, we define a symbolic transition system S_M which belongs to the class STS5, and which encodes the computations of M such that the L_4^*-formula ($\mu x : p_{fin} \lor \exists \bigcirc \exists \bigcirc x$) characterizes exactly the set of configurations of M from which there is a halting computation.

Let $M = \langle K, C, D, I \rangle$ be a two-counter machine, where $K = \{\ell_0, \ldots, \ell_m\}$ is a finite set of control locations with initial location ℓ_0 and final location ℓ_m, the nonnegative integer variables C and D are the two counters, and I is a function that labels each nonfinal location with an instruction (increment a counter, decrement a counter, or test a counter for zero) and a successor location (in the case of zero-test there are two successor locations). A configuration of M is a triple $\gamma = \langle \ell, c, d \rangle$, where $\ell \in K$ is the value of the program counter, which indicates the current control location, and $c, d \in \mathbb{N}$ are the values of the two counters C and D. The configuration γ is final if $\ell = \ell_m$. We write Γ for the set of configurations of M, and $\Gamma_{fin} \subseteq \Gamma$ for the set of final configurations. If $\gamma \notin \Gamma_{fin}$, then $M(\gamma)$ denotes the successor configuration of γ, which results from γ by executing the instruction $I(\ell)$. A computation of M from configuration γ is a finite sequence $\gamma_0, \gamma_1, \ldots, \gamma_k$ of configurations such that (1) $\gamma_0 = \gamma$ and (2) $\gamma_{i+1} = M(\gamma_i)$ for all $0 \leq i < k$. The computation is halting if $\gamma_k \in \Gamma_{fin}$. The problem of deciding if a two-counter machine has a halting computation from the initial configuration $\langle \ell_0, 0, 0 \rangle$ is undecidable [Hopcroft and Ullman 1979].

We define the symbolic transition system $S_M = \langle Q, \delta, R, \Gamma, \gamma, P \rangle$ which encodes the computations of M as follows.

The state space $Q = \Gamma \times \{1, 2\}$ contains two copies for each configuration of M.

The transition function δ is defined as follows: $(\gamma', j') \in \delta(\gamma, j)$ if either (1) $\gamma \notin \Gamma_{fin}$ and $j = 1$ and $\gamma' \in \Gamma_{fin}$ and $j' = 1$ (that is, every copy 1 of a nonfinal configuration has a transition to every copy 1 of a final configuration); or (2) $\gamma \notin \Gamma_{fin}$ and $j = 1$ and $\gamma' = \gamma$ and $j' = 2$ (that is, every copy 1 of a nonfinal configuration has a transition to the copy 2 of the same configuration); or (3) $\gamma \notin \Gamma_{fin}$ and $j = 2$ and $\gamma' = M(\gamma)$ and $j' = 1$ (that is, every copy 2 of a nonfinal configuration has a transition to the copy 1 of the successor configuration).

The regions in R are the Presburger formulas. More precisely, a region is a first-order formula over the free variables pc, C, D, J, where pc is interpreted over the set K of control locations, C and D are interpreted as nonnegative integers, and J is interpreted over the set $\{1, 2\}$. The program counter pc occurs only in atomic subformulas of the form $pc = \ell$, for constants $\ell \in K$; the two counters C and D occurs only in atomic subformulas from $(\mathbb{N}, =, +, 0, 1)$; and the copy designator J occurs only in atomic subformulas of the form $J = 1$ or $J = 2$. The extension of a region σ is the set of states that satisfy the formula σ.

The only observables in P are the formula $pc = \ell_m$, which we abbreviate to p_{fin}, and its negation. Note that $\Gamma_{fin} = \Gamma_{fin} \times \{1, 2\}$.

We now establish three properties of S_M.

Lemma 5a S_M is a symbolic transition system.

Proof. The Presburger formulas are trivially closed under all boolean operations, and the emptiness (satisfiability) and membership (satisfaction) problems are decidable for the Presburger formulas [Cooper 1972; Berman 1980]. So, it remains to be shown that for every Presburger formula σ, we can construct a Presburger formula $Pre(\sigma)$ such that a state (γ, j) satisfies $Pre(\sigma)$ iff there is a state $(\gamma', j') \in \delta(\gamma, j)$ which satisfies σ. Following the definition of δ, we construct $Pre(\sigma)$ as a disjunction of three parts. The first two parts are simple and left to the reader. The third part is a disjunction over all instructions of M. Suppose that in location ℓ_i, the instruction $C := C + 1$ is executed and leads to location ℓ_{i+1}. Then the corresponding disjunct of $Pre(\sigma)$ is

$$\exists pc', C', D', J': pc = \ell_i \land J = 2 \land pc' = \ell_{i+1} \land C' = C + 1 \land D' = D \land J' = 1 \land \sigma(pc, C, D, J := pc', C', D', J')]$$

where the last conjunct results from σ by replacing the four free variables with their primed versions. □

Lemma 5b The symbolic transition system S_M is in the class STS55.

Proof. We show that the symbolic semi-algorithm Reach terminates for both observations in P. Every state that can reach a state in p_{fin} can do so in at most two transitions, because the first copy of every nonfinal configuration has a transition to the first copy of every final configuration. Every state that can reach a state in p_{fin} can do so in zero transitions, that is, $Pre(p_{fin}) \subseteq p_{fin}$, because there are no outgoing transitions from final configurations. □

Lemma 5c For all configurations γ of M, there exists a halting computation of M from γ iff the symbolic transition system S_M has a trace from $(\gamma, 1)$ with even length and target p_{fin}.

Proof. The left-to-right direction follows directly from the construction of S_M. For the right-to-left direction, we reason by induction on the even length k of the trace. Base case ($k = 0$): the configuration γ itself is final, and therefore there is a halting computation (of length 0) from γ. Inductive case ($k > 0$): by the construction of S_M, the configuration γ cannot be final, and a trace from $(\gamma, 1)$ with length k and target p_{fin} must begin with the three states $(\gamma, 1), (\gamma, 2), (M(\gamma), 1)$ followed by an even number of transitions. By the induction hypothesis, there is a halting computation of M from $M(\gamma)$, and therefore also from γ. □

This reduces the halting problem for a two-counter machine M to the problem of checking if the state $((\ell_0, 0, 0), 1)$ of the symbolic transition system S_M satisfies the L_4^m formula $(\mu x: p_{fin} \lor \exists O \exists O x)$.

Theorem 5B The L_4^m and L_4^m model-checking problems are undecidable for the class STS55 of symbolic transition systems.

7.4 Example: Networks of Timed Automata

A network of timed automata [Abdulla and Jonsson 1998] consists of a finite-state controller and an arbitrarily large set of identical 1D timed automata. The continuous evolution of the system increases the values of all variables. The discrete transitions of the system are specified by a set of synchronization rules. Formally, a network of timed automata is a triple (C, H, Λ), where C is a finite set of controller locations, H is a 1D timed automaton, and Λ is a finite set of rules of the form $r = (\langle c, c' \rangle, e_1, \ldots, e_n)$, where $c, c' \in C$ and e_1, \ldots, e_n are jumps of H. The rule r is enabled if the controller location is c and there are n timed automata H_1, \ldots, H_n whose states are such that the jumps e_1, \ldots, e_n, respectively, can be performed. The rule r is executed by simultaneously changing the controller location to c' and the state of each H_i, for $1 \leq i \leq n$, according to the jump e_i. The following result is proved in [Abdulla and Jonsson 1998].

Theorem 5C The networks of timed automata belong to the class STS^5. There is a network of timed automata that does not belong to STS^4.

8. GENERAL SYMBOLIC TRANSITION SYSTEMS

For studying reachability questions on symbolic transition systems, it is natural to consider the following fragment of bounded-reachability logic.

Definition: Reachability logic. The reachability logic L^6 consists of the L^5-formulas that are generated by the grammar

$$\varphi ::= p \mid \varphi \lor \varphi \mid \exists \varphi,$$

for constants $p \in \Pi$. □

The reachability logic L^6 induces the state equivalence \cong_6, which can be defined as follows.

Definition: Reach equivalence. Let S be a transition system. Two states u and v of S are reach equivalent, denoted $u \cong^6_6 v$, if for every trace from u with target p, there is a trace from v with target p, and vice versa. The state equivalence \cong_6 is called reach equivalence. □

Reach equivalence is coarser than bounded-reach-eqivalence: in Figure 12, all states u_i, for $i \geq 0$, are reach equivalent, but no two of them are bounded-reach-equivalent. Therefore the reachability logic L^6 is less expressive than the bounded-reachability logic L^5. For every symbolic transition system R with k observables, the reach-equivalence relation \cong^R_6 has at most 2^k equivalence classes and, therefore, finite index. Since the reachability problem is undecidable for many kinds of symbolic transition systems (including Turing machines and polyhedral hybrid automata [Alur et al. 1995]), it follows that there cannot be a general algorithm for computing the reach-equivalence quotient of symbolic transition systems.

REFERENCES

A Classification of Symbolic Transition Systems

Received January 2001; revised July 2002; accepted June 2003